Elementarmathematik 1

Freiwillige Zusatzaufgaben zur Vertiefung Lösungen - meistens wirklich nur die Ergebnisse!

Aufgabe 1

Seien $x_1, x_2 \in \mathbb{Q} \setminus \{1\}$ mit $f(x_1) = f(x_2)$. Dann gilt

$$\begin{array}{rcl}
f(x_1) & = & f(x_2) \\
\Leftrightarrow & (2x_1 - 4)(x_2 - 1) & = & (2x_2 - 4)(x_1 - 1) \\
\Leftrightarrow & 2x_1x_2 - 2x_1 - 4x_2 + 4 & = & 2x_2x_1 - 2x_2 - 4x_1 + 4 , \\
\Leftrightarrow & -2x_1 - 4x_2 & = & -2x_2 - 4x_1 \\
\Leftrightarrow & x_1 & = & x_2
\end{array}$$

und damit ist f injektiv.

Ein $y \in \mathbb{Q}$ liegt genau dann im Bild unter f, wenn es ein $x \in \mathbb{Q} \setminus \{1\}$ gibt mit $y = \frac{2x-4}{x-1}$, und dies ist genau dann der Fall, wenn es ein $x \in \mathbb{Q} \setminus \{1\}$ gibt mit

$$x(y-2) = y - 4.$$

Für y=2 ist dies nicht möglich (warum?) und für $y\neq 2$ erfüllt $x=\frac{y-4}{y-2}$ diese Gleichung. Also ist

$$g: \mathbb{Q} \setminus \{1\} \to \mathbb{Q} \setminus \{2\}, \quad x \mapsto \frac{2x-4}{x-1}$$

bijektiv. Die Umkehrabbildung ist gegeben durch

$$g^{-1}: \mathbb{Q} \setminus \{2\} \to \mathbb{Q} \setminus \{1\}, \quad x \mapsto \frac{x-4}{x-2}$$

wie man leicht nachweist, indem man

$$\frac{2 \cdot \frac{x-4}{x-2} - 4}{\frac{x-4}{x-2} - 1} = x \quad \text{und} \quad \frac{\frac{2x-4}{x-1} - 4}{\frac{2x-4}{x-1} - 2} = x$$

(also $g \circ g^{-1} = \mathrm{id}_{\mathbb{Q} \setminus \{2\}}$ und $g^{-1} \circ g = \mathrm{id}_{\mathbb{Q} \setminus \{1\}}$) nachrechnet.

Aufgabe 2

Induktionsanfang: Für n = 1 gilt

$$\sum_{k=1}^{1} (4k^3 - 6k^2 + 4k - 1) = 4 \cdot 1^3 - 6 \cdot 1^2 + 4 \cdot 1 - 1 = 1 = 1^4.$$

Induktionsschluss: Wir nehmen an, dass $\sum_{k=1}^n (4k^3-6k^2+4k-1)=n^4$ für ein $n\in\mathbb{N}$ gilt. Dann ist

$$\sum_{k=1}^{n+1} (4k^3 - 6k^2 + 4k - 1) = \sum_{k=1}^{n} (4k^3 - 6k^2 + 4k - 1) + 4(n+1)^3 - 6(n+1)^2 + 4(n+1) - 1$$

$$= n^4 + 4(n^3 + 3n^2 + 3n + 1) - 6(n^2 + 2n + 1) + 4(n+1) - 1$$

$$= n^4 + 4n^3 + 6n^2 + 4n + 1$$

$$= (n+1)^4$$

Aufgabe 3

- a) $255 = [FF]_{16}$, $256 = [100]_{16}$ und $4077 = [FED]_{16}$.
- b) $[1A]_{16} = 26$, $[123]_{16} = 291$ und $[BAD]_{16} = 2989$ im Dezimalsystem.
- c) $[1A]_{16} + [123]_{16} = [CEA]_{16}$

Aufgabe 4

 R_1 , R_5 und R_7 definieren eine Äquivalenzrelation auf M.

Aufgabe 5

- a) Nur 172436 ist ohne Rest durch 11 teilbar ist (Elferregel).
- b) -8 und 7

Aufgabe 6

- a) Im Beweis von Satz 7.5 i) (Existenz des multiplikativen Inversen einer Cauchyfolge \neq 0), denn jede konvergente Folge ist eine Cauchyfolge und die Folge $(a_n^{-1})_{n\in\mathbb{N}}$ ist dann die Folge $(b_n)_{n\in\mathbb{N}}$ aus dem Beweis.
- b) Ja, die Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert, da sie wegen

$$a_n := \frac{\left(7\frac{(-1)^n}{n} + 4\right)\left(15 - 2\left(\frac{1}{n}\right)^3 + \frac{1}{n}\right)}{\left(3 - \frac{5}{n}\right)\left(\frac{1000000}{n} + 10\right)}$$

aus konvergenten Folgen zusammengesetzt ist und es gilt

$$\lim_{n \to \infty} a_n = \frac{(7 \cdot 0 + 4)(15 - 2 \cdot 0^3 + 0)}{(3 - 5 \cdot 0)(1000000 \cdot 0 + 10)} = 2.$$

Aufgabe 7

Es gilt

$$0,06\overline{81} = 0 \cdot 10^{-1} + 6 \cdot 10^{-2} + 10^{-2} \cdot 0, \overline{81} = \frac{3}{44}.$$