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The reduced basis method1

1Haasdonk, Chapter to appear in P. Benner, A. Cohen, M. Ohlberger and K.
Willcox: ”Model Reduction and Approximation for Complex Systems”, SIAM.
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Motivation

I Desired simulation result parametrized PDE with parametric
solution uσ ∈ X and parameter domain P

I Different szenarios
I Many-query: uσ required for many different σ ∈ P (optimization,

inverse problems, design)
I Real-time: uσ required very fast (control, others)
I Slim-computing: computational capabilities are limited - still

simulation results are required (tablet/smartphone apps,
techincal controllers)

 model order reduction
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Idea

XN

M

uσ1

uσ2

X

uσ
uσN

I Solution manifoldM := {uσ | σ ∈ P}
I Construction of XN via carefully chosen snapshots uσi
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The detailed problem

Consider

∇ · (σ(x)∇u(x)) = 1, x ∈ Ω := (0, 1)2, u(x) = 0, x ∈ ∂Ω.

Assume: σ is piecewise constant σ(x) =
∑p

q=1 σqχΩq (x).

Detailed problem (e.g. fine grid FEM)

For σ ∈ P ⊂ Rp, find uσ ∈ X ⊂ H1
0 (Ω), the detailed solution, of

b(uσ, v ;σ) = f (v), for all v ∈ X , with

b(u,w ;σ) :=

∫
Ω
σ∇u · ∇w dx , f (v) := −

∫
Ω

v dx .
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The reduced problem

Assume
Reduced basis (RB) space XN := span{ΦN} = span{φ1, . . . , φN},
e.g. with φi = uσi carefully selected snapshots, is given.

Reduced problem (Galerkin projection)

For σ ∈ P , find uσN ∈ XN ⊂ X ⊂ H1
0 (Ω), the reduced solution, of

b(uσN , v ;σ) = f (v), ∀v ∈ XN .
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Properties

I Existence, Uniqueness & stability: via Lax-Milgram
I Reproduction of solutions: uσ ∈ XN ⇒ uσN = uσ

Certification - rigorous a-posteriori error estimator

‖uσ − uσN‖X ≤ ∆N(σ) :=
‖vr‖X

α(σ)
, with

〈vr , v〉X := r(v ;σ) := f (v)− b(uσN , v ;σ),∀v ∈ X
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Constructing XN - the Greedy-Algorithm

Algorithm 1 Greedy-Algorithm(Mtrain, εtol , ∆N(·))
1: XN := {0}, ΦN := ∅
2: repeat
3: σ? := arg maxσ∈Mtrain ∆N(σ)
4: φ := uσ

?
, ΦN := ΦN ∪ φ, XN := XN + span(φ)

5: ε := maxσ∈Mtrain ∆N(σ)
6: until ε ≤ εtol

7: return ΦN , XN

I Convergence: Binev, Cohen, Dahmen, DeVore, Petrova,
Wojtaszcyk, 2011; Buffa, Maday, Patera, Prud’homme, Turinici,
2012

I Relies on finite Mtrain covering P ⊂ Rp

 only viable for small p (say ≤ 10)
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Computational efficiency - Offline/Online decomposition I

Recall σ(x) =
∑p

q=1 σqχΩq (x) piecewise constant

 b, f are parameter-separable

b(u, v ;σ) =

∫
Ω
σ∇u ·∇w dx =

p∑
q=1

σq

∫
Ωq

∇u ·∇w dx :=

p∑
q=1

Θq
b(σ)bq(u, v),

f (v) = −
∫

Ω
v dx = 1 · f (v) :=

1∑
q=1

Θq
f (σ)f q(v),

for all u, v ∈ X , with coefficients and components.

 σ-independant components can be precomputed!
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Computational efficiency - Offline/Online decomposition II

Offline-phase (once)

I Compute RB ΦN = {φ1, . . . , φN} and RB-space XN

I Galerkin projection of components onto XN :
Bq

N := (bq(φi , φj))N
i,j=1 ∈ RN×N and f1

N :=
(
f 1(φi)

)N
i=1 ∈ RN

Online-phase (for each new σ)

I Evaluate parameter-dependant coefficients Θq
b(σ), Θ1

f (σ)

I Assemble BN(σ), fN(σ), solve B(σ)uσN = f(σ) and obtain uσN

Note: Offline/Online decomposition of error estimator possible
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Extensions - problem variety

I General coercive, elliptic problem2:
I b non-symmetric, f parameter dependant
I Add output s(σ) := l(uσ) with functional l to detailed problem
I primal/dual approach sharper output error bound

I Instationary Problems2

I Inf-sup stability: Veroy, Prud’homme, Rovas, Patera, 2003
I Missing parameter-separability/nonlinear problems: Barrault,

Maday, Nguyen, Patera 2004 (EIM)
I Nonlinear problems: Veroy, Prud’homme, Patera, 2003

(Burgers); Veroy, Patera, 2005 (steady incomp. NS)

2Haasdonk, Chapter to appear in P. Benner, A. Cohen, M. Ohlberger and K.
Willcox: ”Model Reduction and Approximation for Complex Systems”, SIAM.
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Extensions - constructing XN

I Efficient Greedy: Hesthaven, Stamm, Zhang, 2013
I Optimization Greedy: Urban, Volkwein, Zeeb, 2014
I Partitioning methods: Eftang, Patera, Rønquist, 2010; Eftang,

Knezevic, Patera, 2011; Haasdonk, Dihlmann, Ohlberger, 2012
I Domain decomposition: Huynh, Knezevic, Patera, 2013
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RBM and Inverse problems

G./Haasdonk/Harrach, A Reduced Basis Landweber method for
nonlinear inverse problems, 2016 Inverse Problems 32 (3) (doi).
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Forward problem

Consider: ∇·(σ(x)∇u(x)) = 1, x∈Ω := (0, 1)2, u(x) = 0, x∈∂Ω.

Forward operator

F : P −→ X , σ 7−→ uσ with uσ, the detailed solution, solving

b(uσ, v ;σ) = f (v), for all v ∈ X . (1)

Reduced forward operator (XN ⊂ X given)

FN : P −→ XN , σ 7−→ uσN with uσN , the reduced solution, solving

b(uσN , v ;σ) = f (v), for all v ∈ XN .
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Inverse problem and its difficulties

Inverse Problem

For given solution u ∈ X of (1), find corresponding parameter
σ+ ∈ P with F(σ+) = u (”a-example“).

I Naive inversion (solving σ+ = F−1(u)) fails due to ill-posedness
of the problem (in general F−1 discontinuous!)

 Small errors get amplified!
I Typically only noisy data uδ (‖u − uδ‖X < δ) given

 F−1(uδ) 9 F−1(u) as δ → 0!

Goal: Rn(uδ,δ)(uδ)→ F−1(u) as δ → 0.
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Landweber method - a Fixed-point iteration

Idea (linear F )
I solve Fσ = u for σ Gaussian normal equation
I Fixed-point formulation

σ = σ − ω(F∗Fσ − F∗u) = σ + ωF∗(u − Fσ)

I Iteration (for uδ ∈ X ): σδn+1 := σδn + ωF∗(uδ − Fσδn)

Landweber iteration (nonlinear3 - F(σ) = u)
I σδn+1 := σδn + ωF ′(σδn)∗(uδ − F(σδn))

I Terminate as ‖F(σδn)− uδ‖X ≤ τδ (discrepancy principle)

 Many-query setting

3Hanke, Neubauer, Scherzer 1995
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RBM & Landweber method - Various approaches

Naive approach
I Construct global XN approximating whole R(F) (≡M)
 offline-phase

I Rapidly compute FN(σ) and substitute F(σ) for FN(σ) in the
Landweber iteration ”online-phase“

Limitation: Only feasible for low-dimensional parameter spaces
(≤ 30), not feasible for imaging.

Our approach: Create problem-adapted RB-space by iterative
enrichment (inspired by Druskin & Zaslavski 2007, Zahr & Fahrhat

2015 and Lass 2014).
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Combining RBM & LW - Idea
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Combining RBM & LW - Idea
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Combining RBM & LW - Idea

uσstart

uσ
+uδ

Rp
P

σstart

σ+

LW-iterates F

R(F)

X

D. Garmatter: The reduced basis method and its application to inverse problems



Combining RBM & LW - Idea

uσstart

uσ
+uδ

Rp
P

σstart

σ+

LW-iterates F

R(F)

X

uσstart
N

D. Garmatter: The reduced basis method and its application to inverse problems



Combining RBM & LW - Idea

uσstart

uσ
+uδ

Rp
P

σstart

σ+

LW-iterates F

R(F)

X

uσstart
N

D. Garmatter: The reduced basis method and its application to inverse problems



Combining RBM & LW - Idea

uσstart

uσ
+uδ

Rp
P

σstart

σ+

LW-iterates F

R(F)

X

uσstart
N

D. Garmatter: The reduced basis method and its application to inverse problems



Combining RBM & LW - Idea
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Reduced Basis Landweber (RBL) method

Algorithm 2 RBL(σstart , τ,ΦN )

1: n := 0, σδ0 := σstart

2: while ‖F(σδn)− uδ‖X > τδ do
3: enrich RB ΦN using σδn
4: i := 1, σδi := σδn
5: repeat
6: calculate reduced Landweber update sn,i

7: σδi+1 := σδi + ωsn,i

8: i := i + 1
9: until ‖FN(σδi )− uδ‖X ≤ τδ or ∆N(σδi ) > (τ − 2)δ

10: σδn+1 := σδi
11: n := n + 1
12: end while
13: return σRBL := σδn
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The dual problem

Recall σδn+1 := σδn + ωF ′(σδn)∗(uδ − F(σδn))

For σ, κ ∈ P and l ∈ X , one can show

〈κ,F ′(σ)∗ l〉P =

∫
Ω
κ∇uσ · ∇uσl dx , (2)

with uσl ∈ X the unique solution of the dual problem

b(u, v ;σ) = m(v ; l), for all v ∈ X , m(v ; l) := −
∫

Ω
l v dx .

In Algorithm 2 two RB spaces XN,1, XN,2

I enrich XN,1 via F(σδn) and XN,2 via uσ
δ
n

l with l := uδ − F(σδn)

I calculate sn,i using (2) and associated reduced solutions
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Numerics - compare reconstructions

Setting: p = 900, τ = 2.5, δ = 1% and ω = 1
2 (‖F ′(σstart)‖)−1.
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Figure: σstart (top left), exact solution σ+ (top right). Reconstruction via RBL
method (bottom left) and Landweber method (bottom right).
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Numerics - time comparison

I Outer iteration: space enrichment, projection (”offline“)
I Inner iteration: one iteration of repeat loop (”online“)

Algorithm Landweber RBL
time (s) 187189 14661

# Iterations 608067
outer 20
inner 608083

time per Iteration (s) 0.308
outer 3.705
inner 0.024

# forward solves 1216134 40

‖σRBL − σLW‖P ≈ 1.118 · 10−5
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Numerics - algorithmic behaviour

Update error - ‖sn,RBL − sn,LW‖P
sn,RBL := σn+1,RBL − σn,RBL, sn,LW := σn+1,LW − σn,LW
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Figure: Update error ‖sn,RBL − sn,LW‖P over the course of the iteration.
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Numerics - convergence
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Figure: Error ‖σRBL − σ+‖P over the decreasing relative noise level δ.
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Conclusion

I Solving inverse coefficient problem requires many PDE solves
I Reduced basis (RB) approach can speed up PDE solution
I But standard RB approach is only applicable for low

dimensional parameter spaces
I Using adaptive problem-specific RB enrichment, we can handle

high-dimensional parameter spaces, e.g. for imaging problems

 RBL method outperforms standard Landweber
(exp.: 13 times faster without loss of accuracy)

Future work
I Theoretical investigation of RBL method (convergence)
I Apply methodology to other inverse problems and more

sophisticated regularization algorithms
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Thank you for your attention!
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