Comparisons of Cloud Diurnal Cycles:

Satellite, Synop and Regional Climate Model Data*

The EUMETSAT Network of Satellite Application Facilities

CMSAF

Climate Monitoring

GOETHE

U. Pfeifroth¹ (uwepfeif@stud.uni-frankfurt.de), R. Hollmann² and B. Ahrens¹
¹ Institute for Atmospheric and Environmental Sciences, Goethe-Universtity Frankfurt, Germany
²German Meteorological Service (DWD), Satellite Application Facility on Cimate Monitoring, Offenbach am Main, Germany

Motivation

- Clouds play a major role in climate system, but are not consistently defined
- Radiation budget, which drives atmospheric dynamics, is controled by clouds
- In average, clouds warm the earth-atmosphere system during night (cloud greenhouse effect) and cool it in daytime (cloud albedo effect)
- Clouds present one of the largest uncertainties in climate projections
- Small systematic changes in cloud amount or cloud diurnal cycle (DC) can cause bigger radiative forcing than rising greenhouse gas concentrations
- What are the differences and similarities between the types of cloud data? Where exists a diurnal cycle?

Cloud Amount Data

Type	Satellite		Synop	Regional Climate Model	
Name	ISCCP- DX ^a	CM-SAFb	Climatic Atlas of Clouds ^c	CLM ^d (Europe)	CLM ^d (Africa)
Resolution	~30 km	~15 km	variable	0.44°	0.5°
	3 h	1 h	3 h	3 h	3 h
Period	7/2006	- 6/2007	1971 - 1996	1991 - 2000	1996 - 2001

- ^aD-series of the International Cloud Climatology Project, (http://isccp.giss.nasa.gov)
- ^bSatellite Application Facility on Climate Monitoring, (www.cmsaf.eu)
- ^cGround-based Synop-observations, (www.atmos.washington.edu/"~ ignatius/cloudmap)

 ^dLocal Model (LM) of the DWD in Climate Mode, ERA40 driven, supported by the CLM
 Community, (www.clm-community.eu, in pers. Dobler A. and Kaspar F.)

Methods

- Interpolation of data to consistent regular grids
- Linear Interpolation of data from UTC to LT (local time)
- Building monthly and seasonal means by keeping diurnal cycles
- Statistical and graphical processing

Cloud amount CLM_EU, normalized relative diurnal cycles (lines), summer

Results I (Diurnal Cycles in CLM-domains)

Fig.1:

Summer hemisphere
CLM cloud amount and
mean normalized relative
diurnal cycles (lines) of
CLM (magenta), Synop
(red), ISCCP (grey) and
CM-SAF (black) in the
European (a) and African
(b) CLM-domain

Fig.2:

Considered domains of Satellite- (grey) and CLM-Data (magenta), and Synop-stations

Fig.3:

Mean cloud amount (CA) of ISCCP and CM-SAF; diurnal cycles of absolute cloud amount of ISCCP (grey) and CM-SAF (black) in winter (left) and summer (right)

Fig.4:

Diurnal cycle amplitude (Amp) of 15°-Pixel greater than 0.15 of ISCCP (left) and CM-SAF (right); local time of minimal and maximal cloud amount (numbers); winter (above) and summer (below)

Summary

- CLM simulates, in opposition to all other data, no diurnal cycle in Europe in summer (Fig.1a)
- All data confirm a diurnal cycle in the subtropical atlantic stratus/ stratocumulus regime west to the South African coast througout the whole year (Fig.1b, 3, 4)
- Big discrepancies between data occur in the subtropical desert areas, as in the Sahara (Fig.1b, 3)
- A general shift exists between ISCCP (lower values) and CM-SAF (higher values) over oceans (Fig.3)
- In avarage, ISCCP shows the biggest diurnal cycles of all data, especially in the northern hemisphere in summer (Fig.4)
- Over summerly mid-latitude land (Fig. 1a, 3), diurnal cycles show morning minima and afternoon maxima
- Over subtropical oceans diurnal cycles show early morning maxima and afternoon minima (Fig.1b, 3, 4)

* presented at the 9th EMS Annual Meeting, 9th European Conference on Applications of Meteorology (ECAM), Toulouse, France, September 2009