

The reduced basis method and its application to inverse problems

Dominik Garmatter

garmatter@math.uni-frankfurt.de

Group for Numerics of Partial Differential Equations, Goethe University Frankfurt, Germany

Joint work with Bastian Harrach and Bernard Haasdonk

Rhein-Main Arbeitskreis Mathematics of Computation Frankfurt, Germany, 5th of February, 2016.

The reduced basis method¹

¹Haasdonk, Chapter to appear in P. Benner, A. Cohen, M. Ohlberger and K. Willcox: "Model Reduction and Approximation for Complex Systems", SIAM.

Motivation

- ► Desired simulation result → parametrized PDE with parametric solution u^σ ∈ X and parameter domain P
- Different szenarios
 - Many-query: u^{σ} required for many different $\sigma \in \mathcal{P}$ (optimization, inverse problems, design)
 - Real-time: u^{σ} required very fast (control, others)
 - Slim-computing: computational capabilities are limited still simulation results are required (tablet/smartphone apps, techincal controllers)

~ model order reduction

Idea

- Solution manifold $\mathcal{M} := \{ u^{\sigma} \mid \sigma \in \mathcal{P} \}$
- Construction of X_N via *carefully* chosen *snapshots* u^{σ_i}

The detailed problem

Consider

$$abla \cdot (\sigma(x) \nabla u(x)) = 1, \ x \in \Omega := (0,1)^2, \ u(x) = 0, \ x \in \partial \Omega.$$

Assume: σ is piecewise constant $\rightsquigarrow \sigma(x) = \sum_{q=1}^{p} \sigma_q \chi_{\Omega_q}(x)$.

Detailed problem (e.g. fine grid FEM)

For $\sigma \in \mathcal{P} \subset \mathbb{R}^p$, find $u^{\sigma} \in X \subset H^1_0(\Omega)$, the detailed solution, of

$$b(u^{\sigma}, v; \sigma) = f(v)$$
, for all $v \in X$, with
 $b(u, w; \sigma) := \int_{\Omega} \sigma \nabla u \cdot \nabla w \, dx$, $f(v) := -\int_{\Omega} v \, dx$.

Assume

Reduced basis (RB) space $X_N := \text{span}\{\Phi_N\} = \text{span}\{\phi_1, \dots, \phi_N\}$, e.g. with $\phi_i = u^{\sigma_i}$ carefully selected snapshots, is given.

Reduced problem (Galerkin projection)

For $\sigma \in \mathcal{P}$, find $u_N^{\sigma} \in X_N \subset X \subset H_0^1(\Omega)$, the reduced solution, of

$$b(u_N^{\sigma}, v; \sigma) = f(v), \quad \forall v \in X_N.$$

Properties

- Existence, Uniqueness & stability: via Lax-Milgram
- Reproduction of solutions: $u^{\sigma} \in X_N \Rightarrow u_N^{\sigma} = u^{\sigma}$

Certification - rigorous a-posteriori error estimator

$$\|\boldsymbol{u}^{\sigma} - \boldsymbol{u}_{N}^{\sigma}\|_{X} \leq \Delta_{N}(\sigma) := \frac{\|\boldsymbol{v}_{r}\|_{X}}{\alpha(\sigma)}, \text{ with}$$
$$\langle \boldsymbol{v}_{r}, \boldsymbol{v} \rangle_{X} := r(\boldsymbol{v}; \sigma) := f(\boldsymbol{v}) - b(\boldsymbol{u}_{N}^{\sigma}, \boldsymbol{v}; \sigma), \forall \boldsymbol{v} \in X$$

Constructing X_N - the Greedy-Algorithm

Algorithm 1 Greedy-Algorithm(M_{train} , ε_{tol} , $\Delta_N(\cdot)$)

1:
$$X_N := \{0\}, \ \Phi_N := \emptyset$$

2: repeat

3:
$$\sigma^* := \arg \max_{\sigma \in M_{train}} \Delta_N(\sigma)$$

4: $\phi := u^{\sigma^*}, \ \Phi_N := \Phi_N \cup \phi, \ X_N := X_N + \operatorname{span}(\phi)$

5:
$$\varepsilon := \max_{\sigma \in M_{train}} \Delta_N(\sigma)$$

- 6: **until** $\varepsilon \leq \varepsilon_{tol}$
- 7: return Φ_N , X_N
 - Convergence: Binev, Cohen, Dahmen, DeVore, Petrova, Wojtaszcyk, 2011; Buffa, Maday, Patera, Prud'homme, Turinici, 2012
 - ► Relies on finite M_{train} covering $\mathcal{P} \subset \mathbb{R}^p$

 \rightsquigarrow only viable for small *p* (say \leq 10)

Recall $\sigma(x) = \sum_{q=1}^{p} \sigma_q \chi_{\Omega_q}(x)$ piecewise constant

→ b, f are parameter-separable

$$b(u, v; \sigma) = \int_{\Omega} \sigma \nabla u \cdot \nabla w \, dx = \sum_{q=1}^{p} \sigma_{q} \int_{\Omega_{q}} \nabla u \cdot \nabla w \, dx := \sum_{q=1}^{p} \Theta_{b}^{q}(\sigma) b^{q}(u, v),$$
$$f(v) = -\int_{\Omega} v \, dx = 1 \cdot f(v) := \sum_{q=1}^{1} \Theta_{f}^{q}(\sigma) f^{q}(v),$$

for all $u, v \in X$, with coefficients and components.

 $\rightsquigarrow \sigma$ -independant components can be precomputed!

Offline-phase (once)

- Compute RB $\Phi_N = \{\phi_1, \dots, \phi_N\}$ and RB-space X_N
- ► Galerkin projection of components onto X_N : $\mathbf{B}_N^q := (b^q(\phi_i, \phi_j))_{i,j=1}^N \in \mathbb{R}^{N \times N}$ and $\mathbf{f}_N^1 := (f^1(\phi_i))_{i=1}^N \in \mathbb{R}^N$

Online-phase (for each new σ)

- Evaluate parameter-dependant coefficients $\Theta_b^q(\sigma)$, $\Theta_f^1(\sigma)$
- Assemble $\mathbf{B}_N(\sigma)$, $\mathbf{f}_N(\sigma)$, solve $\mathbf{B}(\sigma)\mathbf{u}_N^{\sigma} = \mathbf{f}(\sigma)$ and obtain u_N^{σ}

Note: Offline/Online decomposition of error estimator possible

Extensions - problem variety

- ► General coercive, elliptic problem²:
 - b non-symmetric, f parameter dependant
 - Add output $s(\sigma) := I(u^{\sigma})$ with functional *I* to detailed problem
 - ▶ primal/dual approach ~→ sharper output error bound
- Instationary Problems²
- Inf-sup stability: Veroy, Prud'homme, Rovas, Patera, 2003
- Missing parameter-separability/nonlinear problems: Barrault, Maday, Nguyen, Patera 2004 (EIM)
- Nonlinear problems: Veroy, Prud'homme, Patera, 2003 (Burgers); Veroy, Patera, 2005 (steady incomp. NS)

²Haasdonk, Chapter to appear in P. Benner, A. Cohen, M. Ohlberger and K. Willcox: "Model Reduction and Approximation for Complex Systems", SIAM.

Extensions - constructing X_N

- ▶ Efficient Greedy: Hesthaven, Stamm, Zhang, 2013
- Optimization Greedy: Urban, Volkwein, Zeeb, 2014
- Partitioning methods: Eftang, Patera, Rønquist, 2010; Eftang, Knezevic, Patera, 2011; Haasdonk, Dihlmann, Ohlberger, 2012
- Domain decomposition: Huynh, Knezevic, Patera, 2013

RBM and Inverse problems

G./Haasdonk/Harrach, A Reduced Basis Landweber method for nonlinear inverse problems, 2016 Inverse Problems 32 (3) (doi).

GOETHE UNIVERSITÄT FRANKFURT AM MAIN

Forward problem

Consider: $\nabla \cdot (\sigma(x) \nabla u(x)) = 1$, $x \in \Omega := (0, 1)^2$, u(x) = 0, $x \in \partial \Omega$.

Forward operator

 $F: \mathcal{P} \longrightarrow X, \ \sigma \longmapsto u^{\sigma}$ with u^{σ} , the detailed solution, solving

$$b(u^{\sigma}, v; \sigma) = f(v), \text{ for all } v \in X.$$
(1)

Reduced forward operator ($X_N \subset X$ **given)**

 $F_N : \mathcal{P} \longrightarrow X_N, \sigma \longmapsto u_N^{\sigma}$ with u_N^{σ} , the reduced solution, solving $b(u_N^{\sigma}, v; \sigma) = f(v)$, for all $v \in X_N$.

Inverse Problem

For given solution $u \in X$ of (1), find corresponding parameter $\sigma^+ \in \mathcal{P}$ with $F(\sigma^+) = u$ ("a-example").

Naive inversion (solving σ⁺ = F⁻¹(u)) fails due to ill-posedness of the problem (in general F⁻¹ discontinuous!)

~ Small errors get amplified!

► Typically only noisy data u^{δ} ($||u - u^{\delta}||_X < \delta$) given $\rightsquigarrow F^{-1}(u^{\delta}) \twoheadrightarrow F^{-1}(u)$ as $\delta \to 0!$

Goal: $R_{n(u^{\delta},\delta)}(u^{\delta}) \rightarrow F^{-1}(u)$ as $\delta \rightarrow 0$.

Landweber method - a Fixed-point iteration

Idea (linear F)

- ▶ solve $F\sigma = u$ for $\sigma \rightsquigarrow$ Gaussian normal equation
- Fixed-point formulation

$$\sigma = \sigma - \omega (F^* F \sigma - F^* u) = \sigma + \omega F^* (u - F \sigma)$$

Iteration (for
$$u^{\delta} \in X$$
): $\sigma_{n+1}^{\delta} := \sigma_n^{\delta} + \omega F^* (u^{\delta} - F \sigma_n^{\delta})$

Landweber iteration (nonlinear³ - $F(\sigma) = u$)

- $\sigma_{n+1}^{\delta} := \sigma_n^{\delta} + \omega F'(\sigma_n^{\delta})^* (u^{\delta} F(\sigma_n^{\delta}))$
- Terminate as $\|F(\sigma_n^{\delta}) u^{\delta}\|_X \le \tau \delta$ (discrepancy principle)

~ Many-query setting

³Hanke, Neubauer, Scherzer 1995

RBM & Landweber method - Various approaches

Naive approach

- ► Construct global X_N approximating whole R(F) (≡ M) → offline-phase
- ▶ Rapidly compute $F_N(\sigma)$ and substitute $F(\sigma)$ for $F_N(\sigma)$ in the Landweber iteration \rightsquigarrow "online-phase"

Limitation: Only feasible for low-dimensional parameter spaces (≤ 30) , not feasible for imaging.

Our approach: Create problem-adapted RB-space by iterative enrichment (inspired by Druskin & Zaslavski 2007, Zahr & Fahrhat 2015 and Lass 2014).

Reduced Basis Landweber (RBL) method

Algorithm 2 RBL($\sigma_{start}, \tau, \Phi_N$)

1:
$$n := 0$$
, $\sigma_0^{\delta} := \sigma_{start}$
2: while $||F(\sigma_n^{\delta}) - u^{\delta}||_X > \tau \delta$ do
3: enrich RB Φ_N using σ_n^{δ}
4: $i := 1$, $\sigma_i^{\delta} := \sigma_n^{\delta}$
5: repeat
6: calculate reduced Landweber update $s_{n,i}$
7: $\sigma_{i+1}^{\delta} := \sigma_i^{\delta} + \omega s_{n,i}$
8: $i := i + 1$
9: until $||F_N(\sigma_i^{\delta}) - u^{\delta}||_X \le \tau \delta$ or $\Delta_N(\sigma_i^{\delta}) > (\tau - 2)\delta$
10: $\sigma_{n+1}^{\delta} := \sigma_i^{\delta}$
11: $n := n + 1$
12: end while
13: return $\sigma_{RBL} := \sigma_n^{\delta}$

The dual problem

Recall
$$\sigma_{n+1}^{\delta} := \sigma_n^{\delta} + \omega F'(\sigma_n^{\delta})^* (u^{\delta} - F(\sigma_n^{\delta}))$$

For $\sigma, \kappa \in \mathcal{P}$ and $l \in X$, one can show

$$\langle \kappa, F'(\sigma)^* I \rangle_{\mathcal{P}} = \int_{\Omega} \kappa \nabla u^{\sigma} \cdot \nabla u_I^{\sigma} \, dx,$$
 (2)

with $u_l^{\sigma} \in X$ the unique solution of the dual problem

$$b(u, v; \sigma) = m(v; l)$$
, for all $v \in X$, $m(v; l) := -\int_{\Omega}^{\infty} l v dx$.

In Algorithm 2 \rightsquigarrow two RB spaces $X_{N,1}$, $X_{N,2}$

- enrich $X_{N,1}$ via $F(\sigma_n^{\delta})$ and $X_{N,2}$ via $u_l^{\sigma_n^{\delta}}$ with $l := u^{\delta} F(\sigma_n^{\delta})$
- calculate s_{n,i} using (2) and associated reduced solutions

Numerics - compare reconstructions

Setting: $\rho = 900$, $\tau = 2.5$, $\delta = 1\%$ and $\omega = \frac{1}{2} (\|F'(\sigma_{start})\|)^{-1}$.

Figure: σ_{start} (top left), exact solution σ^+ (top right). Reconstruction via RBL method (bottom left) and Landweber method (bottom right).

Numerics - time comparison

- Outer iteration: space enrichment, projection ("offline")
- Inner iteration: one iteration of repeat loop ("online")

Algorithm	Landweber	RBL	
time (s)	187189	14661	
# Iterations	608067	outer	20
		inner	608083
time per Iteration (s)	0.308	outer	3.705
		inner	0.024
# forward solves	1216134	40	

 $\|\sigma_{RBL} - \sigma_{LW}\|_{\mathcal{P}} \approx 1.118 \cdot 10^{-5}$

Numerics - algorithmic behaviour

Figure: Update error $||s_{n,RBL} - s_{n,LW}||_{\mathcal{P}}$ over the course of the iteration.

Numerics - convergence

Conclusion

- Solving inverse coefficient problem requires many PDE solves
- Reduced basis (RB) approach can speed up PDE solution
- But standard RB approach is only applicable for low dimensional parameter spaces
- Using adaptive problem-specific RB enrichment, we can handle high-dimensional parameter spaces, e.g. for imaging problems

RBL method outperforms standard Landweber (exp.: 13 times faster without loss of accuracy)

Future work

- Theoretical investigation of RBL method (convergence)
- Apply methodology to other inverse problems and more sophisticated regularization algorithms

Thank you for your attention!