

Coupling reduced basis methods and the Landweber method to solve inverse problems

Dominik Garmatter

dominik.garmatter@mathematik.uni-stuttgart.de

Chair of Optimization and Inverse Problems, University of Stuttgart, Germany

Joint work with Bastian Harrach and Bernard Haasdonk

13th U.S. National Congress on Computational Mechanics San Diego, California, July 26-30, 2015.

Introduction

Forward problem

Consider
$$\nabla \cdot (\sigma(x)\nabla u(x)) = 1$$
, $x \in \Omega := (0,1)^2$, $u(x) = 0$, $x \in \partial \Omega$.

Forward operator

 $F: \mathcal{D}(F) \subset Y \longrightarrow X, \ \sigma \longmapsto u^{\sigma}$ between Hilbert spaces with u^{σ} , the detailed solution, solving

$$b(u^{\sigma}, v; \sigma) = f(v; \sigma), \text{ for all } v \in X, \text{ with}$$
 (1a)

$$b(u, w; \sigma) := \int_{\Omega} \sigma \nabla u \cdot \nabla w \, dx, \quad f(v; \sigma) := -\int_{\Omega} v \, dx.$$
 (1b)

Inverse problem and its difficulties

Inverse problem

For given solution $u \in X$ of (1), find corresponding parameter $\sigma^+ \in \mathcal{D}(F)$ with $F(\sigma^+) = u$ ("a-example").

- Naive inversion, i.e. solving $\sigma^+ = F^{-1}(u)$ fails due to ill-posedness of the problem $(F^{-1}$ is discontinuous!)
 - → Small errors get amplified!
- ► Typically only noisy data u^{δ} with $||u u^{\delta}|| < \delta$ given $\sim F^{-1}(u^{\delta}) \nrightarrow F^{-1}(u)$ for $\delta \to 0$.

 \sim Remedy: Regularization methods (e.g. Landweber method) still provide stable approximative solutions σ^{δ} to σ^{+} .

Landweber method

Algorithm 1 Landweber(σ_{start}, τ)

- 1: n := 0, $\sigma_0^{\delta} := \sigma_{start}$
- 2: while $\|F(\sigma_n^{\delta}) u^{\delta}\|_X > \tau \delta$ do
- 3: $\sigma_{n+1}^{\delta} := \sigma_n^{\delta} + \omega F'(\sigma_n^{\delta})^* (u^{\delta} F(\sigma_n^{\delta}))$
- 4: n := n + 1
- 5: end while
- 6: **return** $\sigma_{LW} := \sigma_n^{\delta}$

- ▶ Numerous evaluations of *F* for many different parameters.
- ▶ Detailed solution (e.g. FEM, FV, FD) is expensive.

→ model order reduction

Reduced basis method

Reduced basis space (RB-space) $X_N := \text{span}\{\phi_1, \dots, \phi_N\} \subset X$ (dim $X_N \ll \text{dim } X$) is given via e.g. $\phi_i = F(\sigma_i)$, with meaningful parameters $\sigma_i \in \mathcal{D}(F), i = 1, \dots, N$.

Reduced forward operator

For given F and $X_N \subset X$, define $F_N : \mathcal{D}(F) \subset Y \longrightarrow X_N$, $\sigma \longmapsto u_N^{\sigma}$ with u_N^{σ} , the reduced solution, solving

$$b(u_N^{\sigma}, v; \sigma) = f(v; \sigma)$$
, for all $v \in X_N$.

- ▶ Residual error estimator: $\|u^{\sigma} u_N^{\sigma}\|_X \le \Delta_N(\sigma) := \frac{\|v_r\|_X}{\alpha(\sigma)}$ with $\langle v_r, v \rangle_X := r(v; \sigma) := f(v; \sigma) b(u_N^{\sigma}, v; \sigma)$, for all $v \in X$.
- ▶ Offline/online decomposition: enables efficient and cheap evaluation of $F_N(\sigma)$.

Combining RBM & Landweber method

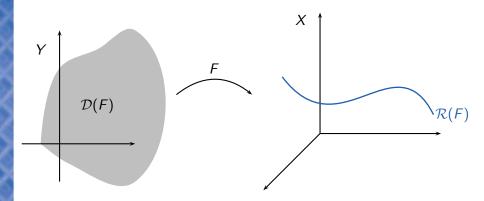
Various approaches

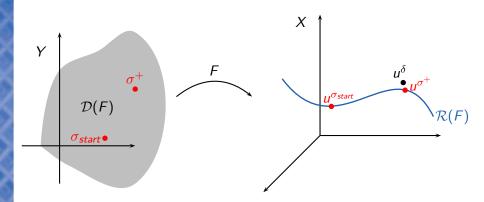
Standard approach:

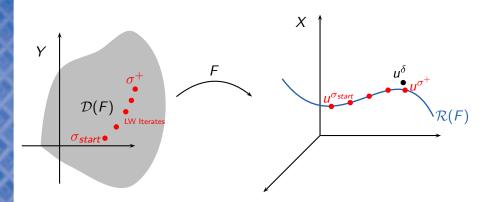
- ▶ Construct global X_N approximating whole $\mathcal{R}(F)$ (providing good reduced solutions u_N^{σ} for all $\sigma \in \mathcal{D}(F)$) \leadsto "offline-phase".
- ▶ Using this space, quickly compute $F_N(\sigma)$ and substitute $F(\sigma)$ for $F_N(\sigma)$ in Algorithm 1 \sim "online-phase".

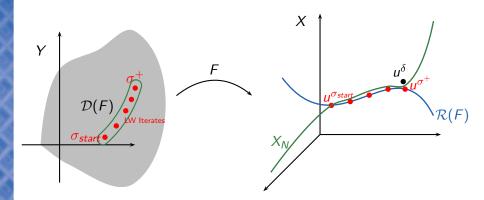
Problem: Only feasible for low-dimensional parameter spaces (\leq 30), not feasible for imaging.

Our approach: Create problem-adapted RB-space by iterative enrichment (inspired by Druskin & Zaslavski, 2007).









Procedure - adaptive space enrichment

- 1. Start with initial guess σ_{start} and initial RB-spaces $X_{N,1}$, $X_{N,2}$ (Landweber method requires adjoint of the derivative!).
- 2. Update $X_{N,1}$, $X_{N,2}$ using current iterate (first update via σ_{start}).
- 3. Solve the inverse problem up to a certain accuracy using the nonlinear Landweber method projected onto $X_{N,1}$ and $X_{N,2}$.
- 4. If resulting iterate is accepted by the discrepancy principle, terminate, else go to step 2.

Reduced Basis Landweber (RBL) method

Algorithm 2 RBL($\sigma_{start}, \tau, X_{N,1}, X_{N,2}$)

```
1: n := 0, \sigma_0^{\delta} := \sigma_{start}
 2: while ||F(\sigma_n^{\delta}) - u^{\delta}||_X > \tau \delta do
  3: enrich X_{N,1}, X_{N,2}
 4: i := 1, \sigma_i^{\delta} := \sigma_n^{\delta}
  5
        repeat
               \sigma_{i+1}^{\delta} := \sigma_i^{\delta} + \omega F_N'(\sigma_i^{\delta})^* (u^{\delta} - F_N(\sigma_i^{\delta}))
  6:
              i := i + 1
        until ||F_N(\sigma_i^{\delta}) - u^{\delta}||_X \le \tau \delta or \Delta_N(\sigma_i^{\delta}) > (\tau - 2)\delta
  8:
        \sigma_{n+1}^{\delta} := \sigma_{i}^{\delta}
10: n := n + 1
11: end while
12: return \sigma_{RBI} := \sigma_n^{\delta}
```


Dual problem

For $\sigma, \kappa \in \mathcal{D}(F)$ and $I \in X$, one can show

$$\langle \kappa, F'(\sigma)^* I \rangle_Y = \int_{\Omega} \kappa \nabla u^{\sigma} \cdot \nabla u_I^{\sigma} dx,$$
 (2)

with $u_1^{\sigma} \in X$ the unique solution of the dual problem

$$b(u, v; \sigma) = m(v; l)$$
, for all $v \in X$, $m(v) := -\int_{\Omega} l v dx$. (3)

In Algorithm 2

- enrich $X_{N,1}$ with $F(\sigma_n^{\delta})$ and $X_{N,2}$ with $u_I^{\sigma_n^{\delta}}$ solving (3) for $I := u^{\delta} F(\sigma_n^{\delta})$.
- evaluate $F'_N(\sigma_i^{\delta})^*(u^{\delta} F_N(\sigma_i^{\delta}))$ using (2) and associated reduced solutions.

Numerics - compare reconstructions

Setting: 900 pixels, $\tau = 2.5$, $\delta \approx 0.8\%$ and $\omega = \frac{1}{2}(\|F'(\sigma_{start})\|)^{-1}$.

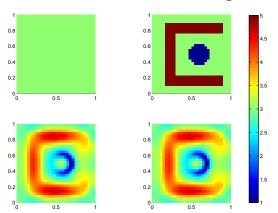


Figure: Exact solution (top right), σ_{start} (top left). Reconstruction via Algorithm 2 (bottom left) and Algorithm 1 (bottom right).

Numerics - time comparison

- ▶ Outer iteration: space enrichment, projection ("offline").
- ▶ Inner iteration: one iteration of repeat loop ("online").

Algorithm	Landweber	RBL	
time (s)	266958	22014	
# Iterations	789304	outer	25
		inner	789318
time per Iteration (s)	0.338	outer	8.961
		inner	0.028
# forward solves	1578608	50	

Table: Time comparison of Algorithms 1 & 2.

Conclusion & Outlook

- ► Solving inverse coefficient problem requires many PDE solves.
- ▶ Reduced basis (RB) approach can speed up PDE solution.
- ▶ But standard RB approach is only applicable for low dimensional parameter spaces.
- ▶ Using adaptive problem-specific RB enrichment, we can handle high-dimensional parameter spaces, e.g. for imaging problems.

→ RBL method outperforms standard Landweber by an order without loss of accuracy.

Outlook

- Convergence theory for RBL method.
- ► Apply methodology to other inverse problems and iterative regularization algorithms of Gauß-Newton type.

Thank you for your attention!

Preprint available:

A Reduced Basis Landweber method for nonlinear inverse problems (arXiv \rightsquigarrow 1507.05434).