
Introduction to Gromov–Witten Theory

Exercises

Lecture 1 Exercises

1. Recall that Mg,n(X, β) has a universal family U such that the association

g 7→ g∗U

produces a bijection between morphisms B →Mg,n(X, β) and families of genus-g, degree-β,
n-pointed stable maps over B (up to isomorphism).

(a) Formulate the notion of isomorphism of famiies carefully.

(b) Prove that there is a bijection between points of Mg,n(X, β) and genus-g, degree-β,
n-pointed stable maps up to isomorphism.

2. A trivial family over a base scheme B is one pulled back under the morphism B → •.

(a) Formulate the notion of pullback of families carefully.

(b) What, more explicitly, does a trivial family look like?

(c) Let (C;x1, . . . , xn; f) be a genus-g, degree-β, n-pointed stable map with a nontrivial
automorphism. Convince yourself that this data can be used to produce a nontrivial
family over a base scheme B in which every fiber is isomorphic. (Hint: You can do this
even with X = • and β = 0—that is, in Mg,n.)

(d) Given the existence of nontrivial families in which every fiber is isomorphic, prove that
a scheme Mg,n(X, β) cannot have a universal family U producing a bijection as in the
previous problem. (This is why we needMg,n(X, β) to have the structure of an orbifold.)

3. Prove that the splitting property holds in the case where deg(τD) = 1 and the virtual funda-
mental class is an ordinary fundamental class. (Hint: In X × X, the class of the diagonal
is

k∑
i=1

φi � φi,

where {φ1, . . . , φk} is a basis for H∗(X) with Poincaré dual basis {φ1, . . . , φk} and � indicates
that the two classes are pulled back under the projections X ×X → X.)

4. Find an example of a boundary divisor for which the morphism

τD :Mg1,n1+1(X, β1)×XMg2,n2+1(X, β2)→Mg,n(X, β)

does not have degree 1. How should the splitting property read in this case?



5. Come up with an identification between the forgetful map

τ :Mg,n+1(X, β)→Mg,n(X, β)

and the universal curve
π : U →Mg,n(X, β).

From the perspective of τ , what is the universal morphism f : U → X, and what are the
universal sections σ1, . . . , σn :Mg,n(X, β)→ U?



Lecture 2 Exercises

1. Fill in the details of the proofs of the fundamental class property, the divisor equation, and
the degree-zero invariants property, under the assumption that the virtual fundamental class
is an ordinary fundamental class.

2. Fill in the details of the computation of 〈H2 H2 H2 H2〉P3

0,4,1.

3. Compute all of the genus-zero primary Gromov–Witten invariants of P1.

4. Prove that all of the genus-zero primary Gromov–Witten invariants of P2 are determined by
the invariants

Nd = 〈H2 · · · H2〉P2

0,3d−1,d.

These, in turn, can be computed recursively by Kontsevich’s formula; try computing N2 from
N1 along the same lines as our computation of 〈H2 H2 H2 H2〉P3

0,4,1.

5. Fix a basis {φ0, φ1 . . . , φk} for H∗(X). Then the generating function of genus-g Gromov–
Witten invariants takes as input

t = t0φ0 + t1φ1 + · · ·+ tkφk

and is defined by

Fg(t) =
∑
n,β

qβ

n!
〈t t · · · t〉Xg,n,β,

where the ti and q are formal variables. Prove that, in the case where X = Pk and φi = H i,
then

Fg(t) =
∑
d,n

qd`edt1

n!
〈t′ t′ · · · t′〉Pk

0,n,d`,

where t′ = t|t1=0 and ` ∈ H2(Pk) is the class of a line.

6. The quantum product is a product structure ∗ on H∗(X)[[q]] defined as follows: for γ1, γ2 ∈
H∗(X), let (

γ1 ∗ γ2, γ3
)

=
∑
β

qβ〈γ1 γ2 γ3〉X0,3,β,

where (·, ·) denotes the q-linear extension of the Poincaré pairing

(α, β) =

∫
X

α ∪ β

on H∗(X). Then, extend ∗ to H∗(X)[[q]] linearly in q.

(a) Prove that, after setting q = 0, the quantum product becomes the cup product on H∗(X).

(b) Fix a basis {φ0, φ1 . . . , φk} for H∗(X), and define F0(t) as in the previous exercise. Prove
that the quantum product is equivalent to

(φi ∗ φj, φk) =
∂3

∂ti∂tj∂tk
F0(t)

∣∣∣∣
t=0

.



(c) Let X = Pk. Prove that, under the identification q` = et1 , the quantum product is
equivalent to

(
φi ∗ φj, φk

)
=
∑
n

1

n!
〈φi φj φk (t1H) · · · (t1H)〉Pk

0,3+n,β =
∂3

∂ti∂tj∂tk
F0(t)

∣∣∣∣
q=1,t0=t2=···=tk=0

.

(d) Prove that the quantum product of Pk is given by

φi ∗ φj =

{
φi+j if i+ j ≤ k

q φi+j−k−1 if i+ j > k.

Conclude that, as a ring, H∗(X)[[q]] with the quantum product is isomorphic to

C[H, q]/(Hk+1 − q).



Lecture 3 Exercises

These exercises concern equivariant cohomology and localization. Throughout, letM be a smooth
projective variety equipped with an action of an algebraic torus T = (C∗)r. Then an equivariant
vector bundle on M consists of an ordinary vector bundle V on M equipped with a lift of the
T-action to the total space of V that restricts to a linear isomorphism Vx → Vt·x on the fibers.

Equivariant vector bundles have equivariant Chern classes in H∗T(M). As a special case, when
M = • is a point, the generators λ1, . . . , λr of H∗T(•) are defined as the first Chern classes of the
equivariant line bundles Oλi given by a one-dimensional vector space with T-action

(t1, . . . , tr) · v = tiv.

More generally, when M has a trivial T-action and α = a1λ1 + · · · + arλr ∈ C[λ1, . . . , λr] for some
a1, . . . , ar ∈ Z, we denote by Oα the non-equivariantly trivial line bundle on M with fiberwise
T-action

(t1, . . . , tr) · v = ta11 · · · tarr v. (1)

1. Suppose that M has a trivial T-action, lifted to the fibers of V as in (1).

(a) Convince yourself that V = V0 ⊗Oα, where V0 is the same vector bundle as V but with
trivial T-action. Conclude that, if r = rank(V ), then

cTr (V ) = cr(V ) + cr−1(V )α + · · ·+ c1(V )αr−1 + αr.

(b) Use part (a) to deduce that, in the situation where M has trivial T-action, the equivariant
top Chern class is invertible in the ring H∗T(M)⊗ C(λ1, . . . , λr).

2. Let T = (C∗)r+1 act on Pr by

(t0, . . . , tr) · [x0 : · · · : xr] = [t0x0 : · · · : trxr].

What are the fixed loci of this action? Use the Atiyah–Bott localization theorem to calculate∫
Pr

cTtop(TPr),

where TPr is the tangent bundle of Pr with any lift of the T-action.

3. Let T = (C∗)r+1 act on Pr as above, and let V be the equivariant line bundle OPr(1) with
T-action lifted to the total space

Tot(OPr(1)) =
(Cr+1 \ {0})× C

C∗
, (x0, . . . , xr, v) ∼ (λx0, . . . , λxr, λv)

by
(t0, . . . , tr) · [x0, . . . , xr, v] = [t0x0, . . . , trxr, v].

Let H = cT1 (OPr(1)), the equivariant hyperplane class.

(a) Prove that, if ij : pj → Pr is the inclusion of the jth coordinate point, then i∗jH = λj.



(b) The normal bundle of pj in Pr is

Npj/Pr = i∗jTPr,

where TPr is the tangent bundle of Pr with T-action given by the derivative of the
T-action on Pr. Use local coordinates to convince yourself that

i∗jc
T
top(TPr) =

∏
k 6=j

Oλj−λk .

(c) Use the above two computations and the Atiyah–Bott localization theorem to calculate∫
P2

H2 = 1.

4. Let T = (C∗)r+1 act on M0,0(Pr, d) by post-composing stable maps f : C → Pr with the
above action on Pr. Prove that any stable map of the form

f : P1 → Pr

f([x0 : x1]) = [0 : · · · : 0 : xd0 : 0 : · · · : 0 : xd1 : 0 : · · · : 0]

is fixed by this action.


