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A. In this paper, we investigate the closure of a large class of Teichmüller
discs in the stratum Q(1, 1, 1, 1) or equivalently, in a GL+2 (R)-invariant locus L of
translation surfaces of genus three. We describe a systematic way to prove that
the GL+2 (R)-orbit closure of a translation surface in L is the whole locus L. The
strategy of the proof is an analysis of completely periodic directions on such a
surface and an iterated application of Ratner’s theorem to unipotent subgroups
acting on an “adequate” splitting.

This analysis applies for example to all Teichmüller discs obtained by the
Thurston-Veech construction with a trace field of degree three which are moreover
“obviously not Veech”.

We produce an infinite series of such examples and show moreover that the
favourable splitting situation does not arise everywhere on L, contrary to the
situation in genus two.

We also study completely periodic directions on translation surfaces in L. For
instance, we prove that completely periodic directions are dense on surfaces ob-
tained by the Thurston-Veech construction.

C

Introduction 2
1. Background 4
2. Configurations 7
3. Complete periodicity 11
4. Detecting the closure: reduction steps 16
5. Surfaces arising from the Thurston-Veech construction 27
6. Examples 29
7. Surfaces with a 2Tfix2C-direction and covering constructions 36
References 37

Date: October 20, 2008.
2000 Mathematics Subject Classification. Primary: 32G15. Secondary: 30F30, 57R30, 37D40.
Key words and phrases. Abelian differential, Veech group, Pseudo-Anosov diffeomorphism,

Teichmüller disc, orbit closures.
1



2 PASCAL HUBERT, ERWAN LANNEAU, MARTIN MÖLLER

I

For translation surfaces in genus two, GL+2 (R)-orbit closures, completely peri-
odic translation surfaces and many more properties have been classified by Calta,
McMullen and e.g. [EMS03], [HLe06]. For half-translation surfaces, i.e. for pairs
(X, q) of a Riemann surface and a quadratic differential, as well as for surfaces of
genus g ≥ 3 the situation is much more complicated. At present, all classification
questions are open. In [HLM06] and in the present paper, we study translation
surfaces belonging to L, the hyperelliptic locus of the non hyperelliptic connected
component of the stratum H (2, 2) (the moduli space of Abelian differentials hav-
ing two double zeroes). The locus L is closed and GL+2 (R)-invariant. It is more
natural to studyL than it sounds on a first reading since it is GL+2 (R)-equivariantly
isomorphic to Q(1, 1, 1, 1), the principal stratum of quadratic differentials in genus
2. We are thus studying the next simplest cases besides translation surfaces in
genus two. Let us note that for two other strata, Q(2, 2) andQ(2, 1, 1) some proper-
ties of closed GL+2 (R)-orbits, namely the arithmeticity of Veech surfaces, have been
obtained in [Vas05].

Projections of GL+2 (R)-orbits of translation surfaces to Teichmüller space give rise
to Teichmüller discs. The setwise stabilizer of a Teichmüller disc in the mapping
class group is a subgroup of SL2(R), that reflects the geometry of the original
translation surface. See Section 1 for details on the basic notions and references.

We focus in this paper on Teichmüller discs that are stabilized by a pseudo-
Anosov diffeomorphism (pseudo-Anosov Teichmüller discs or pseudo-Anosov
translation surfaces, for short). The Arnoux-Yoccoz example ([AY81], [Arn88]) is a
pseudo-Anosov Teichmüller disc with many very exotic properties. In [HLM06],
we proved that the GL+2 (R)-orbit closure of the Arnoux-Yoccoz Teichmüller disc
is the whole locus L. Rephrasing the previous result in the language of quadratic
differentials, we proved the existence of a pseudo-Anosov Teichmüller disc with
a dense GL+2 (R)-orbit in Q(1, 1, 1, 1). This is very different from the behavior
described by McMullen for Abelian differentials in genus 2: every pseudo-Anosov
disc is contained in the eigenform locus over a Hilbert modular surface.

In this paper, we describe a systematic way to prove that the GL+2 (R)-orbit closure
of a surface in L is the whole locus L. This analysis applies to a large family of
pseudo-Anosov Teichmüller discs obtained by the Thurston-Veech construction
(see [Thu88, Vee89]). Recall that a direction is completely periodic on a translation
surface if the surface is decomposed into a union of cylinders in this direction. We
have

Theorem 0.1. Let (X, ω) ∈ L be a surface given by the Thurston-Veech construction with
trace field of degree 3. Let us assume that (X, ω) is not a Veech surface for the most obvious
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reason: there exists a completely periodic direction which is not parabolic. Then

GL+2 (R) · (X, ω) = L.
Without the trace field condition the statement is false. Counterexamples are

given by translation surfaces that arise as coverings from genus one or genus two.
Of course, by the ergodicity of the geodesic flow on any stratum, the GL+2 (R)-

orbit closure of a generic surface inL equalsL. While pseudo-Anosov Teichmüller
discs as in the theorem above behave like generic surfaces, they have quite remark-
able topological properties. Without restrictions on the trace field we show:

Theorem 0.2. Let (X, ω) ∈ L be a surface stabilized by a pseudo-Anosov diffeomorphism.
Let us assume that there exists a completely periodic direction. Then the set of completely
periodic directions on (X, ω) is a dense subset of the circle S1.

Obviously, the conclusion fails for a generic surface in L, see Proposition 3.4.
Note that the last result applies to translation surfaces given by the Thurston-Veech
construction. Combining these last two theorems, one gets:

Theorem 0.3. Let (X, ω) ∈ L be a surface given by the Thurston-Veech construction with
trace field of degree 3. Then at least one of the following holds:

(1) The closure of the orbit GL+2 (R) · (X, ω) is the whole locus L.
(2) The limit set of the Veech group SL(X, ω) is the full circle.

Remark 0.3.1. We do not know if there exists a surface which satisfies these two
properties at the same time.

Our results apply to an infinite family of surfaces, for instance a series of surfaces
arising from the Thurston-Veech construction.

Reader’s guide. We end this introduction by explaining the organization of the
paper and by sketching a proof of the main results.

The strategy of the proof of Theorem 0.1 is to use an “adequate irrational” split-
ting on a surface (Y, η) belonging to the closure of the SL2(R)-orbit of (X, ω). Such
a splitting is given by four homologous saddle connections which decompose
the surface into two fixed tori and two exchanged cylinders. We will call such
a decomposition a 2T f ix2C splitting. Following the strategy presented in [Mc3]
and [HLM06], we conclude by applying Ratner’s theorem [Rat91] to a one pa-
rameter unipotent subgroup acting on the product of the space of pairs of area 1
lattices and the space of cylinders.

We use the non parabolic completely periodic direction to obtain the surface
(Y, η) by the following way. In Section 2 we describe all completely periodic
configurations of surfaces in L. For each of these configurations, in Section 4,
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we apply Ratner’s theorem to (SL2(R)/SL2(Z))3 the space of triples of normalized
lattices in order to get a resplitting of (X, ω) into (Y, η) with an irrational 2T f ix2C.
This can only work under some mild irrationality hypothesis, which will be a
consequence of the trace field condition and the existence of a non-parabolic
direction.

We now give a sketch of the proof of Theorem 0.2. Following Calta-Smillie
[CS07], the hypothesis implies that the Sah-Arnoux-Fathi (SAF)-invariant [Arn81]
is zero for every direction of the holonomy field. Given a direction θ containing
a cylinder fixed by the hyperelliptic involution, we remove this cylinder from the
surface and obtain a genus 2 translation surface Y with boundary. Using the fact
that the SAF-invariant vanishes on Y and the list of periodic configuration given
in Section 2, we prove that the flow is periodic in the direction θ on Y.

In Section 6, we check the hypothesis of Theorem 0.1 for an infinite family of
examples arising from the Thurston-Veech construction.

In the last section, we briefly discuss the existence of a 2T f ix2C splitting on
surfaces belonging to L.

Acknowledgments. We thank C. McMullen for comments on preliminary ver-
sions of this article and E. Nipper for a careful reading. This work was partially
supported by the ANR Teichmüller “projet blanc” ANR-06-BLAN-0038 and by the
Max-Planck Institut für Mathematik, Bonn.

1. B

In this section we review basic notions concerning translation surfaces, trace
fields, J-invariant and SAF-invariant.

A translation surface (or flat surface) is a Riemann surface X with finitely many
singularities Pi, plus the choice of charts covering X \ {Pi}, such that the transition
functions are translations. Equivalently, a translation surface is given by a pair
(X, ω) of a Riemann surface X and a holomorphic one-form ω. For half-translation
surfaces the conditions are relaxed to demanding the transition functions to be ±id
composed with a translation. Equivalently, half-translation surfaces are given by
a pair (X, q) of a Riemann surface X and a quadratic differential q.

A half-translation surface admits a ramified double covering, which is a trans-
lation surface and except for the introduction we will work exclusively with trans-
lation surfaces. Translation surfaces correspond bijectively to pairs (X, ω) of a
Riemann surface X and a holomorphic one-form. Similarly, half-translation sur-
faces correspond bijectively to pairs (X, q), where q is a quadratic differential. See
e.g. [MT02] for a survey on these notions. The singularities correspond to the zeros
of ω resp. of q under this bijection.
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There is a natural action of GL+2 (R) on (half-) translation surfaces by post-
composing the integration charts with the corresponding linear map. This action
respects the number and multiplicities of zeros, called the signature, of the one-
from (resp. the quadratic differential). Consequently the moduli space of pairs
(X, ω) (respectively of pairs (X, q)), denoted by H , by some authors also by ΩMg
(respectivelyQ, sometimesQMg) is stratified by the signature. The stratumH (2, 2)
has two connected components (see [KZ03]). One component is the hyperelliptic
component. The locus L is a codimension 1 subspace of the non hyperelliptic
component of the stratumH (2, 2).

Straight lines in the translation charts are geodesics for the metric |ω|. A maximal
subset of X swept out by parallel geodesics is called an (open) cylinder. Its closure
will be bounded by a finite number of saddle connections, geodesics joining the
singularities. We will say that a cylinder is simple if each of its boundaries consists
of a unique saddle connection (joining possibly the two zeroes). A geodesic has a
well defined direction in C � R2 and the direction of a cylinder is the direction of
any of its geodesics.

Consider all geodesics in a fixed direction θ. This direction is called periodic
if there is an open cylinder in this direction. θ is called completely periodic, if X
decomposes completely into cylinders and saddle connections in this direction.
Note that there is also the notion ([Cal04]) of a completely periodic surface (X, ω), a
surface such that each direction that has a cylinder is automatically completely
periodic. This notion will not be used in the remainder of this paper.

A completely periodic direction is called parabolic, if the moduli of the cylinders
in this direction are commensurable. Parabolic directions are important, since a
composition of suitable powers of Dehn twists along the cylinders produces a
diffeomorphism which is affine with respect to the charts given by ω ([Vee89]). We
denote by Aff+(X, ω) the group of orientation-preserving affine diffeomorphisms
and by SL(X, ω) its image under the natural map to SL2(R). This image is called
affine group or Veech group of (X, ω). It is well-known, that a diffeomorphism in
Aff+(X, ω) is pseudo-Anosov, if and only if its image in SL(X, ω) is a hyperbolic
element of SL2(R). The trace field of (X, ω) is the field generated over Q by the
traces of all elements in SL(X, ω). One can also define the trace field by the
following way. One defines the holonomy vectors to be the integrals of ω along the
saddle connections. Let us denote by Λ = Λ(ω) the subgroup of R2 generated by
holonomy vectorsΛ =

∫
H1(X,Z)

ω. If e1, e2 ∈ Λ are two nonparallel vectors inR2, one
defines the holonomy field k to be the smallest subfield ofR such that every element
of Λ may be written as ae1 + be2 with a, b ∈ k. It is known ([KS00] Theorem 28)
that if SL(X, ω) contains a pseudo-Anosov diffeomorphism, then the trace field of
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(X, ω) coincides with k. In particular, any direction θ of saddle connection belongs
to the trace field.

If P is a polygon in R2 with vertices v1, . . . , vn in counterclockwise order about
the boundary of P, then the J-invariant of P is J(P) =

∑n
i=1 vi∧vi+1 (with the dummy

condition vn+1 = v1). Here ∧ is taken to mean ∧Q and R2 is viewed as a Q-vector
space. J(P) is a translation invariant (e.g. J(P + −→v ) = J(P)), thus this permits to
define J(X, ω) by

∑k
i=1 J(Pi) where P1 ∪ · · · ∪ Pk is a cellular decomposition of (X, ω)

into planar polygons (see [KS00]).
We will also make use of the SAF-invariant of an interval exchange transfor-

mation f as follows. We define a linear projection Jxx : R2 ∧Q R2 → R ∧Q R
by

Jxx (( a
b ) ∧ ( c

d )) = a ∧ c.

If f is an interval exchange transformation induced by the first return map of the
vertical foliation on (X, ω) (on a transverse interval I) then let us define the SAF-
invariant of f by SAF( f ) = Jxx(X, ω). Note that the definition does not depend of
the choice of I if the interval meets every vertical leaf (see [Arn81]). We will also
say that SAF( f ) is the SAF-invariant of (X, ω) in the vertical direction. We define
in an obvious manner the SAF-invariant of (X, ω) in a direction of the trace field.

If f is a periodic interval exchange transformation then SAF( f ) = 0. The converse
is not true in general. But if f is defined over 2 or 3 intervals and SAF( f ) = 0 then
f is periodic.

We now sketch the Thurston-Veech construction ([Thu88], see also [Vee89]) of
surfaces1 with pseudo-Anosov diffeomorphisms. Choose a pair ({γi}i∈I, {γ j} j∈J) of
multicurves, i.e. of sets of simple closed curves on X such that X \ (∪i∈Iγi ∪ ∪ j∈Jγ j)
is a union of simply connected regions. Let Mr,s = (γr, γs) for r, s ∈ I ∪ J be the
symmetric intersection matrix. Choose integer weights mr for r ∈ I ∪ J and let (hr)
be the unique (by Perron-Frobenius) positive eigenvector satisfying

µhr =
∑

s∈I∪J

mrMrshs.

Now glue rectangles [0, hr] × [0, hs] according to the intersection pattern of the
multicurves γi, i ∈ I, and γ j, j ∈ J, to obtain a closed surface. This surface may
have cone-type singularities at points corresponding to the corners of the squares.

Suitable powers of Dehn twist along the curves γi, i ∈ I (resp. along the curves
γ j, j ∈ J) define two non-commuting parabolic elements in SL(X, ω). Suitable
products of them give hyperbolic elements in SL(X, ω), thus the corresponding

1Also known as bouillabaisse surfaces, after a talk by J.Hubbard, CIRM 2003
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diffeomorphism is a pseudo-Anosov diffeomorphism. One of the main results of
[HLa06] shows, that not all pseudo-Anosov diffeomorphisms arise in this way.

2. C

In this section, we classify (topologically) the configurations of completely peri-
odic directions θ on a translation surface belonging to the hyperelliptic locus L.

2.1. Statement of the result. Cut X along the set of saddle connections in the
direction θ. The result is a set of cylinders. To reconstruct the surface (X, ω),
we have to glue these cylinders together according to a pattern which describes
which part of one cylinder is glued which part of another cylinder. We will call
this pattern a configuration. For instance, in Figure 1a, the configuration presented
has 3 cylinders (for the vertical direction θ = π/2). One cylinder is fixed by
the involution (we have represented the Weierstrass points by small small solid
circles) and the two others are exchanged. We label the intervals representing the
same saddle connection on the surface by the same number. Horizontal saddle
connections are identified by vertical translation. A simple computation, using
the Euler characteristic, shows that the number of cylinders is bounded above by
4. In this section we will prove the following result.

Theorem 2.1. Let (X, ω) be a translation surface in the hyperelliptic locus L. Let us
assume that the vertical direction is completely periodic. Then all possible configurations
of cylinders are prescribed by Figure 1. More precisely:

(1) There are four configurations with two cylinders:
• One configuration with two exchanged cylinders corresponding to Figure 1h.
• Three configurations with two fixed cylinders corresponding to Figure 1i,

Figure 1j and Figure 1k.
(2) There are four configurations with three cylinders:

• Two configurations with one fixed cylinder corresponding to Figure 1a and
Figure 1b.
• Two configurations with three fixed cylinders corresponding to Figure 1c and

Figure 1d.
(3) There are three configurations with four cylinders:

• Two configurations with two simple cylinders corresponding to Figure 1e and
Figure 1f.
• One configuration with one simple cylinder corresponding to Figure 1g.

Remark 2.1.1. If (X, ω) arises from the Thurston-Veech construction and admits a
one cylinder decomposition, then either SL(X, ω) is a cyclic unipotent subgroup, or
SL(X, ω) is commensurable to SL2(Z), e.g. (X, ω) is a covering of flat torus ramified
over point.
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PSfrag replacements

1

1

2

2

3

3

4

5

(a)

PSfrag replacements

1

1

2

2

3
3

4

5

(b)

PSfrag replacements
1

1

22

3

3

4 4

5

(c) 3Cfix

PSfrag replacements

1

1

2
2

33

44

5

(d) 3C

PSfrag replacements

1
1

22

3
34

5

(e) 2Tfix2C

PSfrag replacements

1

1

2

2
3

3

4

5

(f) 2T2Cfix

PSfrag replacements

1

1

2

2

3

3

4

5

(g)

PSfrag replacements

1

1

2

2

3
3

4

4

5

5

(h)

PSfrag replacements

1

1

2

2

3
3

4

4

5

5

(i)

PSfrag replacements

1

1

2

23

34

4

5

5

(j)

PSfrag replacements

1

1

22

3
3

44

5

5

(k)

F 1. List of (topological) configurations of completely periodic
surfaces in L (for the vertical direction). The Weierstrass points
correspond the the smallest solid circles.
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We will use the following obvious lemma.

Lemma 2.2. Let (X, ω) ∈ L be a translation surface and let us assume that the vertical
direction is completely periodic direction. Then:

(1) There exist 6 saddle connections joining a zero to another zero.
(2) A Weierstrass point is located either on the middle of a saddle joining a zero to

itself or on the core of a cylinder. In the last case there are exactly two Weierstrass
points on the core curve.

(3) If no cylinder is fixed by the involution then there is no saddle connection connecting
the two zeroes.

(4) If exactly one cylinder is fixed by the involution then there is at most one saddle
connection connecting the two zeroes.

We will now give a proof of the main theorem of this section.

2.2. Proof of Theorem 2.1 in case of four cylinders. Let (X, ω) be a translation
surface and let us assume that the vertical direction is completely periodic and
decomposes the surface in four metric cylinders. Clearly the number of fixed
cylinders (with respect to the hyperelliptic involution) is congruent to the total
number of cylinders mod 2 so it is 0, 2 or 4. If all the cylinders are fixed then each
cylinder will possess two fixed points (for the involution). Recall that the two
zeroes are fixed, thus the hyperelliptic involution should possess 4 × 2 + 2 = 10
fixed points which is impossible.

Claim 2.3. There are exactly two fixed cylinders.

Proof of the Claim. Assume not. Then from above discussion, there is no fixed
cylinder. Thus all the Weierstrass points (except for the two singularities) are
located on the middle of the saddle connection. In particular, there is no saddle
connection connecting the two zeroes.

Note that a Weierstrass point cannot be located on the boundary of a simple
cylinder. Therefore there is no simple cylinder on such a configuration. Thus
the only possible configuration is the following one: four cylinders, each of them
having three saddle connections on its boundaries. It is then not hard to check
that there is no possible configuration with 8 fixed points for the involution. The
claim is proven. �

Thus, a configuration with four cylinders must have exactly two fixed cylinders.

Claim 2.4. The number of simple cylinders is 1 or 2.

Proof of the Claim. Assume not. If there are four simple cylinders then obviously
(X, ω) is a torus, which is impossible.
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If there is no simple cylinder then the number of saddle connections is at least 8
for the two fixed cylinders and 6 for the other two. Finally the number of saddle
connections is at least 8 + 6 = 14 > 12, which is a also a contradiction. �

Hence there is either 1 (necessarily fixed) simple cylinder, or 2 (fixed or ex-
changed) simple cylinders. These three possibilities lead to three configurations.
It is not hard to show that the three possible cases are respectively given by Fig-
ure 1g-1f-1e. The last two configurations will be respectively called 2T2Cfix and
2Tfix2C.

2.3. Proof of Theorem 2.1 in case of three cylinders. Let (X, ω) be a translation
surface and let us assume that the vertical direction is completely periodic and
decomposes the surface in three metric cylinders. Clearly the number of fixed
cylinders (with respect to the hyperelliptic involution) is 1 or 3.

Claim 2.5. Let us assume that only one cylinder is fixed by the involution. Then the
number of simple cylinders is 0 or 1.

Proof of the Claim. Suppose not. Then the configuration for the vertical direction
must contain two or three simple cylinders. In the last case X is a torus, which is
impossible.

If the configuration contains only two simple cylinders, they are necessarily
exchanged. Thus each boundary of the fixed cylinder must possess exactly four
saddle connections. Note that a Weierstrass point can not be located on the
boundary of a simple cylinder. Let us count the number of Weierstrass points:

(1) the two zeroes.
(2) two Weierstrass points on the core curve of the fixed cylinder.
(3) at most two Weierstrass points on the middle of the saddle connections of

the fixed cylinder.
Thus there are at most 6 < 8 Weierstrass points which is a contradiction. �

Hence for such a configuration, there is no simple cylinder or one fixed simple
cylinder. It is then not difficult to check that theses two cases lead respectively to
the configurations presented in Figure 1a and in Figure 1b.

Claim 2.6. Let us assume that the three cylinders are fixed by the involution. Then the
number of simple cylinders is 0 or 2.

Proof of the Claim. Assume not. Then the configuration contains only one fixed
simple cylinder. The Weierstrass points are located on the core curves of the
cylinders; there are no Weierstrass points on the separatrices. Using this restriction,
a straightforward calculation shows that no such configuration is possible in the
hyperelliptic locus L. �
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Thus in that case, the configuration possesses either three (non simple) fixed
cylinders or two simples and one other (all fixed) cylinders. It is then easy to see
that these two cases lead respectively to configurations presented in Figure 1c and
in Figure 1d.

The proof of the theorem in case of two cylinders is left to the reader as an
exercise.

In the following sections we will use the following characterization.

Corollary 2.7. The 2Tfix2C-configuration is characterized as the unique configuration
with 4 homologous saddle connections.

3. C 

We recall the following result by H. Masur (see [Mas86, MT02]):

Theorem 3.1 (Masur). Let (X, ω) be a translation surface. There is a dense set of periodic
directions on (X, ω).

In this section, we prove the following strengthening for translation surfaces in
the locus L:

Theorem 3.2. Let (X, ω) be a translation surface that belongs to the hyperelliptic locus
L. There is a dense set of periodic directions θ ∈ S1 such that, in the direction θ, ω has a
metric cylinder containing a Weierstrass point.

Theorem 3.3. Let (X, ω) be a translation surface in the hyperelliptic locus L. Let us
assume that the Teichmüller disc of (X, ω) is stabilized by a pseudo-Anosov diffeomor-
phism and that there exists a completely periodic direction. Then every periodic direction
that contains a cylinder invariant by the hyperelliptic involution is completely periodic.
Moreover the set of completely periodic directions is dense in S1.

Remark 3.3.1. Theorem 3.3 immediately implies Theorem 0.2.
The statement of Theorem 3.3 is a weak form of the completely periodicity

studied by Calta in genus 2 (see [Cal04]).
Nevertheless, it is not true that the hypothesis of the theorem implies that the
surface is completely periodic in the sense of Calta. A direction with a splitting
of the surface into two cylinders and two non periodic tori was exhibited on the
Arnoux-Yoccoz example see [HLM06]. Similar constructions can be made for
surfaces arising from the Thurston-Veech construction.

The following obvious remark shows that the behaviour stated in Theorem 3.3
is indeed special.
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Proposition 3.4. Almost every surface in any stratum does not admit a completely
periodic direction.

Proof. Complete periodicity can be expressed via proportionality of a non-empty
set of relative periods. Since any stratum admits a coordinate system given by
integration of a basis of relative periods, surfaces with a completely periodic
direction are given by a linear subspace of positive codimension in this coordinate
system. Since there are only countably many choices of such a basis, the set in
question is of Lebesgue measure zero. �

3.1. Proof of Theorem 3.2.

Definition 3.5. A slit is a geodesic segment embedded on a translation surface (in
particular, it has no self-intersection and its end points differ). A slit torus is a flat
torus with a marked point where a slit starting from the marked point is removed.

The key ingredient in the proof is the following lemma.

Lemma 3.6. Let (X, ω) be a translation surface of area 1 in the hyperelliptic locus L. Let
us assume that the vertical direction is periodic, and, let L be the length of the shortest
vertical saddle connection. There is a direction θ with | cos(θ)| ≤ 1/L2 such that, in the
direction θ, the surface (X, ω) has a metric cylinder containing a Weierstrass point.

Proof. If a vertical cylinder is invariant by the hyperelliptic involution, there is
nothing to prove. Otherwise, the vertical direction contains two cylinders C1 and
C2 exchanged by the involution.

Section 2 describes the completely periodic vertical directions. In fact, it also
gives all the types of periodic directions. By rescaling, we may suppose that the
integral along the core curve of C1 (and hence also of C2) is inQ · i, while the width
is inQ. Hence there is a surface (Y, η) arbitrarily close to (X, ω) with cylinders Ci of
the same size as those on X and with relative periods in Q[i]. The surface (Y, η) is
square-tiled by construction. Hence its vertical direction is completely periodic. A
path between (X, ω) and (Y, η) fixing C1 and C2 gives a way of describing (X, ω) as
a deformation of a completely periodic surface, which leaves the cylinders C1 and
C2 unchanged and does not change the topology of the complementary regions.

The periodic configurations with two cylinders exchanged by the hyperelliptic
involution are listed in Figure 1.

Using this list, we remark that X \ (C1 ∪ C2) falls into the following list:
(1) a torus cut along a slit (Figure 1a)
(2) a periodic cylinder (Figure 1b)
(3) a union of two tori T1 and T2 cut along vertical slits (Figure 1e)
(4) a union of two periodic cylinders (Figure 1f)
(5) a slit torus and a periodic cylinder (Figure 1g)
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(6) empty (Figure 1h).

All the connected components of X\(C1∪C2) are invariant under the hyperelliptic
involution. Thus the vertical direction contains a periodic cylinder fixed by the
involution when X \ (C1 ∪C2) is a cylinder (case (2)) or a union of a cylinder and a
torus (case (5)).

Consequently, we assume that X \ (C1 ∪ C2) is the union of one or two slit tori
fixed by the hyperelliptic involution. Let T be one of these tori. We call the elliptic
involution of a torus T embedded into a flat surface of higher genus X an elliptic
involution that fixes one of the singularities of X that lies on T.

Claim 3.7. Suppose that T is a slit torus and that the direction of the slit does not contain
a lattice vector of Λ where T � C/Λ. Then T contains a metric cylinder that does not
intersect the slit and that is invariant under the hyperelliptic involution.

Proof of the Claim. Up to normalization, the lattice is

Λ =

〈(
1
0

)
,

(
x
y

)〉

and slit is vertical. By our hypothesis, we may assume x ∈ (0, 1). As shown in

Figure 2, the direction
(
x
y

)
is periodic and the cylinder contains a Weierstrass point.

Moreover, the periodic leaves of the cylinder do not intersect the slit. �

PSfrag replacements
slit

( x
y
)

( 1
0
)( 0

0
)

F 2. A cylinder fixed by the elliptic involution on a slit torus
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The lengths of each slit is at least L and the area of T is less than 1. Thus the
distance between the left and right boundaries of T is at most 1/L and the length
of the cylinder is at least L. This yields | cos(θ)| ≤ 1/L2.

It remains to consider the case described in Figure 1h when X\(C1∪C2) is empty.
There is a segment going from the Weierstrass point which is in the middle of the
saddle connection labelled by 3 to the middle of the saddle connection labelled by
5. This segment and its image under the hyperelliptic involution form a closed
geodesic γ in a direction θ. The periodic geodesic γ is the core of a cylinder
(containing a Weierstrass point) and the angle θ satisfies | cos(θ)| ≤ 1/L2. This ends
the proof of Lemma 3.6. �

Proof of Theorem 3.2. We assume that the area of (X, ω) is equal to one and we fix
ε > 0 and φ ∈ S1. Applying Masur’s theorem, there exists a periodic direction ψ
with |ψ − φ| < ε/2. On the other hand, for each δ, there is only finite number of
directions with a saddle connection of length less than δ. We may thus assume,
without loss of generality, that the length of the shortest saddle connection in the
direction ψ is at least 1√

sin(ε/2)
. By Lemma 3.6, there is a periodic direction θ with

a cylinder containing a Weierstrass point and | sin(θ − ψ)| < sin(ε/2) for ε small
enough. Thus |φ − θ| < ε. Theorem 3.2 is proven. �

3.2. Proof of Theorem 3.3. We first recall some facts concerning the J-invariant of
Kenyon-Smillie [KS00] and the SAF-invariant.

Theorem 3.8 (Calta-Smillie [CS07] Theorem 1.5). Assume that (X, ω) is stabilized by a
pseudo-Anosov diffeomorphism and that there exists a completely periodic direction. Then
the SAF-invariant vanishes for all directions of the trace field.

The following facts concerning the SAF-invariant are essentially contained in
Arnoux’s thesis [Arn81] and were used by Calta [Cal04] and also by McMullen
[Mc2] (who works with the flux instead of the SAF-invariant).

Lemma 3.9. Let (Y, α) be a translation surface in the stratum H (2) such that the SAF-
invariant vanishes in the vertical direction. Then the vertical direction is completely
periodic.

Lemma 3.10. Let (Y, α) be a translation surface in the stratum H (1, 1) such that the
SAF-invariant vanishes in the vertical direction. If there are two non homologous vertical
saddle connections, then the vertical direction is completely periodic.

Proof of Lemmas 3.9 and 3.10. For the sake of the completeness, we sketch the proof
of the Lemmas 3.9 and 3.10. We recall that, in genus 2, if the SAF-invariant vanishes
then the flow in the vertical direction is not minimal [Ar]. Therefore, there is a
vertical saddle connection.
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If (Y, α) belongs to H (2), the induced map of the vertical flow on a suitable
transversal is an interval exchange transformation on 4 intervals. Since there is a
saddle connection, it reduces to an interval exchange transformation on 3 intervals.
An interval exchange on 3 intervals with SAF-invariant is equal to 0 is periodic
(see [Arn81]). Thus, the vertical flow on (Y, α) is periodic.

If (Y, α) belongs to H (1, 1), the induced map of the vertical flow on a suitable
transversal τ is an interval exchange transformation on 5 intervals. By hypothe-
sis, there are two vertical saddle connections γ1 and γ2 such that Y \ (γ1 ∪ γ2) is
connected. Thus, the induced map on τ reduces to an interval exchange trans-
formation on 3 intervals with SAF-invariant equal to 0. This interval exchange
transformation is periodic and thus vertical flow is periodic.

�

Proof of Theorem 3.3. Let us consider a cylinder C fixed by the hyperelliptic invo-
lution on (X, ω). Let θ be the direction of C. It is a direction of the holonomy
field (see background) thus, by Calta-Smillie’s result, the SAF-invariant vanishes
in the direction θ. Without loss of generality we may assume that the direction
θ is the vertical direction. The complement of C is a slit surface Y with vertical
boundaries. We have to prove that the vertical flow is completely periodic on Y.
The SAF-invariant is equal to 0 on C, thus it vanishes on Y. The topological type of
Y can be deduced from the description of the completely periodic directions (see
Figure 1) by the same argument as in Lemma 3.6.

There is a canonical way to associate with Y a compact surface Ŷ without bound-
ary. Y is obtained from X by removing a cylinder C invariant under the hyperel-
liptic involution. A slit on Y corresponds to a saddle connection on the boundary
of C that is not invariant under the hyperelliptic involution. Since C is fixed by the
hyperelliptic involution, these slits come in pairs. Ŷ is obtained from Y by gluing
the pairs of slits exchanged by the hyperelliptic involution. The vertical flow on Y
is periodic if and only if it is periodic on Ŷ.

Referring to the Figure 1, we denote the cylinders by I, II, III, etc from the left to
the right.

• Ŷ belongs toH (2), if II is removed in Figure 1a.
• Ŷ belongs toH (2), if II is removed in Figure 1b.
• Ŷ belongs toH (1, 1), if I is removed in Figure 1c.
• Ŷ belongs toH (1, 1), if II is removed in Figure 1c.
• Ŷ belongs toH (1, 1), if III is removed in Figure 1c.
• Ŷ belongs toH (2), if I is removed in Figure 1d.
• Ŷ belongs toH (2), if II is removed in Figure 1d.
• Ŷ is the union of two cylinders, if III is removed in Figure 1d.
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• Ŷ belongs toH (2), if II is removed in Figure 1e.
• Ŷ belongs toH (2), if IV is removed in Figure 1e.
• Ŷ belongs toH (2), if II is removed in Figure 1f.
• Ŷ belongs toH (2), if IV is removed in Figure 1f.
• Ŷ belongs toH (2), if IV is removed in Figure 1g.
• Ŷ belongs toH (2), if II is removed in Figure 1g.
• Ŷ belongs toH (2), if I is removed in Figure 1i.
• Ŷ is a cylinder, if II is removed in Figure 1i
• Ŷ belongs toH (1, 1) if I is removed in Figure 1j.
• Ŷ is a cylinder, if II is removed in Figure 1j
• Ŷ belongs toH (2), if I is removed in Figure 1k.
• Ŷ belongs toH (2), if II is removed in Figure 1k.

By Lemma 3.9, the vertical direction is completely periodic when Ŷ ∈ H (2).
We have to check the hypothesis of Lemma 3.10 when Ŷ belongs to H (1, 1). We
treat the case where the cylinder I is removed in Figure 1c. The analysis in the
other cases is more or less the same. The surface Y contains two vertical saddle
connections isometric to the saddle connections labelled by 1 and 2 in Figure 1c.
These connections don’t disconnect the surface thus, by Lemma 3.10, the flow in
the vertical direction is completely periodic on Ŷ. Therefore the vertical direction
is completely periodic on (X, ω).

Combining Theorem 3.2 and the previous argument, we immediately deduce
that there is a dense set of completely periodic directions on (X, ω). The theorem
is proven. �

4. D  :  

In this section we show in several instances that a completely periodic direction
on a surface (X, ω) plus some irrationality condition implies the existence of a more
useful completely periodic direction on a surface (Y, η) in the GL+2 (R)-orbit closure
of (X, ω). Moreover, (Y, η) can be chosen such that the new completely periodic
direction still satisfies some irrationality condition. The underlying strategy of all
lemmas in this section is roughly the same. Finally, we arrive in a situation where
we can show that the GL+2 (R)-orbit closure of (Y, η) is all of L.

A bit more precisely, we start with a direction p on (X, ω) for which there exists a
splitting of the surface into some cylinders and/or tori. We apply a one parameter
unipotent subgroup U (with eigenvector p) on (X, ω). This action stabilizes globally
the splitting and acts on the product of tori and/or cylinders. We then apply
Ratner’s theorem on orbit closures of the one parameter unipotent subgroup U
inside Uk or SL2(R)k for k = 2, 3. The orbit closure is of the form H · (X, ω), where
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H is a closed subgroup of SL2(R)k for k = 2, 3, in the closure of the SL2(R)-orbit
of (X, ω). Then with “generic” conditions, we get that H is as big as possible. We
then to choose (Y, η) = h · (X, ω), for h generic.

Two types of splitting directions will be particularly useful. The first one is
a 3C-direction; this is a completely periodic direction with three cylinders and
a configuration of saddle connections as the vertical direction of Figure 1d. Of
course, this is not the only direction with three cylinders, but we stick to this short
notation also used in [HLM06]. The second one is defined as follows.

Definition 4.1. A 2Tfix2C-direction is a direction with two simple cylinders ex-
changed by the hyperelliptic involution and such that the complement decom-
poses into two tori. The vertical direction in Figure 1e is an example, which is
in fact completely periodic. A 2Tfix2C-direction is not always completely periodic.
In fact if a 2Tfix2C-direction is not completely periodic, the flow, in that direction,
contains one or two minimal component(s), corresponding to the two tori. We will
say that a 2Tfix2C-direction is irrational if it is not completely periodic.

Remark 4.1.1. We alert a reader who has also read [HLM06], that there such a
direction was simply called 2T2C. In this paper we need to distinguish 2Tfix2C-
directions from 2T2Cfix-directions. A completely periodic 2T2Cfix-direction (e.g. in
Figure 1f) has a two simple cylinders fixed by the hyperelliptic involution and,
cutting along all saddle connections in that direction, the complement consists also
of two components, exchanged by the hyperelliptic involution. These components
can be glued in a obvious way to two tori. It will be convenient also to talk of
irrational 2T2Cfix-directions, although this is some abuse of terminology. Such a
direction (cf Figure 7a) also has two simple cylinders fixed by the hyperelliptic
involution, but no saddle connections in the complement. This complement is
then connected and thus it is a surface of genus two with two slits (rather than
two tori).

We now give some useful definitions for the upcoming lemmata.

Definition 4.2. For any lattice Λ we denote by Λ′ the normalized area one lattice
obtained by rescaling Λ by a homothety. We say that two lattices Λ1 and Λ2

are strongly non-commensurable with respect to a direction p ∈ R2, if there is no
unipotent element u with eigenvector p such that u(Λ′1) and Λ′2 (or Λ′1 and u(Λ′2))
are commensurable.

Definition 4.3. We say that 3 moduli mi of cylinders, in a completely periodic
direction are pairwise incommensurable, if mi/m j < Q for i , j, i. e. if they are Q-
linearly independent or admit aQ-linear relation

∑3
i=1 aimi = 0 unique up to scalars

and with ai , 0 for all i.
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The first lemma consists of the key argument of [HLM06]. We recall the proof
in detail. From Lemma 4.5 to Lemma 4.11 we will relax the hypothesis on the
translation surface (X, ω).

Lemma 4.4. Let us assume that (X, ω) ∈ L contains a 3C-direction. Then it contains
also a transverse 2Tfix2C-direction, denoted by p: it is given by the four homologous saddle
connection drawn in Figure 3. Let us assume that the direction p has irrational and
strongly non-commensurable tori. We also assume that the two lattices uniformizing the
two tori do not possess vectors in the direction of p.

Then the GL+2 (R)-orbit closure of (X, ω) is L.

Proof. Let us denote by Z the closure of (X, ω) under SL2(R) inside L1, the real
hypersurface of translation surfaces of ω-volume one. One has to show that
Z = L1.

Let U the unipotent subgroup of SL2(R) generated by unipotent elements u
having p has eigenvector. Then the action of U on (X, ω) is very simple: it sta-
bilizes globally the direction p and it acts on each component of the splitting.
Thus U acts on the space of a pair of tori and a cylinder, which is isomorphic
to (SL2(R)/SL2(Z))2 × U. Thanks to Ratner’s theorem, the closure of U · (X, ω) is
algebraic, i. e. H · (X, ω) where H is a closed subgroup of SL2(R)2 ×U containing U
diagonally embedded.

The hypothesis that the two tori are irrational and strongly non-commensurable
implies that this splitting is “generic” for Ratner, i. e. H = SL2(R)2 × U. This Lie
group has dimension 7 and since we can use SL2(R) to replace the connection
vector of the four homologous saddle connections by any vector in R2, we have
proved that Z contains a subset of real dimension at least 9. Since dimRL1 = 11
and since the application of Ratner’s theorem keeps the ratios of the splitting
pieces fixed, the subset we know to be contained in Z consists precisely of the
surfaces with given ratios of the splitting pieces. We have to catch the two missing
dimensions by varying these ratios.

Let us consider the direction p̃ obtained by applying a simple Dehn twist around
the vertical non-simple cylinder of the 3C-direction (see Figure 3). The direction p̃ is
obviously again of type 2Tfix2C. Since the saddle connections of a 2Tfix2C-direction
are homologous, the splitting in the direction p̃ still exists in a neighborhood of
(X, ω).

We write (X, ω) = T1 # C1 # T2 # C2 to denote that (X, ω) is obtained as the
connected sum of the Ti and Ci glued along a fixed set of slits, which is suppressed
in the notation. We know that orbit closure of (X, ω) contains

(Y(u1,u2), η(u1,u2)) = u1T1 # C1 # u2T2 # C2
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F 3. A “diagonal” resplitting 2Tfix2C-direction on a 3C-direction.

for ui ∈ U. For any pari (u1, u2) close enough to zero, the Dehn-twisted unipotent-
admissible configuration still exists on Y(u1,u2). We denote this decomposition of
the modified surface in the new direction by

(Y(u1,u2), η(u1,u2)) = T̃1 # C̃1 # T̃2 # C̃2.

If the ui are chosen such that Dehn-twisted direction p̃ has irrational and strongly
non-commensurable tori, too, then we may apply Ratner’s theorem as in the
beginning of the proof and again with the conclusion H = G.

Two things now need to be checked by direct calculation. First, the set of ui where
the Dehn-twisted direction p̃ is not irrational or not strongly non-commensurable
is a countable union of subvarieties of real codimension at least one. Second, the
ui-twisting can indeed be used to adjust the ratios of areas. More precisely, the
map

ϕ : (u1, u2) 7→ (area(T̃1(u1, u2))/area(C̃1(u1, u2)), area(T̃2(u1, u2))/area(C̃1(u1, u2)))

is an invertible function in a neighborhood of (u1, u2) = (0, 0). This is checked in
[HLM06] Lemma 5.9.

In conclusion, the orbit closure of (X, ω) contains points with all ratios of splitting
pieces close to the original ratios and for almost all these ratios (with respect to the
Lebesgue measure) we can apply Ratner’s theorem in the new splitting direction.
Thus the orbit closure of (X, ω) contains a subset ofL positive measure. Recall that
the geodesic flow is ergodic on L ([Mas82, Vee82]). Therefore Z has full measure
in L. Since Z is closed, this completes the proof. �

Lemma 4.5. Let us assume that (X, ω) ∈ L contains an irrational 2Tfix2C-direction. In
addition we assume that the two tori of the splitting, are strongly non-commensurable.
Then the GL+2 (R)-orbit closure of (X, ω) is L.
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Proof. The idea is to apply the previous Lemma 4.4. Let p denote the direction of the
2Tfix2C-direction. As usual, let U be the unipotent subgroup of SL2(R) generated by
unipotent elements u having p has eigenvector. By Ratner’s theorem, in the SL2(R)
orbit closure of (X, ω), one finds surfaces H · (X, ω) where H is a closed unimodular
subgroup of SL2(R)2 ×U. By hypothesis, H contains at least the product SL2(R)2.
Thus one can apply a unipotent matrix in each torus independently, in order to
obtain a surface (Y, η) in the SL2(R)-orbit closure of (X, ω) with a 2Tfix2C-direction
and an adequate transverse 3C-direction (cf. Figure 3).

Of course, by construction, the tori of the 2Tfix2C-direction on (Y, η) are still
irrational. Applying a diagonal matrix in SL2(R), we obtain a new surface, (Y, η),
with above properties and in addition with two strongly non-commensurable tori.
We can then apply Ratner’s theorem as above (see Lemma 4.4). �

Lemma 4.6. If (X, ω) ∈ L contains an irrational 2Tfix2C-direction, then the GL+2 (R)-orbit
closure of (X, ω) is L.

Proof. The strategy is to use the previous Lemma 4.5. We will prove that there
exists a surface (Y, η) in the GL+2 (R)-orbit closure of (X, ω) with an irrational 2Tfix2C-
direction containing two strongly non-commensurable tori.

By rotating, we can and will assume that the 2Tfix2C-direction is vertical as in
Figure 4. We apply the unipotent subgroup

( 1 0
∗ 1

)
to the vertical splitting. Exchang-
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nal” resplitting with p > t3/w3 on the left figure and p < t3/w3 on the
right figure
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ing the role of T1 and T2 if necessary, one can assume that T1 is irrational. As in
Lemma 4.4, we denote the splitting of (X, ω) by C1 # T1 # C2 # T2. As usual, us-
ing Ratner’s theorem one deduces that the SL2(R)-orbit closure of (X, ω) contains
C1 # SL2(R) ·T1 # C2 # T2. Said differently, the closure contains all surfaces with the
following properties.

First, all the parameters w1, w3, h1, h3 and b3 are as given by the original surface
(X, ω). Note that the torus T2 is not necessarily periodic. If it is, one has b3 = w3, as
indicated in the right figure. Second, the parameters w2, t2 and b2 can be chosen
arbitrarily as long as b2 > w2 and h2 can be chosen to satisfy the volume condition
(h1 + h2) · w2 = A1 where A1 is the volume of the irrational torus T1 of (X, ω). In
particular w2 can be chosen close to 0. By flipping the figure and changing the sign
of t2, we may suppose that both t2 and t3 are non-negative.

Let us denote the splitting in the new direction (indicated by the dotted line) by
tildes. This new direction, by construction, crosses k-times the top of each vertical
cylinder Ci as indicated on the figure (k = 0 in Figure 4 on the left and k = 1 on the
right). This direction has slope

p =
(k + 1)h1 + t2 + t3

2w1 + w2 + w3
.

Moreover one can move the parameters w2, t2 and b2 in order to obtain a 2Tfix2C-
direction for the new splitting in the following way. There are two cases to consider:
p > t3/w3 (see the left figure) and for p < t3/w3 (see the right figure). The case of
equality can be avoided by modifying t2 slightly. Note that using the hyperelliptic
involution it is enough to check the intersection behaviour for the dotted saddle
connections emanating from the white singularity on the bottom of C2.

Choosing w2 close to 0 and t2/w2 small enough, the line emanating at the white
point has the correct intersection behaviour if and only if

kh1 + t3

w1 + w3
< p <

(k + 1)h1 + t3

w1 + w3
.

This condition can always be satisfied choosing k suitably and equality can again
be excluded by modifying t2 slightly. Therefore the dotted line provides a new
splitting C̃1 # T̃1 # C̃2 # T̃2.

Thus, until now, we have found a resplitting in a 2Tfix2C-direction for all t2, w2

and h2 in a small open intervals. We will check that for almost all triples (t2,w2, b2),
subject to the condition that (h1 + h2)w2 = A1 is fixed, this splitting satisfies the
conditions of Lemma 4.5. Namely, for almost all triples the two new tori T̃1 and
T̃2 are irrational and strongly non-commensurable.
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We give a detailed proof for the left figure case; the right figure case being
completely similar. Thus the lattices of the tori (for the resplitting 2Tfix2C-direction)
are

Λ̃1 =

〈
ṽ1 :=

(
w2
t2

)
, w̃1 :=

(
2w2 − b2 + 2w1 + w3

(k + 1)h1 + h2 + t2 + t3

)〉

and

Λ̃2 =

〈
ṽ2 :=

(
w3
t3

)
, w̃2 :=

(
2w3 − b3 + 2w1 +w2

(k + 1)h1 + h3 + t2 + t3

)〉
.

One has to make sure that these two lattices do not possess vectors in the direction
of p. Moreover we want Λ1 and Λ2 to be strongly non-commensurable with
respect to p in order to apply previous lemma. A direct calculation shows that if
Λ1 (respectively Λ2) possesses vectors in the direction of p then there exists n ∈ Z
such that

nt2 + h2

(k + 1)h1 + h3
∈ Q

(
respectively

nt3 + h3

(k + 1)h1 + h2
∈ Q

)
.

One gets similar conditions for the strong non-commensurability of the lattices.
These two conditions exclude only a countable union of 2-dimensional subvarieties
(in the space with coordinates w2, t2, h2 and b2 subjet to (h1 + h2)w2 = A1), hence
a set of Lebesgue measure zero. Therefore we have found a resplitting in a
2Tfix2C-direction, for almost all t2, w2 and h2, with two irrational and strongly
non-commensurable tori. We then conclude the proof of Lemma 4.6 by using
Lemma 4.5. �

Lemma 4.7. If (X, ω) has a 3C-direction with incommensurable moduli, the SL2(R) orbit
closure of (X, ω) is L.

Proof. If p denotes the 3C-direction, let U be the subgroup of SL2(R) generated by
unipotent elements with eigenvector p. We will also denote by p̃ the transversal
2Tfix2C-direction (see Figure 3). We use Ratner’s theorem for U on the space
of triples of normalized lattices (SL2(R)/SL2(Z))3 to ensure that the direction p̃
possesses an irrational torus. Then we conclude by using Lemma 4.6. �

In order to prove similar lemmas for other completely periodic directions, in-
commensurability is not strong enough. This will be clear from the covering
constructions in Section 7. In Section 5 we prove that if (X, ω) is a pseudo-Anosov
surface and if the trace field is totally real and has degree 3 over Q then any
non-parabolic completely periodic direction provides 3 moduli of cylinders pair-
wise incommensurable (see Corollary 5.2). Hence, in the following lemmas, we
can replace “pairwise incommensurable moduli” by “non-parabolic” for surfaces
arising from the Thurston-Veech construction.
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Lemma 4.8. If (X, ω) has a completely periodic 2Tfix2C-direction with pairwise incommen-
surable moduli, then the GL+2 (R)-orbit closure of (X, ω) is L.

Proof. Using the action of SL2(R) we may suppose that the 2Tfix2C-direction is
vertical and that the bottom of the cylinders Ci is horizontal. Suppose that the
saddle connections of slope p := (h1 + t2 + t3)/(2w1 +w2 + w3) intersect the vertical
saddle connections as drawn in Figure 5. Then the direction of slope p is again
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F 5. Resplitting of a 2Tfix2C-direction

2Tfix2C and we want to make sure that, say, the torus containing the top of T2 is
not periodic. Sliding the Weierstrass points along the slope p we observe that this
unwanted property holds if

h2 + h1

2p
− 2w1 +w2 + w3

2
∈ Qw3.

Equivalently, we have to ensure that t3 + t2 does not lie in a coset of Q in R i.e.
t3 + t2 < Qx for any x ∈ R. By hypothesis the orbit closure of (X, ω) under the
vertical unipotents contains a one-parameter subgroup that fixes C1 and hence
C2. Let m1 = w1/(h1 + h2) and m2 = w2/(h1 + h3) be the modulus of T1 and T2
respectively. Simple cylinders persist under small deformations. For u ∈ R small
enough, we may thus replace t1 by t1 + u and t2 by t2 + um2/m1 to obtain a surface
in the unipotent orbit closure of (X, ω) still with a 2Tfix2C-direction. Since m2/m1 is
irrational by pairwise incommensurabilty, we can choose u in order to avoid the
unwanted coset. We can now apply Lemma 4.6.

It remains to check that one can always choose t2 and t3 with the desired inter-
section property. This property is surely satisfied when both t2 and t3 are close to
zero. Recall that a twist t2 (resp. t3) is only well-defined up to integer multiples
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h1+ h2 (resp. h1+ h3). It suffices to find the resplitting not on (X, ω) but on a surface
in the orbit closure of vertical unipotents. Hence it suffices to find u ∈ R such that

uw2 + t2 mod h1 + h2 and uw3 + t3 mod h1 + h3

are both close to zero. Such u exist, since m1/m2 is irrational by pairwise incom-
mensurability. �

Lemma 4.9. If (X, ω) has a completely periodic 2T2Cfix-direction (as in Figure 1f or
Figure 6 (a) below) and such that the moduli mi of the cylinders {C1,C2,T1} are pairwise
incommensurable, then the GL+2 (R)-orbit closure of (X, ω) is L.

Proof. We distinguish two cases. Suppose the 2T2Cfix-direction is vertical as in
Figure 6 (a). We first treat the case h2 = h3 as suggested by the figure. This is quite
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F 6. Resplitting of a 2T2Cfix-direction with h2 = h3

analogous to the case of a 2T2Cfix-direction: Using pairwise incommensurability
we may suppose that t2 and t3 are both close to zero and chosen such that the
indicated splitting exists. Instead of resplitting in the direction of a ’simple Dehn
twist around the almost-cylinder of height h2’ we may also use a k-fold Dehn twist,
for t2 and t3 even closer (depending on k) to zero. All these resplitting directions
are irrational 2T2Cfix-directions and the complement of the two cylinders looks as
in Figure 6 (b). The dotted lines have slope

p̃ =
h2 + t2 + t3

k(2w1 + w2 + w3) − w1
.
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If for some m
h1

2mw1
> p̃ >

h1

(2m + 1)w1
,

the direction of the dotted lines have 4 homologous saddle connections. Conse-
quently p̃ is a a 2Tfix2C-direction, as illustrated in Figure 7 (a).

If we let w := 2w1 + w2 + w3, the above condition for p̃ may be rephrased as

k
2m

wh1

w1
> h2 + t2 + t3 +

h1

2mw1
and h2 + t2 + t3 +

h1

(2m + 1)w1
>

k
2m + 1

wh1

w1
.

If we choose k/2m close to h2w1/wh1 and m large enough, the inequalities are
satisfied for t2 and t3 small enough. Moreover the existence of the k-fold Dehn twist
for the chosen k gives two bounds for the size of t2 and t3. In addition, if we choose
t2 and t3 sufficiently irrational, the direction p̃ is an irrational 2Tfix2C-direction.
Now Lemma 4.6 applies.

We now treat the case that h2 , h3, say h2 > h3. Consider the resplitting of
Figure 7. This is a 2Tfix2C-direction p. Using incommensurability and the unipotent
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F 7. (a) 2Tfix2C-direction on an irrational 2T2Cfix-direction and
(b) resplitting of a 2T2Cfix-direction with h2 , h3.

action in the vertical direction we may pass to an element in the unipotent orbit
closure of (X, ω) and adjust t2 to any suitable value, preserving the bottom of T1
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horizontal. The parameter t3 will change, too, but this doesn’t matter. We can
find t2 such that the torus in the direction p whose intersection with C2 is empty, is
irrational. Lemma 4.6 applies. �

Lemma 4.10. If (X, ω) has a completely periodic direction, as in Figure 1g or Figure 8
below, such that the moduli mi of the cylinders {C1,C2,C3} are pairwise incommensurable
then the GL+2 (R)-orbit closure of (X, ω) is L.

Proof. We may suppose that the completely periodic direction is vertical. The
unipotent orbit closure of (X, ω) contains all surfaces as in Figure 8, where the
bottom of C1 is horizontal and t2 can be chosen arbitrarily. The resplitting given

w w1 2

t2

h21

3

1

w3

T2

C1

C2

C3

2

2

3

h1

h3

t3

F 8. Resplitting of a direction with 4 cylinders only one of
which is simple

by the dotted lines is a 2Tfix2C-direction p. For a suitable choice of t2, the torus
in the direction p that does not intersect C3 is irrational. We can now apply
Lemma 4.6. �

Lemma 4.11. If (X, ω) has a completely periodic direction, as in Figure 1c or Figure 9
below, and such that the moduli mi of the three cylinders are pairwise incommensurable,
then the GL+2 (R)-orbit closure (X, ω) is L.

Proof. Suppose the periodic direction is vertical as in Figure 9. Using a vertical
unipotent, we may suppose that C1 is untwisted, i.e. has a horizontal saddle
connection. For t2 and t3 sufficiently small but non-zero, the resplitting by dotted
lines in Figure 9 is a 2Tfix2C-direction p. Moreover, for t2 + t3 outside a coset of Q
in R the direction p has an irrational torus. We can arrange that both conditions
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F 9. Resplitting of a direction with 3 fixed cylinders

hold for a surface in the vertical unipotent orbit closure of (X, ω), by the same two
arguments as in Lemma 4.8. �

5. S    T-V 

In the whole section (X, ω) will be a surface with two transversal parabolic direc-
tions belonging to the hyperelliptic locus L. We prove that if (X, ω) is not a Veech
surface for the most obvious reason and if the pseudo-Anosov diffeomorphism is
of a type that can only arise for g ≥ 3, then its GL+2 (R) orbit closure is large.

Theorem 5.1. Let (X, ω) ∈ L be a surface given by the Thurston-Veech construction with
trace field of degree 3. By Theorem 3.3 this surface has infinitely many completely periodic
directions. Suppose that one of them is not parabolic. Then

GL+2 (R) · (X, ω) = L.

We first study the properties of the moduli of cylinders for a non parabolic
completely periodic direction. We then prove the theorem at the end of this
section.

5.1. Commensurability. Let (X, ω) be surface given by the Thurston-Veech con-
struction. We recall that the affine group SL(X, ω) of (X, ω) contains a pseudo-
Anosov diffeomorphism ϕ with trace field K and a parabolic element ρ. Thanks
to [HLa06] the field K of (X, ω) is totally real. Let us assume that [K : Q] = 3. Let
σi : K → R be the different real embeddings. We fix one of them once and for all
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and for given c ∈ K we write c′ := σ2(c) and c′′ := σ3(c). Choose τ1, τ2 ∈ Gal(R/Q)
such that

τ1 ◦ σ1 = σ2 and τ2 ◦ σ1 = σ3

and such that τ1 have order 3 when restricted to a Galois closure of K/Q.
Suppose that the horizontal direction of (X, ω) is completely periodic with cylin-

ders of height hi, circumference ci and moduli mi := hi/ci.

Lemma 5.2. Suppose the horizontal direction has s = 3 cylinders, or that it has s = 4
cylinders such that two of them, say the third and the fourth, are interchanged by the
hyperelliptic involution. Then either

i) the direction is parabolic, i.e. mi/m j ∈ Q for all (i, j), or
ii) the moduli are Q-linearly independent, or

iii) the moduli are related by
3∑

i=1

aimi = 0, where ai ∈ Q∗,

i.e. the moduli are not Q-linearly independent but mi/m j < Q for i , j. In the
terminology introduced in the previous section, the direction is either parabolic or
pairwise incommensurable.

Proof. Applying an upper triangular unipotent to (X, ω) we may suppose that the
relative periods are in K(i). Let t := trϕ and let

ψ := ϕ∗ + (ϕ∗)−1 ∈ End(H1(X,R)).

By the hypothesis on the trace field we have a decomposition into eigenspaces of
ψ

H1(X,R) = S ⊕ S′ ⊕ S′′

where we number the eigenspaces such that S = 〈Re(ω), Im(ω)〉 and τ1(S) = S′,
τ2(S) = S′′. Since ψ is symplectic (see [Mc1] Theorem 7.1 and [Mc2] Theorem 9.7),
the eigenspaces are orthogonal with respect to the cup product. The surface (X, ω)
is covered by the cylinders and we conclude

(1)
s∑

i=1

micic′i =
s∑

i=1

hic′i =
∫

X
Re(ω)∧ Imτ1(ω) =

i
4π

∫

X
(ω+ω)∧ (τ1(ω)−τ1(ω)) = 0.

Replacing τ1 by τ2 we similarly have

(2)
s∑

i=1

micic′′i = 0.



TEICHMÜLLER DISCS IN Q(1,1,1,1) 29

Moduli and circumferences of the cylinders exchanged by the hyperelliptic invo-
lution are the same. We apply τ2 to this equation and subtract it from the first one
to obtain

3∑

i=1

(mi − τ2(mi))δicic′′i = 0,

where δi = 1, except for the case of 4 cylinders where δ3 = 2. Suppose that the
lemma is wrong, i. e. there is a relation a1m1 + a2m2 = 0. Applying a matrix in
SL2(K) to (X, ω), we may suppose that m3 is rational without changing the ratios
of the mi. We deduce from the above equations mi = τ2(mi) for i = 1, 2. Hence in
fact all mi ∈ Q and we are in case i). �

5.2. Completely periodic but not parabolic directions.

Lemma 5.3. Let (X, ω) ∈ L be a surface given by the Thurston-Veech construction with
a completely periodic direction with two cylinders (or with three cylinders, two of which
are interchanged by the hyperelliptic involution). Then the direction is parabolic.

Proof. We discuss the case of two cylinders, the other case is similar since the
exchanged cylinders have the same heights and widths. The equations (1) and (2)
with s = 2 hold in this situation, too. They yield

m1

m2
= −

c2c′′2
c1c′′1

= −
c2c′2
c1c′1

.

In particular τ1(m1/m2) = m1/m2. Therefore m1/m2 ∈ Q and the horizontal direction
is a parabolic direction with 2 cylinders. The lemma is proven. �

In particular, we have:

Corollary 5.4. Let (X, ω) ∈ L be a surface given by the Thurston-Veech construction
with [K : Q] = 3. The configuration of every completely periodic non-parabolic direction
is one of the configuration drawn in Figure 1c,. . . , Figure 1e or Figure 1g.

5.3. Proof of Theorem 5.1. By Lemma 5.3 the completely periodic direction has
at least 3 orbits of cylinders under the hyperelliptic involution. By Theorem 2.1
and Corollary 5.4, it is thus one of the directions in Figure 1c or 1d, Figure 1e or 1f,
or Figure 1g. The Lemmas 4.11, 4.7, 4.8, 4.9 and 4.10, respectively, show that, if the
direction is not parabolic, the orbit closure is as big as claimed. The hypothesis on
pairwise incommensurability is met because of Lemma 5.2.

6. E

In this section we show that Theorem 5.1 applies to infinitely many surfaces.
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Theorem 6.1. There exist infinitely many surfaces given by the Thurston-Veech construc-
tion, with trace field of degree 3, and with a non-parabolic periodic direction.

We first construct such surfaces (Lemma 6.3), and we then prove that they pos-
sess a completely periodic 2Tfix2C-direction which is not parabolic (Proposition 6.5).

Proposition 6.2. Let n be any positive integer and let P = Pn be the polynomial X3 −
2(n2 + 3)X2 + (7n2 + 4)X − 4n2. Then P possesses only real roots. If α = αn is the largest
root, then α > 1.

Let us define the vectors V = (V1,V2,V3) and H = (H1,H2,H3) by


V1 = α − 1
V2 =

1
n2 (α2 − α(6 + n2) + 4 + n2)

V3 = 1
and



H1 = 2V1
H2 = n(V1 + V2)
H3 = V1 + V3

then V and H are positive, namely Vi > 0 and Hi > 0 for i = 1, 2, 3.

Proof. If A is the symmetric matrix defined by A =
(

5+n2 n2 1
n2 n2 0
1 0 1

)
, then the characteristic

polynomial χA is P. This ensures that P has only reals roots. In addition A is an
irreducible matrix, indeed (A2)i j > 0 for all i, j. This proves that α is the Perron–
Frobenius eigenvalue of the entire matrix A and therefore α > 1. Let us show that V
is an eigenvector for the eigenvalue value α of the matrix A. The Perron–Frobenius
theorem will then show the positivity of V.

For that we have to show that V is a solution of the linear system

(3)



(5 + n2)V1 +n2V2 +V3 = αV1 (L1)
n2V1 +n2V2 = αV2 (L2)
V1 +V3 = αV3 (L3)

This is a simple verification which makes use of the fact that α3 = 2(n2 + 3)α2 −
(7n2 + 4)α + 4n2. The positivity of H is then clear. �

Thanks to the previous statement, for any n ≥ 1, let (Xn, ωn) be the surface
presented in Figure 10.

Lemma 6.3. The surface (Xn, ωn) arises from the Thurston-Veech construction. Moreover
its trace field is Q(αn) and its trace field has degree 3 over Q if n > 2.

Proof. According to Figure 10 the horizontal horizontal direction of the surface is
a completely periodic 3C-direction. Let us calculate the moduli of theses cylinders
and show that they are equal. Using (L1) and (L2) in the system (3), one checks
that the moduli are

H3

V3
= V1 + V3 = α,

H3 + 2H1 + nH2

V1
= α, and

nH2

V2
= n2

V1 +V2

V2
= α.
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F 10. The surfaces (Xn, ωn) in the hyperelliptic locus L. The
vertical direction has been stretched.

All the moduli are equal, thus (Xn, ωn) is stabilized by the parabolic element
Tα =

( 1 α
0 1

)
.

Now let us consider the vertical direction; this is a completely periodic 2Tfix2C-
direction. The two simple cylinders have moduli V1/H1 = 1/2. The two others
cylinders have moduli (V1+V3)/H3 = 1 and n(V1+V2)(H2) = 1. Thus the parabolic
element U1/2 =

(
1 0
1
2 1

)
stabilises (Xn, ωn).

Since (Xn, ωn) has two transverse parabolic directions, it arises from the Thurston-
Veech construction. Moreover (Xn, ωn) is stabilised by the hyperbolic element TU
which has the trace 1

2 (4 + α). The trace field of (Xn, ωn) is then Q(αn). The next
lemma shows that Pn is irreducible over Q if n ≥ 3, which will conclude the
proof. �

Lemma 6.4. Let n be a positive integer. The polynomial Pn(X) = X3 − 2(n2 + 3)X2 +

(7n2 + 4)X − 4n2 is irreducible over Q if n > 2.

Proof. Since Pn is monic, it is irreducible over Q if and only if it is irreducible over
Z. As it is of degree 3, it is irreducible over Z if and only if it has no root inZ. We
check the following equalities:
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

Pn(0) = −4n2

Pn(1) = −1 + n2

Pn(2) = −8 + 2n2

Pn(3) = −n2 − 15
Pn(2n2 + 2) = −8 − 14n2 − 2n4

Pn(2n2 + 3) = −15 − 11n2 + 2n4,

thus for n ≥ 2



Pn(0) < 0
Pn(1) > 0
Pn(2) > 0
Pn(3) < 0
Pn(2n2 + 2) < 0
Pn(2n2 + 3) > 0.

By the intermediate value theorem, if n > 2, Pn has 3 real roots α, β, γ satisfying:

(4)



0 < γ < 1
2 < β < 3
2n2 + 2 < α < 2n2 + 3

Consequently, Pn has no root in Z thus it is irreducible over Z. �

Remark 6.4.1. The polynomials P1 and P2 are not irreducible; indeed, if n = 1, 2 we
have P1 = (X − 1)(X2 − 7X + 4) and P2 = (X − 2)(X2 − 12X + 8). More precisely,
(X1, ω1) is an unramified cover of a Veech surface belonging toH (2).

6.1. Another completely periodic (non-parabolic) direction on (Xn, ωn).

Proposition 6.5. Let Θ be the slope V2/H2 = n/α. Then the direction Θ on (Xn, ωn) is
a completely periodic 2Tfix2C-direction on (Xn, ωn). Moreover, if n > 1, this direction is
not parabolic.

We decompose the proof into three steps. We first prove that the direction Θ is
completely periodic. We then compute the moduli of the cylinders and finally we
prove that one ratio is not rational.

Lemma 6.6. The direction Θ is a completely periodic 2Tfix2C-direction.

Proof. By definition, γ5 is closed and the corresponding holonomy vector is
∫

γ5

ωn =

(
H2
V2

)
.

Let us prove that γ4 is also closed. Let xi be the x-coordinates of intersection
point of γ4 with the top (and bottom) of the horizontal cylinder of height V1 as
illustrated in Figure 12. We will show that xi < H1 +H3 + nH2 for all i = 1, . . . , n− 1
and xn = 3H1 + 2H3 + nH2 which will ensure that γ4 is closed.

Elementary geometry gives
V1

xi − xi−1
= Θ =

n
α

, which yields

(5) xi =
αV1

n
+ xi−1 =

i · αV1

n
+ x0 =

i · αV1

n
+H1 +H3.
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F 12. The saddle connection γ4 on (X3, ω3) in the direction Θ.

Let ∆i = xi − (H1 +H3 + nH2). Recall that nH2 = αV2 and V1 =

(
α

n2 − 1
)

V2 (thanks

to (L2) in Equation (3)). Then

∆i =
i · αV1

n
− αV2 =

αV2

n

(
i
(
α

n2 − 1
)
− n

)
.
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Claim 6.7. One has
α

n2 − 1 <
n

n − 1

Proof of the Claim. If n > 2, we already proved that α < 2n2 + 3 (see Equation (4)).

Hence the claim follows, once we have shown
2n2 + 3

n2 − 1 = 1 +
3
n2 <

n
n − 1

. This
is obvious if n > 2. The case n = 2 is checked directly. �

Therefore, if i ≤ n − 1 we have

∆i <
αV2

n

(
(n − 1) ·

n
n − 1

− n
)
= 0.

To complete the proof, one has to show that xn = 3H1 + 2H3 + nH2. Equation (5)
with i = n gives xn = αV1 +H1 +H3. Therefore

xn − (3H1 + 2H3 + nH2) = αV1 − 4V1 − V1 −V3 − n2(V1 + V2) =

= (5 + n2)V1 + n2V2 + V3 − αV1 = 0 by (L1).

Hence xn = 3H1 + 2H3 + nH2 and γ4 is closed. In addition, we get the holonomy
vector associated to γ4:

∫

γ4

ωn =

(
∗

(n − 1)(V1 + V2) + V1

)
.

The same calculation shows that γ1, γ3 and γ6 are also closed. It is not difficult to
that the complement of these four saddle connections consists of two tori. Hence
the surface (Xn, ωn) is decomposed into a 2T f ix2C-direction in the direction Θ (see
Figure 13). One checks that the torus T1 is actually periodic. By Theorem 3.8 the
SAF-invariant vanishes in this direction and the SAF-invariant is equals to zero on
cylinders C and torus T1. Therefore the SAF-invariant is also equal to zero on T2
and finally Θ is completely periodic. The lemma is proven. �

Lemma 6.8. If C,T1,T2 denotes the cylinder decomposition in the direction Θ, then the
ratio of the moduli of C and T1 is

r1 =
m(C)
m(T1)

=
(α − n)(2n3 − n2 − (n − 1)α)

2n(α − n2)
.

Proof. According to Figure 13, we can compute the circumference and the height
of the cylinders C and T1. The circumference of C is just |γ4| where

|γ4|2 = ((n − 1)(V1 +V2) + V1)2
(
1 +

1
Θ2

)
,
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F 13. The decomposition of (Xn, ωn) in the direction Θ: this is
a completely periodic 2T f ix2C-direction.

and the height is H1.
The circumference of T1 is just |γ4| + |γ5| where

|γ5|2 = V2
2

(
1 +

1
Θ2

)
,

and the height is h(T1) = (H1+H3+nH2)−xn−1 (see Figure 11). This can be simplified
to

h(T1) = nH2 −
(n − 1)αV1

n
= αV2 −

(n − 1)α
n

(
α

n2 − 1
)

V2 =
αV2

n3 (2n3 − n2 − (n − 1)α).

Taking the ratio we get:

r1 =

|γ4|
H1

|γ4| + |γ5|
h(T1)

=
|γ4|

|γ4| + |γ5|
·

h(T1)
H1

.

The quantities on the right hand side can be simplified to

|γ4|
|γ4| + |γ5|

=
(n − 1)(V1 + V2) + V1

(n − 1)(V1 + V2) + V1 +V2
=

1
nαV2 − V2

1
nαV2

=
α − n
α
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and
h(T1)

H1
=

1
n3αV2

(
2n3 − n2 − (n − 1)α

)

2V1
=
α
(
2n3 − n2 − (n − 1)α

)

2n(α − n2)
.

Plugging this into the previous equation, this gives

(6) r1 =
(α − n)(2n3 − n2 − (n − 1)α)

2n(α − n2)
which is the desired equality.

�

Lemma 6.9. The following are equivalent:
(1) r1 ∈ Q.
(2) r1 =

1
2 .

(3) n = 1.

Proof. If r1 ∈ Q, using equation (6), we get in the basis
{
1, α, α2}:



n3(2n − 1 − 2r1) = 0
n(2n2 − 1 − 2r1) = 0
n − 1 = 0

The solution gives r1 =
1
2 and n = 1. The lemma is proven. �

7. S   2Tfix2C-   

The locus D ⊂ L of translation surfaces having a completely periodic direction
of type 2Tfix2C has proven to be useful above. Unlike the situation in genus
two, where pairs of saddle connections exchanged by the hyperelliptic involution
always exist ([Mc3]),D is not equal to L.

In order to show this, we consider coverings π : X→ Y of a flat surface (Y, η) in
H (2). Such a covering is unramified and has degree two. Given Y, the covering π
is determined by the choice of ζ ∈ H1(Y,Z/2) or of a line bundleMwithM2 = OY.
Recall (e.g. [KZ03]) that on Y we have a natural spin structure (i.e. a square root of
the canonical bundle) given by OY(P), if Z(η) = 2P. Since P is a Weierstrass point,
this spin structure has odd parity. OY(P)⊗M defines another spin structure on Y.
By [Ati71], the space C of coverings π has two components, distinguished by the
parity of this spin structure h0(Y,OY(P) ⊗M) mod 2. Let Z(ω) = 2P1 + 2P2 be the
preimage of Z(η). Since

H0(X,OX(P1 + P2)) � H0(Y,OY(P) ⊗M) +H0(Y,OY(P)),

this parity is given by the usual parity of the spin structure on X. Consequently,
precisely one of the components of C lies inΩM3(2, 2)odd and in fact automatically
in the hyperelliptic locus L. We denote this component by Codd.
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Theorem 7.1. The locus D is strictly contained in L. More precisely, the intersection
Dc ∩ Codd is non-empty and strictly contained in Codd. It consists of orbits of Veech
surfaces.

Proof. First we show that the intersection is not empty. Consider a square-tiled
covering of 6 squares as Figure 14.

1 12 2

3 3

F 14. A square-tiled surface in Lwithout 2Tfix2C-direction

Horizontal sides are glued by vertical translations. Using e.g. [Sch04], one
checks that the affine group of this square-tiled covering has three cusps, given
by the horizontal, and vertical direction and by the direction of slope 1. None of
these directions is a 2Tfix2C-direction.

By [Cal04], a surface in H (2) which is not Veech has a direction where it splits
into a cylinder and a non-periodic torus. Consequently, a covering of a generic
surface in H (2) yields a surface in L with an irrational 2T2Cfix-direction. Such a
surface also has a 2Tfix2C-direction by Figure 6 (b).

Since the saddle connections involved in a 2Tfix2C-direction are homologous,D
is open. Consequently, Dc ∩ Codd is closed and SL2(R)-invariant. The last claim
now follows from [Mc3]. �
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