Übungen zu

Computational Finance II

Exercise 5 Calculate the Standard Normal Distribution Function

There are several ways to approximate the integral

$$
F(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} \exp \left(-\frac{t^{2}}{2}\right) \mathrm{d} t
$$

Here we implement two methods.
a) Construct an algorithm to calculate the error function

$$
\operatorname{erf}(x):=\frac{2}{\sqrt{\pi}} \int_{0}^{x} \exp \left(-t^{2}\right) \mathrm{d} t
$$

and use $\operatorname{erf}(x)$ to calculate $F(x)$.
Use as quadrature method the composite trapezoidal rule with n steps to obtain an approximation $\tilde{F}_{n}(x)$. Improve this using extrapolation ("Romberg's quadrature").
b) Define

$$
z:=\frac{1}{1+0.2316419 x}
$$

and the coefficients

$$
\begin{array}{ll}
a_{1}=0.319381530 & a_{4}=-1.821255978 \\
a_{2}=-0.356563782 & a_{5}=1.330274429 \\
a_{3}=1.781477937 &
\end{array}
$$

Then for $x>0$

$$
\tilde{F}(x):=1-f(x) z\left(\left(\left(\left(a_{5} z+a_{4}\right) z+a_{3}\right) z+a_{2}\right) z+a_{1}\right)
$$

approximates $F(x)$ with an absolute error not exceeding 10^{-7}. For $x<0$ apply $F(x)=1-F(-x)$.
Count the number of arithmetic operations, and implement \tilde{F}.
c) Full accuracy for comparison can be obtained by the generic code derf. For a series of values x evaluate the errors of the above algorithms. Enter the computing times and the errors of \tilde{F} and F_{n} for several n into a double-logarithmic diagram depicting computing time over relative accuracy.

Exercise 6 Extrapolation

Assume a (differential) equation, and let $\eta^{*} \in \mathbb{R}$ represent its exact solution. For a discretization, Δ denotes the grid size of a numerical approximation scheme, and $\eta(\Delta)$ the corresponding approximating solution. Further assume an error model

$$
\eta(\Delta)-\eta^{*}=c \Delta^{q}
$$

with $c, q \in \mathbb{R} . q$ is the order of the approximation scheme. Suppose that for two grid sizes Δ_{1}, Δ_{2} with

$$
\Delta_{2}=\frac{1}{2} \Delta_{1}
$$

approximations $\eta_{1}:=\eta\left(\Delta_{1}\right), \eta_{2}:=\eta\left(\Delta_{2}\right)$ are calculated.
a) For the case of a known η^{*} (or η^{*} approximated with very high accuracy) establish a formula for the order q out of $\eta^{*}, \eta_{1}, \eta_{2}$.
b) For a known order q show that

$$
\eta^{*}=\frac{1}{2^{q}-1}\left(2^{q} \eta_{2}-\eta_{1}\right)
$$

In general, the error model holds only approximately. Hence this formula for η^{*} is only an approximation to the exact η^{*} ("extrapolation").

