Introduction to Gromov-Witten Theory

Exercises

Lecture 1 Exercises

1. Recall that $\overline{\mathcal{M}}_{g, n}(X, \beta)$ has a universal family \mathcal{U} such that the association

$$
g \mapsto g^{*} \mathcal{U}
$$

produces a bijection between morphisms $B \rightarrow \overline{\mathcal{M}}_{g, n}(X, \beta)$ and families of genus- g, degree- β, n-pointed stable maps over B (up to isomorphism).
(a) Formulate the notion of isomorphism of famiies carefully.
(b) Prove that there is a bijection between points of $\overline{\mathcal{M}}_{g, n}(X, \beta)$ and genus- g, degree- β, n-pointed stable maps up to isomorphism.
2. A trivial family over a base scheme B is one pulled back under the morphism $B \rightarrow \bullet$.
(a) Formulate the notion of pullback of families carefully.
(b) What, more explicitly, does a trivial family look like?
(c) Let $\left(C ; x_{1}, \ldots, x_{n} ; f\right)$ be a genus- g, degree- β, n-pointed stable map with a nontrivial automorphism. Convince yourself that this data can be used to produce a nontrivial family over a base scheme B in which every fiber is isomorphic. (Hint: You can do this even with $X=\bullet$ and $\beta=0$-that is, in $\overline{\mathcal{M}}_{g, n}$.)
(d) Given the existence of nontrivial families in which every fiber is isomorphic, prove that a scheme $\overline{\mathcal{M}}_{g, n}(X, \beta)$ cannot have a universal family \mathcal{U} producing a bijection as in the previous problem. (This is why we need $\overline{\mathcal{M}}_{g, n}(X, \beta)$ to have the structure of an orbifold.)
3. Prove that the splitting property holds in the case where $\operatorname{deg}\left(\tau_{D}\right)=1$ and the virtual fundamental class is an ordinary fundamental class. (Hint: In $X \times X$, the class of the diagonal is

$$
\sum_{i=1}^{k} \phi_{i} \boxtimes \phi^{i},
$$

where $\left\{\phi_{1}, \ldots, \phi_{k}\right\}$ is a basis for $H^{*}(X)$ with Poincaré dual basis $\left\{\phi^{1}, \ldots, \phi^{k}\right\}$ and \boxtimes indicates that the two classes are pulled back under the projections $X \times X \rightarrow X$.)
4. Find an example of a boundary divisor for which the morphism

$$
\tau_{D}: \overline{\mathcal{M}}_{g_{1}, n_{1}+1}\left(X, \beta_{1}\right) \times_{X} \overline{\mathcal{M}}_{g_{2}, n_{2}+1}\left(X, \beta_{2}\right) \rightarrow \overline{\mathcal{M}}_{g, n}(X, \beta)
$$

does not have degree 1 . How should the splitting property read in this case?
5. Come up with an identification between the forgetful map

$$
\tau: \overline{\mathcal{M}}_{g, n+1}(X, \beta) \rightarrow \overline{\mathcal{M}}_{g, n}(X, \beta)
$$

and the universal curve

$$
\pi: \mathcal{U} \rightarrow \overline{\mathcal{M}}_{g, n}(X, \beta)
$$

From the perspective of τ, what is the universal morphism $f: \mathcal{U} \rightarrow X$, and what are the universal sections $\sigma_{1}, \ldots, \sigma_{n}: \overline{\mathcal{M}}_{g, n}(X, \beta) \rightarrow \mathcal{U}$?

Lecture 2 Exercises

1. Fill in the details of the proofs of the fundamental class property, the divisor equation, and the degree-zero invariants property, under the assumption that the virtual fundamental class is an ordinary fundamental class.
2. Fill in the details of the computation of $\left\langle H^{2} H^{2} H^{2} H^{2}\right\rangle_{0,4,1}^{\mathbb{P}^{3}}$.
3. Compute all of the genus-zero primary Gromov-Witten invariants of \mathbb{P}^{1}.
4. Prove that all of the genus-zero primary Gromov-Witten invariants of \mathbb{P}^{2} are determined by the invariants

$$
N_{d}=\left\langle H^{2} \cdots H^{2}\right\rangle_{0,3 d-1, d}^{\mathbb{P}^{2}} .
$$

These, in turn, can be computed recursively by Kontsevich's formula; try computing N_{2} from N_{1} along the same lines as our computation of $\left\langle H^{2} H^{2} H^{2} H^{2}\right\rangle_{0,4,1}^{\mathbb{P}^{3}}$.
5. Fix a basis $\left\{\phi_{0}, \phi_{1} \ldots, \phi_{k}\right\}$ for $H^{*}(X)$. Then the generating function of genus- g GromovWitten invariants takes as input

$$
t=t_{0} \phi_{0}+t_{1} \phi_{1}+\cdots+t_{k} \phi_{k}
$$

and is defined by

$$
F_{g}(t)=\sum_{n, \beta} \frac{q^{\beta}}{n!}\langle t t \cdots t\rangle_{g, n, \beta}^{X},
$$

where the t_{i} and q are formal variables. Prove that, in the case where $X=\mathbb{P}^{k}$ and $\phi_{i}=H^{i}$, then

$$
F_{g}(t)=\sum_{d, n} \frac{q^{d \ell} e^{d t_{1}}}{n!}\left\langle t^{\prime} t^{\prime} \cdots t^{\prime}\right\rangle_{0, n, d \ell}^{\mathbb{P}^{k}},
$$

where $t^{\prime}=\left.t\right|_{t_{1}=0}$ and $\ell \in H_{2}\left(\mathbb{P}^{k}\right)$ is the class of a line.
6. The quantum product is a product structure $*$ on $H^{*}(X)[[q]]$ defined as follows: for $\gamma_{1}, \gamma_{2} \in$ $H^{*}(X)$, let

$$
\left(\gamma_{1} * \gamma_{2}, \gamma_{3}\right)=\sum_{\beta} q^{\beta}\left\langle\gamma_{1} \gamma_{2} \gamma_{3}\right\rangle_{0,3, \beta}^{X}
$$

where (\cdot, \cdot) denotes the q-linear extension of the Poincaré pairing

$$
(\alpha, \beta)=\int_{X} \alpha \cup \beta
$$

on $H^{*}(X)$. Then, extend $*$ to $H^{*}(X)[[q]]$ linearly in q.
(a) Prove that, after setting $q=0$, the quantum product becomes the cup product on $H^{*}(X)$.
(b) Fix a basis $\left\{\phi_{0}, \phi_{1} \ldots, \phi_{k}\right\}$ for $H^{*}(X)$, and define $F_{0}(t)$ as in the previous exercise. Prove that the quantum product is equivalent to

$$
\left(\phi_{i} * \phi_{j}, \phi_{k}\right)=\left.\frac{\partial^{3}}{\partial t_{i} \partial t_{j} \partial t_{k}} F_{0}(t)\right|_{t=0}
$$

(c) Let $X=\mathbb{P}^{k}$. Prove that, under the identification $q^{\ell}=e^{t_{1}}$, the quantum product is equivalent to

$$
\left(\phi_{i} * \phi_{j}, \phi_{k}\right)=\sum_{n} \frac{1}{n!}\left\langle\phi_{i} \phi_{j} \phi_{k}\left(t_{1} H\right) \cdots\left(t_{1} H\right)\right\rangle_{0,3+n, \beta}^{\mathbb{P}^{k}}=\left.\frac{\partial^{3}}{\partial t_{i} \partial t_{j} \partial t_{k}} F_{0}(t)\right|_{q=1, t_{0}=t_{2}=\cdots=t_{k}=0}
$$

(d) Prove that the quantum product of \mathbb{P}^{k} is given by

$$
\phi_{i} * \phi_{j}= \begin{cases}\phi_{i+j} & \text { if } i+j \leq k \\ q \phi_{i+j-k-1} & \text { if } i+j>k\end{cases}
$$

Conclude that, as a ring, $H^{*}(X)[[q]]$ with the quantum product is isomorphic to

$$
\mathbb{C}[H, q] /\left(H^{k+1}-q\right)
$$

Lecture 3 Exercises

These exercises concern equivariant cohomology and localization. Throughout, let M be a smooth projective variety equipped with an action of an algebraic torus $\mathbb{T}=\left(\mathbb{C}^{*}\right)^{r}$. Then an equivariant vector bundle on M consists of an ordinary vector bundle V on M equipped with a lift of the \mathbb{T}-action to the total space of V that restricts to a linear isomorphism $V_{x} \rightarrow V_{t \cdot x}$ on the fibers.

Equivariant vector bundles have equivariant Chern classes in $H_{\mathbb{T}}^{*}(M)$. As a special case, when $M=\bullet$ is a point, the generators $\lambda_{1}, \ldots, \lambda_{r}$ of $H_{\mathbb{T}}^{*}(\bullet)$ are defined as the first Chern classes of the equivariant line bundles $\mathcal{O}_{\lambda_{i}}$ given by a one-dimensional vector space with \mathbb{T}-action

$$
\left(t_{1}, \ldots, t_{r}\right) \cdot v=t_{i} v
$$

More generally, when M has a trivial \mathbb{T}-action and $\alpha=a_{1} \lambda_{1}+\cdots+a_{r} \lambda_{r} \in \mathbb{C}\left[\lambda_{1}, \ldots, \lambda_{r}\right]$ for some $a_{1}, \ldots, a_{r} \in \mathbb{Z}$, we denote by \mathcal{O}_{α} the non-equivariantly trivial line bundle on M with fiberwise \mathbb{T}-action

$$
\begin{equation*}
\left(t_{1}, \ldots, t_{r}\right) \cdot v=t_{1}^{a_{1}} \cdots t_{r}^{a_{r}} v \tag{1}
\end{equation*}
$$

1. Suppose that M has a trivial \mathbb{T}-action, lifted to the fibers of V as in (1).
(a) Convince yourself that $V=V_{0} \otimes \mathcal{O}_{\alpha}$, where V_{0} is the same vector bundle as V but with trivial \mathbb{T}-action. Conclude that, if $r=\operatorname{rank}(V)$, then

$$
c_{r}^{\mathbb{T}}(V)=c_{r}(V)+c_{r-1}(V) \alpha+\cdots+c_{1}(V) \alpha^{r-1}+\alpha^{r} .
$$

(b) Use part (a) to deduce that, in the situation where M has trivial \mathbb{T}-action, the equivariant top Chern class is invertible in the ring $H_{\mathbb{T}}^{*}(M) \otimes \mathbb{C}\left(\lambda_{1}, \ldots, \lambda_{r}\right)$.
2. Let $\mathbb{T}=\left(\mathbb{C}^{*}\right)^{r+1}$ act on \mathbb{P}^{r} by

$$
\left(t_{0}, \ldots, t_{r}\right) \cdot\left[x_{0}: \cdots: x_{r}\right]=\left[t_{0} x_{0}: \cdots: t_{r} x_{r}\right] .
$$

What are the fixed loci of this action? Use the Atiyah-Bott localization theorem to calculate

$$
\int_{\mathbb{P} r} c_{\mathrm{top}}^{\mathbb{T}}\left(T \mathbb{P}^{r}\right),
$$

where $T \mathbb{P}^{r}$ is the tangent bundle of \mathbb{P}^{r} with any lift of the \mathbb{T}-action.
3. Let $\mathbb{T}=\left(\mathbb{C}^{*}\right)^{r+1}$ act on \mathbb{P}^{r} as above, and let V be the equivariant line bundle $\mathcal{O}_{\mathbb{P}^{r}}(1)$ with \mathbb{T}-action lifted to the total space

$$
\operatorname{Tot}\left(\mathcal{O}_{\mathbb{P}^{r}}(1)\right)=\frac{\left(\mathbb{C}^{r+1} \backslash\{0\}\right) \times \mathbb{C}}{\mathbb{C}^{*}}, \quad\left(x_{0}, \ldots, x_{r}, v\right) \sim\left(\lambda x_{0}, \ldots, \lambda x_{r}, \lambda v\right)
$$

by

$$
\left(t_{0}, \ldots, t_{r}\right) \cdot\left[x_{0}, \ldots, x_{r}, v\right]=\left[t_{0} x_{0}, \ldots, t_{r} x_{r}, v\right] .
$$

Let $H=c_{1}^{\mathbb{T}}\left(\mathcal{O}_{\mathbb{P}^{r}}(1)\right)$, the equivariant hyperplane class.
(a) Prove that, if $i_{j}: p_{j} \rightarrow \mathbb{P}^{r}$ is the inclusion of the j th coordinate point, then $i_{j}^{*} H=\lambda_{j}$.
(b) The normal bundle of p_{j} in \mathbb{P}^{r} is

$$
N_{p_{j} / \mathbb{P}^{r}}=i_{j}^{*} T \mathbb{P}^{r},
$$

where $T \mathbb{P}^{r}$ is the tangent bundle of \mathbb{P}^{r} with \mathbb{T}-action given by the derivative of the \mathbb{T}-action on \mathbb{P}^{r}. Use local coordinates to convince yourself that

$$
i_{j}^{*} c_{\mathrm{top}}^{\mathbb{T}}\left(T \mathbb{P}^{r}\right)=\prod_{k \neq j} \mathcal{O}_{\lambda_{j}-\lambda_{k}}
$$

(c) Use the above two computations and the Atiyah-Bott localization theorem to calculate

$$
\int_{\mathbb{P}^{2}} H^{2}=1
$$

4. Let $\mathbb{T}=\left(\mathbb{C}^{*}\right)^{r+1}$ act on $\overline{\mathcal{M}}_{0,0}\left(\mathbb{P}^{r}, d\right)$ by post-composing stable maps $f: C \rightarrow \mathbb{P}^{r}$ with the above action on \mathbb{P}^{r}. Prove that any stable map of the form

$$
\begin{gathered}
f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{r} \\
f\left(\left[x_{0}: x_{1}\right]\right)=\left[0: \cdots: 0: x_{0}^{d}: 0: \cdots: 0: x_{1}^{d}: 0: \cdots: 0\right]
\end{gathered}
$$

is fixed by this action.

