Frankfurt/M., 22.01.2010

Lineare Algebra

Serie 12¹

Abgabetermin: Montag, 01.02.2010, 8¹⁵ Uhr.

- 1. Suche eine orthogonale Matrix $A \in O(3)$, deren erste Zeile $u_1 = \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$ ist.
- 2. (a) Zeige: Zur Matrix $P=\begin{pmatrix}4&-1\\-1&1\end{pmatrix}$ gibt es eine reguläre Matrix $S\in GL_2(\mathbb{R})$ mit $P=S^tS$.
 - (b) Bestimme eine solche Matrix S.
- 3. Es sei $V = \mathbb{R}[X]$ der Vektorraum der reellen Polynome mit dem Skalarprodukt $(p,q) := \int_0^1 p(t)g(t)dt$. Mit dem Gram-Schmidt'schen Orthogonalisierungsverfahren konstruiere man aus $1, x, x^2, x^3$ vier paarweise orthogonale Polynome f_0, f_1, f_2, f_3 .
- 4. Es sei $A \in \mathbb{M}_n(\mathbb{R})$ eine schiefsymmetrische Matrix (d.h. $A^t = -A$). Zeige: wenn 1 und -1 nicht Eigenwerte von A sind, dann ist $T = (E_n + A)^{-1}(E_n A)$ eine orthogonale Matrix.

¹ auch als pdf-Datei im Internet unter: http://www.math.uni-frankfurt.de/~bieri/