Regional climate change impact studies in the upper Danube and upper Brahmaputra river basin using CLM projections*

B. Ahrens and A. Dobler, Institute for Atmospheric and Environmental Sciences, Goethe-University, Frankfurt am Main, Germany

Acknowledgements: A. Dobler is funded by the EC project **BRAHMATWINN (Contract No. 036592 (GOCE)).** Support of the CLM model by the COSMO consortium and the CLM community. **Contact: bodo.ahrens@iau.uni-frankfurt.de**

INTRODUCTION

For regional climate change impact studies in two alpine regions, different ECHAM5 IPCC SRES scenarios have been dynamically downscaled from 1.875° to 0.44° in the upper Danube and the upper Brahmaputra river basin (UDRB and UBRB resp., Fig.1). The downscaling has been carried out with the regional climate model COSMO-CLM (www.clm-community.eu) for the SRES scenarios A1B, A2, B1 and commitment and the time period 1960-2100.

RESULTS

- Generally (not shown):
- Largest trends: A1B & A2, followed by, B1 & COM
- A1B leads up to 2080 (e.g., for CDD see Tables 2 and 3)
- Higher increase in T2MAX than T2M, smaller in T2MIN
- Trends in precip. indices less clear than in temp. indices
- Trends in precip. indices less clear in UBRB than in UDRB
- Largest trends in Lhasa RB, smallest in Assam & Wang-Chu • Large regional and seasonal differences (Figs. 2 and 3) • T2M: +1.5°C to +4.5°C per century in UDRB, +2.5°C to +5.5°C per century in UBRB (A1B, A2 & B1)

METHODS

Different seasonal precipitation and temperature indices (Table 1) are calculated for the time period 1960-2100 and evaluated for linear trends. Inside the two major river basins (RBs), five sub-basins of interest are considered: Lech RB, Salzach RB, Assam, Lhasa RB, and Wang-Chu RB (Fig.1). A normalization using the 1971-2000 mean has been carried out to remove constant model biases.

Name	Description	Unit
precip	Precipitation amount	mm/season
FRE	Wet day frequency	1
INT	Wet day intensity	mm/d
PX5D	Max. 5-day precip.	mm
CDD	Longest period of consec. dry days	d
T2M	Mean 2m temperature	°C
T2MIN	Mean daily min. temp.	°C
T2MAX	Mean daily max. temp.	°C

Table 1: List of precipitation and temperature indices.

• precip: +15% per century in spring, -20% per century in summer (A1B, A2 & B1) in UDRB (Fig. 2). Approx. same trends for PX5D and CDD, resp.

- Tibetan Plateau (Fig. 3).
- Positive X5D trend in Monsoon (A1B, A2 & B1)
- Positive CDD trend in Monsoon (A1B, A2, B1 & COM)

Summer (JJA)	A2	A1B	B1	СОМ
UDRB	26	31	8	18
Lech RB	22	29	8	7
Salzach RB	21	30	10	7
Monsoon (JJAS)				
UBRB	16	21	12	12
Assam	20	26	9	8
Wang-Chu RB	13	16	5	0
Lhasa RB	36	52	25	23

Table 2: CDD trends (% per century) for the time period 1960-2080.Bold values are statistically significant (at the 0.05 level).

Summer (JJA)	A2	A1B	B1	СОМ
UDRB	38	34	22	13
Lech RB	37	35	22	8
Salzach RB	31	32	21	7
Monsoon (JJAS)				
UBRB	22	24	16	9
Assam	18	20	10	2
Wang-Chu RB	15	16	6	0
Lhasa RB	42	53	31	19

Table 3: As for Table 2, but for the time period 1960-2100.

CONCLUSIONS

- Projections indicate:
- Increase in temperature variability
- Increasing flood risk in the UDRB in spring
- Increasing drought risk in the UDRB in summer

- Trends depend on altitude and SRES scenario

- Tibetan Plateau highly sensitive to climate changes

Fig. 2: Projected linear trends (sign. at 0.05 level) of spring and summer precipitation in the UDRB for the A2 scenario.

PX5D trend in UBRB monsoon 1960-2"

<- ca. 1500 km ->

CDD trend in UBRB monsoon 1960–2100 (SRES a2)

2m trend in UBRB summer 1960–2100 (SRES a2)

Fig. 3: Projected linear trends (sign. at 0.05 level) of Monsoon (JJAS) max. 5-day precipitation and consecutive dry days, and summer (MAM) 2m temperature (from left to right) in the UBRB for the A2 scenario. * presented at the 2rd Lund Regional-scale Climate Modelling Workshop, 2009