10. Übungsblatt zur Vorlesung Numerische Methoden für Differentialgleichungen

Aufgabe 10.1 (Gegenschießen)

Gegeben sei das Randwertproblem y' = f(t, y) mit separierten Randbedingungen

$$\begin{pmatrix} y_1(a) - \alpha_1 \\ \vdots \\ y_k(a) - \alpha_k \\ y_{k+1}(b) - \beta_{k+1} \\ \vdots \\ y_n(b) - \beta_n \end{pmatrix} = 0.$$

Es sind also k Anfangswerte und n-k Endwerte bekannt. Damit lässt sich die Dimension des Mehrziel-Gleichungssystems reduzieren.

Stellen Sie für 3 Stellen $t_1 = a$, $t_2 \in (a, b)$ und $t_3 = b$ das Gleichungssystem auf. Dabei soll von t_1 nach t_2 integriert werden und "rückwärts" von t_3 nach t_2 . Wie sieht die Jacobi-Matrix aus?

(5 Punkte)

Aufgabe 10.2 (Diskretisierung 4. Ordnung)

Gegeben sei das Randwertproblem

$$y'' = f(y), \quad y(0) = a, \ y(1) = b.$$

Gesucht sind Näherungswerte w_i für die exakten Werte $y(t_i)$, i = 1, ..., n-1, wobei $t_i = ih$ und $h = \frac{1}{n}$.

Ersetzt man $y''(t_i)$ durch den Differenzenquotienten $\frac{w_{i-1}-2w_i+w_{i+1}}{h^2}$ und $f(y(t_i))$ durch $\alpha f(w_{i-1}) + \beta f(w_i) + \gamma f(w_{i+1})$ für $i = 1, \ldots, n-1$, und setzt man $w_0 = a$ und $w_n = b$, so erhält man aus der Differentialgleichung ein nichtlineares Gleichungssystem für den Vektor der w_1, \ldots, w_{n-1} .

Bestimmen Sie α, β, γ derart, dass gilt

$$\frac{w_{i-1} - 2w_i + w_{i+1}}{h^2} = \alpha f(w_{i-1}) + \beta f(w_i) + \gamma f(w_{i+1}) + O(h^4).$$
(7 Punkte)