Coupling reduced basis methods and the Landweber method to solve inverse problems

Dominik Garmatter
dominik.garmatter@mathematik.uni-stuttgart.de
Chair of Optimization and Inverse Problems, University of Stuttgart, Germany
Joint work with Bastian Harrach and Bernard Haasdonk
Applied Inverse Problems Conference Helsinki, Finland, May 25-29, 2015.

D. Garmatter: Coupling reduced basis methods and the Landweber method to solve inverse problems

Reduced Basis Methods

D. Garmatter: Coupling reduced basis methods and the Landweber method to solve inverse problems

Motivation \& forward operator

Consider $\nabla \cdot(\sigma(x) \nabla u(x))=1, x \in \Omega:=[0,1]^{2}, u(x)=0, x \in \partial \Omega$.

Forward operator

$F: \mathcal{D}(F) \subset Y \longrightarrow X, \sigma \longmapsto u^{\sigma}$ between Hilbert spaces with u^{σ}, the detailed solution, solving

$$
\begin{align*}
b\left(u^{\sigma}, v ; \sigma\right) & =f(v ; \sigma), \forall v \in X, \text { with } \tag{1a}\\
b(u, w ; \sigma) & :=\int_{\Omega} \sigma \nabla u \cdot \nabla w d x, \quad f(v ; \sigma):=-\int_{\Omega} v d x . \tag{1b}
\end{align*}
$$

- Rapid and numerous evaluation of F for many parameters, e.g. optimal control, real-time-simulation, inverse problems.
- Detailed solution (e.g. FEM, FV, FD) is expensive.
\sim model order reduction
D. Garmatter: Coupling reduced basis methods and the Landweber method to solve inverse problems

The reduced problem

Assume

- Reduced basis space (RB-space) $X_{N}:=\operatorname{span}\left\{\phi_{1}, \ldots, \phi_{N}\right\} \subset X$, $\operatorname{dim} X_{N}=N(N \ll \operatorname{dim} X)$, is given (e.g. $\phi_{i}=F\left(\sigma_{i}\right)$ with meaningful parameters $\left.\sigma_{i} \in \mathcal{D}(F), i=1, \ldots, N\right)$.

Reduced forward operator

For given F and $X_{N} \subset X$, define $F_{N}: \mathcal{D}(F) \subset Y \longrightarrow X_{N}$, $\sigma \longmapsto u_{N}^{\sigma}$ with u_{N}^{σ}, the reduced solution, solving

$$
b\left(u_{N}^{\sigma}, v ; \sigma\right)=f(v ; \sigma), \quad \forall v \in X_{N}
$$

D. Garmatter: Coupling reduced basis methods and the Landweber method to solve inverse problems

Properties

Residual error estimator

$$
\begin{aligned}
& \left\|u^{\sigma}-u_{N}^{\sigma}\right\|_{X} \leq \Delta_{N}(\sigma):=\frac{\left\|v_{r}\right\| x}{\alpha(\sigma)}, \text { with } \\
& \left\langle v_{r}, v\right\rangle_{X}:=r(v ; \sigma):=f(v ; \sigma)-b\left(u_{N}^{\sigma}, v ; \sigma\right), \forall v \in X
\end{aligned}
$$

- Reproduction of solutions: for $\sigma \in \mathcal{D}(F)$ we have $F(\sigma) \in X_{N} \Rightarrow F_{N}(\sigma)=F(\sigma)$.
- Offline/online decomposition: enables efficient and cheap evaluation of $F_{N}(\sigma)$.
D. Garmatter: Coupling reduced basis methods and the Landweber method to solve inverse problems

Combining RBM \& Landweber method

D. Garmatter: Coupling reduced basis methods and the Landweber method to solve inverse problems

Inverse problem \& Landweber

Inverse problem

For given solution $u \in X$ of (1), find corresponding parameter $\sigma^{+} \in \mathcal{D}(F)$ with $F\left(\sigma^{+}\right)=u$ (,,a-example").

Given $u^{\delta},\left\|u-u^{\delta}\right\| x \leq \delta, \delta>0$, find approximation σ^{δ} to σ^{+}.

Algorithm 1 Landweber $\left(\sigma_{\text {start }}, \tau\right)$

$$
1: n:=0, \sigma_{0}^{\delta}:=\sigma_{\text {start }}
$$

2: while $\left\|F\left(\sigma_{n}^{\delta}\right)-u^{\delta}\right\|_{x}>\tau \delta$ do
3: $\quad \sigma_{n+1}^{\delta}:=\sigma_{n}^{\delta}+\omega F^{\prime}\left(\sigma_{n}^{\delta}\right)^{*}\left(u^{\delta}-F\left(\sigma_{n}^{\delta}\right)\right)$
4: $\quad n:=n+1$

5: end while

6: return $\sigma_{L W}:=\sigma_{n}^{\delta}$
D. Garmatter: Coupling reduced basis methods and the Landweber method to solve inverse problems

Various approaches

Standard approach:

- Construct global X_{N} approximating whole $\mathcal{R}(F)$ (i.e. providing good reduced solutions $\left.u_{N}^{\sigma}, \forall \sigma \in \mathcal{D}(F)\right) \sim$,,offline-phase".
- Using this space, quickly compute $F_{N}(\sigma)$ and substitute $F(\sigma)$ for $F_{N}(\sigma)$ in Algorithm $1 \sim$, online-phase".

Problem: Only feasible for low-dimensional parameter spaces
(≤ 30), not feasible for imaging.

Our approach: Create problem-adapted RB-space by iterative enrichment (inspired by Druskin \& Zaslavski, 2007).
D. Garmatter: Coupling reduced basis methods and the Landweber method to solve inverse problems

Motivation - Combining RBM \& LW

D. Garmatter: Coupling reduced basis methods and the Landweber method to solve inverse problems

Motivation - Combining RBM \& LW

D. Garmatter: Coupling reduced basis methods and the Landweber method to solve inverse problems

Motivation - Combining RBM \& LW

D. Garmatter: Coupling reduced basis methods and the Landweber method to solve inverse problems

Motivation - Combining RBM \& LW

D. Garmatter: Coupling reduced basis methods and the Landweber method to solve inverse problems

Procedure

1. Start with initial guess $\sigma_{\text {start }}$ and initial RB-spaces $X_{N, 1}, X_{N, 2}$.
2. Update $X_{N, 1}, X_{N, 2}$ using current iterate (first update via $\sigma_{\text {start }}$).
3. Solve the inverse problem up to a certain accuracy using the nonlinear Landweber method projected onto $X_{N, 1}$ and $X_{N, 2}$.
4. If resulting iterate is accepted by the discrepancy principle, terminate, else go to step 2.
D. Garmatter: Coupling reduced basis methods and the Landweber method to solve inverse problems

Termination of step 3

Let σ_{n}^{δ} be the current iterate.

- detailed discrepancy principle $\left(\left\|F\left(\sigma_{n}^{\delta}\right)-u^{\delta}\right\|_{x} \leq \tau \delta\right)$?
D. Garmatter: Coupling reduced basis methods and the Landweber method to solve inverse problems

Termination of step 3

Let σ_{n}^{δ} be the current iterate.

- detailed discrepancy principle $\left(\left\|F\left(\sigma_{n}^{\delta}\right)-u^{\delta}\right\|_{x} \leq \tau \delta\right)$?
\longrightarrow too expensive!
D. Garmatter: Coupling reduced basis methods and the Landweber method to solve inverse problems

Termination of step 3

Let σ_{n}^{δ} be the current iterate.

- detailed discrepancy principle $\left(\left\|F\left(\sigma_{n}^{\delta}\right)-u^{\delta}\right\|_{x} \leq \tau \delta\right)$?
\longrightarrow too expensive!
- reduced discrepancy principle $\left(\left\|F_{N}\left(\sigma_{n}^{\delta}\right)-u^{\delta}\right\|_{x} \leq \tau \delta\right)$?
D. Garmatter: Coupling reduced basis methods and the Landweber method to solve inverse problems

Termination of step 3

Let σ_{n}^{δ} be the current iterate.

- detailed discrepancy principle $\left(\left\|F\left(\sigma_{n}^{\delta}\right)-u^{\delta}\right\| x \leq \tau \delta\right)$?
\longrightarrow too expensive!
- reduced discrepancy principle $\left(\left\|F_{N}\left(\sigma_{n}^{\delta}\right)-u^{\delta}\right\|_{x} \leq \tau \delta\right)$?
- $\left\|F\left(\sigma_{n}^{\delta}\right)-u^{\delta}\right\|_{x} \leq\left\|F\left(\sigma_{n}^{\delta}\right)-F_{N}\left(\sigma_{n}^{\delta}\right)\right\|_{x}+\left\|F_{N}\left(\sigma_{n}^{\delta}\right)-u^{\delta}\right\|_{x}$
D. Garmatter: Coupling reduced basis methods and the Landweber method to solve inverse problems

Termination of step 3

Let σ_{n}^{δ} be the current iterate.

- detailed discrepancy principle $\left(\left\|F\left(\sigma_{n}^{\delta}\right)-u^{\delta}\right\| x \leq \tau \delta\right)$?
\longrightarrow too expensive!
- reduced discrepancy principle $\left(\left\|F_{N}\left(\sigma_{n}^{\delta}\right)-u^{\delta}\right\|_{x} \leq \tau \delta\right)$?
- $\left\|F\left(\sigma_{n}^{\delta}\right)-u^{\delta}\right\|_{x} \leq\left\|F\left(\sigma_{n}^{\delta}\right)-F_{N}\left(\sigma_{n}^{\delta}\right)\right\|_{x}+\left\|F_{N}\left(\sigma_{n}^{\delta}\right)-u^{\delta}\right\|_{x}$
- $\left\|F_{N}\left(\sigma_{n}^{\delta}\right)-u^{\delta}\right\|_{x} \leq\left\|F_{N}\left(\sigma_{n}^{\delta}\right)-F\left(\sigma_{n}^{\delta}\right)\right\|_{x}+\left\|F\left(\sigma_{n}^{\delta}\right)-u^{\delta}\right\|_{x}$
D. Garmatter: Coupling reduced basis methods and the Landweber method to solve inverse problems

Termination of step 3

Let σ_{n}^{δ} be the current iterate.

- detailed discrepancy principle $\left(\left\|F\left(\sigma_{n}^{\delta}\right)-u^{\delta}\right\| x \leq \tau \delta\right)$?
\longrightarrow too expensive!
- reduced discrepancy principle $\left(\left\|F_{N}\left(\sigma_{n}^{\delta}\right)-u^{\delta}\right\|_{x} \leq \tau \delta\right)$?
- $\left\|F\left(\sigma_{n}^{\delta}\right)-u^{\delta}\right\|_{x} \leq\left\|F\left(\sigma_{n}^{\delta}\right)-F_{N}\left(\sigma_{n}^{\delta}\right)\right\|_{x}+\left\|F_{N}\left(\sigma_{n}^{\delta}\right)-u^{\delta}\right\|_{x}$ - $\left\|F_{N}\left(\sigma_{n}^{\delta}\right)-u^{\delta}\right\|_{x} \leq\left\|F_{N}\left(\sigma_{n}^{\delta}\right)-F\left(\sigma_{n}^{\delta}\right)\right\|_{x}+\left\|F\left(\sigma_{n}^{\delta}\right)-u^{\delta}\right\|_{x}$
- Heuristically don't allow $\left\|F_{N}(\sigma)-F(\sigma)\right\|_{x}>(\tau-2) \delta$.
D. Garmatter: Coupling reduced basis methods and the Landweber method to solve inverse problems

Termination of step 3

Let σ_{n}^{δ} be the current iterate.

- detailed discrepancy principle $\left(\left\|F\left(\sigma_{n}^{\delta}\right)-u^{\delta}\right\|_{x} \leq \tau \delta\right)$?
\longrightarrow too expensive!
- reduced discrepancy principle $\left(\left\|F_{N}\left(\sigma_{n}^{\delta}\right)-u^{\delta}\right\|_{x} \leq \tau \delta\right)$?

$$
\begin{aligned}
& \left\|F\left(\sigma_{n}^{\delta}\right)-u^{\delta}\right\| x \leq\left\|F\left(\sigma_{n}^{\delta}\right)-F_{N}\left(\sigma_{n}^{\delta}\right)\right\| x+\left\|F_{N}\left(\sigma_{n}^{\delta}\right)-u^{\delta}\right\|_{x} \\
&
\end{aligned}\left\|F_{N}\left(\sigma_{n}^{\delta}\right)-u^{\delta}\right\| x \leq\left\|F_{N}\left(\sigma_{n}^{\delta}\right)-F\left(\sigma_{n}^{\delta}\right)\right\| x+\left\|F\left(\sigma_{n}^{\delta}\right)-u^{\delta}\right\| x
$$

- Heuristically don't allow $\left\|F_{N}(\sigma)-F(\sigma)\right\|_{x}>(\tau-2) \delta$.

Terminate step 3 via

$$
\left\|F_{N}\left(\sigma_{n}^{\delta}\right)-u^{\delta}\right\| x \leq \tau \delta \quad \text { or } \quad \Delta_{N}\left(\sigma_{n}^{\delta}\right)>(\tau-2) \delta
$$

D. Garmatter: Coupling reduced basis methods and the Landweber method to solve inverse problems

Reduced Basis Landweber (RBL) method

Algorithm $2 \operatorname{RBL}\left(\sigma_{\text {start }}, \tau, X_{N, 1}, X_{N, 2}\right)$
$1: n:=0, \sigma_{0}^{\delta}:=\sigma_{\text {start }}$
2: while $\left\|F\left(\sigma_{n}^{\delta}\right)-u^{\delta}\right\|_{x}>\tau \delta$ do
3: enrich $X_{N, 1}, X_{N, 2}$
4: $\quad i:=1, \sigma_{i}^{\delta}:=\sigma_{n}^{\delta}$
5: repeat
6: $\quad \sigma_{i+1}^{\delta}:=\sigma_{i}^{\delta}+\omega F_{N}^{\prime}\left(\sigma_{i}^{\delta}\right)^{*}\left(u^{\delta}-F_{N}\left(\sigma_{i}^{\delta}\right)\right)$
7: $\quad i:=i+1$
8: \quad until $\left\|F_{N}\left(\sigma_{i}^{\delta}\right)-u^{\delta}\right\| x \leq \tau \delta$ or $\Delta_{N}\left(\sigma_{i}^{\delta}\right)>(\tau-2) \delta$
9: $\quad \sigma_{n+1}^{\delta}:=\sigma_{i}^{\delta}$
10: $\quad n:=n+1$
11: end while
12: return $\sigma_{R B L}:=\sigma_{n}^{\delta}$
D. Garmatter: Coupling reduced basis methods and the Landweber method to solve inverse problems

Dual problem

For $\sigma, \kappa \in \mathcal{D}(F)$ and $I \in X$, one can show

$$
\begin{equation*}
\left\langle\kappa, F^{\prime}(\sigma)^{*} I\right\rangle_{Y}=\int_{\Omega} \kappa \nabla u^{\sigma} \cdot \nabla u_{I}^{\sigma} d x \tag{2}
\end{equation*}
$$

with $u_{I}^{\sigma} \in X$ the unique solution of the dual problem

$$
\begin{equation*}
b(u, v ; \sigma)=m(v ; l), \forall v \in X, \quad m(v):=-\int_{\Omega} I v d x \tag{3}
\end{equation*}
$$

In Algorithm 2

- enrich $X_{N, 1}$ with $F\left(\sigma_{n}^{\delta}\right)$ and $X_{N, 2}$ with $u_{l}^{\sigma_{n}^{\delta}}$ solving (3) for $I:=u^{\delta}-F\left(\sigma_{n}^{\delta}\right)$.
- evaluate $F_{N}^{\prime}\left(\sigma_{i}^{\delta}\right)^{*}\left(u^{\delta}-F_{N}\left(\sigma_{i}^{\delta}\right)\right)$ using (2) and associated reduced solutions.
D. Garmatter: Coupling reduced basis methods and the Landweber method to solve inverse problems

Numerics - compare reconstructions

Setting: 900 pixels, $\tau=2.5, \delta \approx 0.08 \%$ and $\omega=\frac{1}{2}\left(\left\|F^{\prime}\left(\sigma_{\text {start }}\right)\right\|\right)^{-1}$.

Figure: Exact solution (top right), $\sigma_{\text {start }}$ (top left). Reconstruction via Algorithm 2 (bottom left) and Algorithm 1 (bottom right).
D. Garmatter: Coupling reduced basis methods and the Landweber method to solve inverse problems

Numerics - time comparison

- Outer iteration: space enrichment, projection („offline").
- Inner iteration: one iteration of repeat loop (,,online").

Algorithm	Landweber	RBL	
time (s)	238059	20083	
\# Iterations	769034	outer	23
		inner	769043
time per Iteration (s)	0.309	outer	4.663
		inner	0.026
\# forward solves	1538068	46	

Table: Time comparison of Algorithms $1 \& 2$.
D. Garmatter: Coupling reduced basis methods and the Landweber method to solve inverse problems

Numerics - algorithmic behaviour

Update error $\left\|s_{n, R B L}-s_{n, L W}\right\| Y$

$$
s_{n, R B L}:=F_{N}^{\prime}\left(\sigma_{n}^{\delta}\right)^{*}\left(u^{\delta}-F_{N}\left(\sigma_{n}^{\delta}\right)\right), s_{n, L W}:=F^{\prime}\left(\sigma_{n}^{\delta}\right)^{*}\left(u^{\delta}-F\left(\sigma_{n}^{\delta}\right)\right)
$$

Figure: Update error $\left\|s_{n, R B L}-s_{n, L W}\right\| Y$ over the course of the iteration.
D. Garmatter: Coupling reduced basis methods and the Landweber method to solve inverse problems

Conclusion \& Outlook

Conclusion

- Solving non-linear inverse coefficient problems typically requires many PDE solutions.
- Reduced basis (RB) approaches can speed up PDE solutions.
- But standard RB methods are only applicable for low dimensional parameter spaces.
- Using problem-specific RB enrichment, we can handle high-dimensional parameter spaces, e.g. for imaging problems.
\leadsto RBL-method outperforms standard Landweber by an order without loss of accuracy.

Outlook

- Convergence theory for Algorithm 2.
- Apply methodology to other inverse problems and iterative regularization algorithms of Gauß-Newton type.
D. Garmatter: Coupling reduced basis methods and the Landweber method to solve inverse problems

Thank you for your attention!

D. Garmatter: Coupling reduced basis methods and the Landweber method to solve inverse problems

