Computational Finance II

Exercise 4 Tree for Two Assets

A two-asset extension of the binomial tree with (x, y)-coordinates representing the assets, and time-coordinate t, is assumed to develop as follows: Each node with position (x, y) may develop for $t \rightarrow t+\Delta t$ with equal probabilities 0.25 to the four positions

$$
\begin{equation*}
(x u, y A),(x u, y B),(x d, y C),(x d, y D) \tag{*}
\end{equation*}
$$

for constants u, d, A, B, C, D.
a) Show that the tree is recombining for $A D=B C$.

Hint: Sketch the possible values in a (x, y)-plane.
Following Rubinstein, a tree is defined for interest rate r, asset parameters σ_{1}, σ_{2}, correlation ρ, and dividend yield rates δ_{1}, δ_{2}, by

$$
\begin{aligned}
& \mu_{i}:=r-\delta_{i}-\sigma_{i}^{2} / 2 \text { for } i=1,2 \\
& u:=\exp \left(\mu_{1} \Delta t+\sigma_{1} \sqrt{\Delta t}\right) \\
& d:=\exp \left(\mu_{1} \Delta t-\sigma_{1} \sqrt{\Delta t}\right) \\
& A:=\exp \left(\mu_{2} \Delta t+\sigma_{2} \sqrt{\Delta t}\left[\rho+\sqrt{1-\rho^{2}}\right]\right) \\
& B:=\exp \left(\mu_{2} \Delta t+\sigma_{2} \sqrt{\Delta t}\left[\rho-\sqrt{1-\rho^{2}}\right]\right) \\
& C:=\exp \left(\mu_{2} \Delta t-\sigma_{2} \sqrt{\Delta t}\left[\rho-\sqrt{1-\rho^{2}}\right]\right) \\
& D:=\exp \left(\mu_{2} \Delta t-\sigma_{2} \sqrt{\Delta t}\left[\rho+\sqrt{1-\rho^{2}}\right]\right)
\end{aligned}
$$

For initial prices $x^{0}:=S_{1}^{0}, y^{0}:=S_{2}^{0}$, and time level $t_{\nu}:=\nu \Delta t$, the S_{1}-components of the grid according to $(*)$ distribute in the same way as for the one-dimensional tree,

$$
x_{i}^{\nu}:=S_{1}^{0} u^{i} d^{\nu-i} \text { for } i=0, \ldots, \nu
$$

b) Verify that the above choice of A, B, C, D sets up a recombining tree.
c) Show that the second ($S_{2^{-}}$)components belonging to x_{i}^{ν} are

$$
y_{i, j}^{\nu}:=S_{2}^{0} \exp \left(\mu_{2} \nu \Delta t\right) \exp \left(\sigma_{2} \sqrt{\Delta t}\left[\rho(2 i-\nu)+\sqrt{1-\rho^{2}}(2 j-\nu)\right]\right)
$$

for $j=0, \ldots, \nu$.
Hint: For $\nu \rightarrow \nu+1, u$ corresponds to $i \rightarrow i+1$, and d corresponds to $i \rightarrow i$.
d) Show that the first two moments of the continuous and the discrete model match: Verify that for the \log-variables $\Delta Y_{1}:=\log u$ or $\log d$, and $\Delta Y_{2}:=\log A, \log B, \log C$, or $\log D$ the five equations

$$
\mathrm{E}\left(\Delta Y_{i}\right)=\mu_{i} \Delta t, \quad \operatorname{Var}\left(\Delta Y_{i}\right)=\sigma_{i}^{2} \Delta t, \quad \operatorname{Cov}\left(\Delta Y_{1}, \Delta Y_{2}\right)=\rho \sigma_{1} \sigma_{2} \Delta t
$$

hold (for $i=1,2$ and the four probabilities $\frac{1}{4}$ associated to $(*)$).

Recommendation:

e) Set up a computer program that implements this binomial method. Analogously as for the binomial tree, work in a backward recursion for $\nu=M, \ldots, 0$. For each time level t_{ν} set up the (x, y)-grid with the above rules and $\Delta t=T / M$. For $t_{M}=T$ fix V by the payoff Ψ, and use for $\nu<M$

$$
V_{i, j}^{\text {cont }}=\exp (-r \Delta t) \frac{1}{4}\left(V_{i, j}^{\nu+1}+V_{i+1, j}^{\nu+1}+V_{i, j+1}^{\nu+1}+V_{i+1, j+1}^{\nu+1}\right) .
$$

Test example: max call with $\Psi\left(S_{1}, S_{2}\right)=\left(\max \left(S_{1}, S_{2}\right)-K\right)^{+}, S_{1}^{0}=S_{2}^{0}=K=T=1$, $r=0.1, \sigma_{1}=0.2, \sigma_{2}=0.3, \rho=0.25, \delta_{1}=0.05, \delta_{2}=0.3$. For $M=2000$ an approximation of the American-style option is 0.130302 , and for the European style 0.120036 .

Illustrations from [R. Seydel: Tools for CF, 5th edition (2012)]:
Max call, with payoff $\Psi\left(S_{1}, S_{2}\right)=\left(\max \left(S_{1}, S_{2}\right)-K\right)^{+}$ top: $\left(S_{1}, S_{2}\right)$-plane with the grid of the tree for the payoff, $t=T$, with $M=20$; bottom: the payoff

