Lineare Algebra

Serie 9^1

Abgabetermin: Montag, 11.01.2010, 8¹⁵ Uhr.

- 1. Gesucht ist eine lineare Abbildung $f: \mathbb{R}^3 \to \mathbb{R}^2$, die auf den Tripel $\underline{a} = (1,2,6)$, $\underline{b} = (3,5,7)$, $\underline{c} = (4,8,9)$ die Werte $f(\underline{a}) = (1,2), f(\underline{b}) = (2,3)$, $f(\underline{c}) = (3,1)$ annimmt.
 - (a) Begründe, dass es eine solche Abb. f gibt.
 - (b) Beschreibe f durch eine Matrix $f(\underline{x}) = A\underline{x}$.
- 2. Man untersuche, ob in den folgenden Fällen (M, \sim) eine Äquivalenzrelation ist und bestimme in **jedem** Fall die Teilmengen $[x] = \{x' \in M \mid x' \sim x\}$.
 - (a) $M := \{g \mid g \text{ eine Gerade der Ebene } \mathbb{E}^2\}.$ $g \sim h :\Leftrightarrow g \cap h = \emptyset.$
 - (b) $M = \mathbb{R}$. Gegeben sei eine Abbildung $f : \mathbb{R} \to \mathbb{R}$ $a \sim b : \Leftrightarrow f(a) = f(b)$.
- 3. Zeige oder widerlege: sind A,B zwei affine Unterräume eines Vektorraums V, dann gilt
 - (a) $\dim A + \dim B > \dim V \Rightarrow A \cap B \neq \emptyset$.
 - (b) $A \cap B \neq \emptyset \Rightarrow \dim A + \dim B = \dim(A \cap B) + \dim(A + B)$.
- 4. Bestimme die Eigenwerte der Matrix

$$A_n = \begin{pmatrix} 0 & & \cdot & 1 \\ & & \cdot & \\ 1 & \cdot & & 0 \end{pmatrix} \in \mathbb{M}_n(K)$$

¹ auch als pdf-Datei im Internet unter: http://www.math.uni-frankfurt.de/~bieri/