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Tropical convexity

Tropical semiring:

We endow R with the tropical addition a⊕ b = max{a, b} and the
tropical multiplication a� b = a + b.
Component-wise tropical addition and tropical scalar multiplication

λ� (x0, . . . , xn) = (λ� x0, . . . , λ� xn) = (λ+ x0, . . . , λ+ xn)

equips Rn+1 with a semi-module structure.

Tropical line segments

For x , y ∈ Rn+1 we define the tropical line segment between x and
y by

{(λ� x)⊕ (µ� y) for all λ, µ ∈ R}.
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Tropical convexity

Develin/Sturmfels 2004

A subset of Rn+1 is called tropically convex if it contains the
tropical line segment between any two of its points.

Every tropically convex subset of Rn+1 is closed under tropical
scalar multiplication. Therefore we look at it in the quotient space
A = Rn+1/{x ∼ λ� x} = Rn+1/R · (1, . . . , 1).

Tropical Polytopes

The tropical convex hull of finitely many points in A, i.e. the
smallest tropically convex subset of A containing these points, is
called a tropical polytope.
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Tropical polytopes

Develin/Sturmfels

Every tropical polytope has the structure of a polyhedral complex.
The cells are tropical polytopes and polytopes at the same time,
i.e. they are simultaneously convex and tropically convex.

Joswig/Kulas 2010

A full-dimensional bounded subset of A which is simultaneously
convex and tropically convex (

”
polytrope“) is the tropical convex

hull of n + 1 vertices, i.e a tropical simplex.
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Examples of tropical polytopes
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Connection to buildings

Setting:

Let K be a discretely valued field, for example K = Qp or a
finite extension of Qp or K = k((X )) for an arbitrary field k

and choose π, an element of minimal positive valuation in K

OK = {x ∈ K : |x | ≤ 1} is the ring of integers

A lattice in the vector space Kn+1 is a free OK -submodule of
full rank in Kn+1.

Two lattices M and N are equivalent: M ∼ N, if there exists a
constant c ∈ K× with M = cN.
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Connection to buildings

Ad-hoc-definition of the Bruhat-Tits building for SLn+1,K

The building B(SLn+1) is the geometric realization of the
following simplicial (flag) complex:

The vertices are the equivalence classes {M} of lattices in
Kn+1.

Two vertices {M} and {N} are adjacent, if there are
representatives M ′ = cM and N ′ = dN such that

πM ′ ⊂ N ′ ⊂ M ′.

Note that there is a natural continuous action of SLn+1(K ) on its
building.
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Apartments

For every basis e0, . . . , en of Kn+1 the subcomplex of all lattice
classes

M = OKa0e0 + . . .+OKanen

generated by multiples of the basis vectors is called an apartment.

The building is the union of all its apartments.

Any two points in the building are contained in a common
apartment.

Apartments are in bijective correspondence with the maximal
split tori in SLn+1. Such a maximal split torus in SLn+1 is
simply an algebraic subgroup which is isomorphic to Gn

m,K .
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Apartment für SL3
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A part of B(SL3)

P. Garrett: Buildings and classical groups
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Classical group

Let G be a classical group which is the subgroup of all elements in
SLn+1,K fixed by an involution i .

Examples: SOn+1,K , Sp2n,K

Fact

Then the Bruhat-Tits building B(G ) associated to G is the fixed
point set in B(SLn+1) of the involution i .
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Apartment for Sp4
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Back to the SLn+1-case

Every apartment in B(SLn+1) can be identified with the
cocharacter space of the associated torus, which is isomorphic to
Rn+1/R(1, . . . , 1) (hence to the ambient space A of our tropical
polytopes). Denote by aij the map Rn+1/R(1, . . . , 1)→ R (the
character) given by x 7→ xi − xj .

Simplicial structure of an apartment

The simplical structure on the apartment is induced by the affine
hyperplane arrangement

{x ∈ Rn+1/R(1, . . . , 1) : aij(x) = c} for all i 6= j and c ∈ Z

Root system

Φ = {aij : i 6= j} is the root system of type An induced by the
torus in the background.
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Tropical convexity in the building

Intrinsic description of tropical polytopes

Let v1 = {M1}, . . . , vr = {Mr} be a collection of vertices in one
apartment of the building B(SLn+1). Then the tropical convex hull
of v1, . . . , vr is the subcomplex of the apartment generated by all
lattice classes of the form

{a1M1 + . . .+ arMr} for a1, . . . , ar ∈ K .

Note that this gives a definition of the tropical convex hull for an
arbitrary finite set of vertices in the building (not necessarily lying
in one apartment)!
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Tropical convexity in the building

Joswig, Sturmfels, Yu 2007

Algorithm for computing such tropical convex hulls of finitely many
vertices in the building

Open question: Investigate the structure of such tropical polytopes
in the building, number of generators, decomposition into faces...
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Stabilizers and tropical geometry

There are other connections between buildings and tropical
geometry working for arbitrary reductive groups:

Theorem (W. 11)

Stabilizers of points in Bruhat-Tits buildings can be described with
tropical linear algebra.
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Tropical convexity in other buildings

Question

Define generalizations of tropical convexity for other buildings.
The following is joint work with Josephine Yu.

First idea: Look at a classical group G ⊂ SLn+1 which is the fixed
point set of an involution. Take finitely many vertices in the
building B(G ), embed them into B(SLn+1) and take the tropical
convex hull there. Look at the intersection of this tropical convex
hull with the smaller building B(G ).
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Tropical convexity in other buildings

Bad luck:

Often you get nothing new.

For G = Sp4 ⊂ SL4 and two vertices v ,w in the building of Sp4,
the intersection of the tropical convex hull of v ,w in the building
of SL4 with the building of G is in many cases just {v ,w}. Hence
all points on the tropical line connecting v and w lie outside the
smaller building B(G ).
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Look at polytropes

Recall:

A polytrope is a subset of Rn+1/R(1, . . . , 1) which is tropically
convex and classically convex at the same time. Every tropical
polytope has a cell decomposition into polytropes. Polytropes can
be generated by n + 1 vertices.

Develin/Sturmfels

Every polytrope P can be written as an intersection of hyperplanes
parallel to the root hyperplanes:

P = {x ∈ Rn+1/R(1, . . . , 1) : aij(x) ≤ cij}

for real constants cij .
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Root systems

This can be generalized!

Root systems

A root system is a finite set subset Φ of a Euclidean vector space
(V , ( , )) which generates V and does not contain zero such that
the following two conditions hold:
i) For every a ∈ Φ the reflection at the hyperplane orthogonal to a
leaves Φ invariant.
ii) For all a, b ∈ Φ the number 2(a, b)/(b, b) is an integer.

The subgroup of the orthogonal group of V generated by all
reflections at hyperplanes orthogonal to the roots is called the
Weyl group W (Φ).
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Root systems

Examples in dimension two:

A2 B 2 C 2 G2

There is a classification of root systems in arbitrary dimension by
Dynkin diagrams.
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Alcoved Polytopes

Definition

Consider an irreducible root system Φ in the dual space V ∗ of a
finite-dimensional vector space V . An alcoved polytope of type Φ
is a bounded subset of V defined as an intersection of affine
hyperplanes parallel to the root hyperplanes:⋂

a∈Φ

{x ∈ V : a(x) ≤ ca}.

Alcoved polytopes have already been studied, e.g. in

Lam/Postnikov 2004: Triangulations, volumes (mostly for
type A)

Payne 2009: Koszul Property
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General case

Let P be an alcoved polytope.

Definition

We say that a subset S of the vertices of P generates P if P is the
smallest alcoved polytope containing S .

Question:

Find an upper bound for the number of generators of an alcoved
polytope

Definition

We call an alcoved polytope symmetric, if it is invariant under the
action of the Weyl group.
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Coxeter number

Let Φ be a root system in a vector space of dimension n . The root
hyperplanes form a finite hyperplane arrangement. The complete
fan whose walls are given by these hyperplanes is called the Weyl
fan.

Definition

Select a chamber in the Weyl fan and make a list of its walls
H1, . . . ,Hn. Then the product

w = s1 ◦ . . . ◦ sn

of the reflections at H1, . . . ,Hn is called a Coxeter element. The
order of w is called the Coxeter number h of Φ.
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Coxeter element

Note:

The element w depends on the chamber and on the ordering of
the walls, but all those Coxeter elements are conjugate. Hence the
Coxeter number h is independent of all choices. The number of
roots is equal to nh.

The Coxeter number of the root system of type An is h = n + 1.
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Number of generators

Theorem (W., Yu)

Any symmetric alcoved polytope can be generated by h vertices,
where h is the Coxeter number of the root system.

Note: Since the Coxeter number of the root system of type An is
equal to n + 1, this sheds new light on the fact that every
polytrope is generated by n + 1 vertices.
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Proof

In most cases the following strategy works: We use results on the
orbit decomposition of Φ under the cyclic Γ = 〈w〉 to find a vertex
whose orbit under Γ generates the symmetric alcoved polytope.
The remaining cases (F4 and E8) are treated individually.
Symmetric E8-alcoved polytope are interesting objects: They have
19440 vertices. Note that the Coxeter number of E8 is 30.
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To do

Open question

Find an upper bound for the number of generators for general
(possibly non-symmetric) alcoved polytopes.
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