

Einführung in die Numerik WS 2013/2014

Prof. Dr. Thomas Gerstner

Übung 5

Abgabe bis Donnerstag, 21.11.

Aufgabe 16: [Orthogonalitätsrelation]

Für ein festes N>0 betrachten wir die Punkte $x_k:=-\pi+2\pi k/N,\ 0\leq k< N$, und definieren die Vektoren $w_j:=(\omega_0^j,\omega_1^j,\ldots,\omega_{N-1}^j)\in\mathbb{C}^N$ für $0\leq j< N$, wobei $\omega_j:=\exp(ix_j)$. Zeigen Sie, dass diese Vektoren die Orthogonalitätsrelation

$$\langle w_j, w_k \rangle := \sum_{l=0}^{N-1} \omega_l^j \omega_l^{-k} = \begin{cases} N & \text{für } j=k \\ 0 & \text{sonst} \end{cases}$$

erfüllen. Punkte: 5

Aufgabe 17: [Diskrete Fourier-Transformation]

Es bezeichne $F_N f$ die diskrete Fouriertransformierte von f, wobei $N=2^M$ und $M\in\mathbb{N}$. Zur Vereinfachung der Notation wird $F_N f$ per $(F_N f)_k=(F_N f)_{k+N}$ periodisch fortgesetzt. Zeigen Sie:

- (a) Für $f \in \mathbb{C}^N$ gilt $(\overline{F_N f})_k = (F_N \overline{f})_{N-k}$.
- (b) Für $f \in \mathbb{R}^N$ folgt insbesondere $(\overline{F_N f})_k = (F_N f)_{N-k}$.
- (c) Für $f \in \mathbb{R}^N$ ist die direkte Berechnung von $F_N f$ ineffizient, da die verschwindenden Imaginärteile mitgeführt werden. Besser ist es, die Fouriertransformation für den Vektor

$$g \in \mathbb{C}^{N/2}, \qquad g_k = f_{2k} + i f_{2k+1}$$

der halben Länge durchzuführen. Zeigen Sie, dass man dann $F_N f$ über

$$(F_N f)_k = \frac{(F_{N/2} g)_k + (\overline{F_{N/2} g})_{N/2 - k}}{4} + e^{2\pi i k/N} \frac{(F_{N/2} g)_k - (\overline{F_{N/2} g})_{N/2 - k}}{4i}, \quad k = 0, 1, \dots, N - 1$$

erhält. (Wegen (b) genügt es sogar, nur die Hälfte von $(F_N f)$ abzuspeichern.)

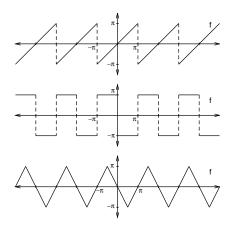
Punkte: 3/3/4

Aufgabe 18: [Programmieraufgabe]

Schreiben sie die folgenden Programme:

- (a) Schreiben Sie eine Funktion DFT(f) mit $f = (f_0, f_1, \ldots, f_{n-1}) \in \mathbb{C}^n$, welche die diskrete Fourier-Transformation einer reellen, periodischen Funktion, die im Intervall $[-\pi, \pi)$ an $n = 2^k$ Punkten (x_j, f_j) , $0 \le j < n$, mit $x_j = -\pi + 2\pi j/n$ gegeben ist, bestimmt.
- (b) Programmieren Sie die entsprechende inverse diskrete Fourier-Transformation IDFT(c) mit $c = (c_0, c_1, \ldots, c_{n-1}) \in \mathbb{C}^n$ und testen Sie die IDFT am Vektor c mit Einträgen $c_j = e^{ij\pi/2}$ für $j = 0, \ldots, 3$.
- (c) Überprüfen Sie mit ihren Funktionen die Gleichung IDFT(DFT(f)) = f am Vektor f = (0, 0, 1, 1, 0, 0, -1, -1).

Betrachten sie nun als Beispiele die (neben der Sinus- und Cosinusschwinungen) wichtigsten Schwingungstypen der analogen und digitalen Signalverarbeitung: Sägezahn-, Rechteck- und Dreieck-Schwingung.



(d) Ermitteln sie die diskreten Fourier-Koeffizienten für diese drei Beispiele für k=0,2,4 und 6 mit dem Programm (a).

Punkte: 5/5/2/3