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The reduced basis method’

"Haasdonk, Chapter to appear in P. Benner, A. Cohen, M. Ohlberger and K.
Willcox: "Model Reduction and Approximation for Complex Systems”, SIAM.
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Motivation

» Desired simulation result ~» parametrized PDE with parametric
solution u® € X and parameter domain P

» Different szenarios
» Many-query: u’ required for many different o € P (optimization,
inverse problems, design)
» Real-time: u’ required very fast (control, others)
» Slim-computing: computational capabilities are limited - still
simulation results are required (tablet/smartphone apps,
techincal controllers)

~» model order reduction
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Koo ug,

» Solution manifold M := {u? | o € P}
» Construction of Xy via carefully chosen snapshots u°
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The detailed problem UNIVERSITAT

Consider
V- (e(xX)Vu(x)) =1, x € Q:=(0,1)?, u(x) =0, x € 09.

Assume: o is piecewise constant ~» o(x) = 2521 o gx0,(X).

Detailed problem (e.g. fine grid FEM)

Foroce P CRP findu’ € X C H(‘)(Q), the detailed solution, of

b(u’,v;o) = f(v), forall v € X, with

b(u,w; o) = / oVu-Vwdx, f(v):= —/ v dx.
Q Q
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The reduced problem ONIERSITAT

Assume
Reduced basis (RB) space Xy := span{®y} = span{¢1, ..., on},
e.g. with ¢; = u® carefully selected snapshots, is given.

Reduced problem (Galerkin projection)

For o € P, find u§, € Xy C X C H}(2), the reduced solution, of

b(uf, v;o) =f(v), Vve Xy.
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Properties FRANKY D2 M M ATy

» Existence, Uniqueness & stability: via Lax-Milgram
» Reproduction of solutions: u? € Xy = ug, = u’

Certification - rigorous a-posteriori error estimator

_ velx

|u” — ufllx < An(o) : , with

a(o)

(Vr, V)x :=r(v;0) = f(v) — b(ug, v;0),Vv € X
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Constructing Xy - the Greedy-Algorithm ONIERSITAT

Algorithm 1 Greedy-Algorithm(Myain, €101, An(+))
1: Xy = {0}, by Z:®
2: repeat
3 o* = argmaxeem,,, An(o)
4 ¢ =u"", by = dyUp, Xy := Xy + span(e)
5
6
7

€ = MaXseMyyin AN(U)
s until e < g4y
: return Op, Xy

» Convergence: Binev, Cohen, Dahmen, DeVore, Petrova,
Woijtaszcyk, 2011; Buffa, Maday, Patera, Prud’homme, Turinici,
2012

» Relies on finite My, covering P C RP
~~ only viable for small p (say < 10)
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Computational efficiency - Offline/Online decomposition | ONIERSITAT

Recall o(x) = >_0_; ogxq,(x) piecewise constant

~ b, f are parameter-separable

p
b(u,v; o) :/o—Vu-dex:Zaq/ Vu-Vwdx _Z@q )b9(u, v),
Q

g=1 2 q=1
f(v) = — /vdx_1 g@q
V) Q

for all u, v € X, with coefficients and components.
~ g-independant components can be precomputed!
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Computational efficiency - Offline/Online decomposition I PRRAIAT

Offline-phase (once)

» Compute RB &y = {¢1, ..., ¢n} and RB-space Xy

» Galerkin projection of components onto Xy: N
By, := (b%(e, &)}y € RV N and £}, .= ('(¢4))_, € RV

Online-phase (for each new ¢)

» Evaluate parameter-dependant coefficients ©}(c), ©} (o)
» Assemble By(o), fn(o), solve B(o)uf, = f(o) and obtain uf,

Note: Offline/Online decomposition of error estimator possible
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Extensions - problem variety

v

General coercive, elliptic problem?:

» b non-symmetric, f parameter dependant
» Add output s(o) := /(u?) with functional / to detailed problem
» primal/dual approach ~~ sharper output error bound

Instationary Problems?

v

v

Inf-sup stability: Veroy, Prud’homme, Rovas, Patera, 2003

v

Missing parameter-separability/nonlinear problems: Barrault,
Maday, Nguyen, Patera 2004 (EIM)

Nonlinear problems: Veroy, Prud’homme, Patera, 2003
(Burgers); Veroy, Patera, 2005 (steady incomp. NS)

v

2Haasdonk, Chapter to appear in P. Benner, A. Cohen, M. Ohlberger and K.
Willcox: "Model Reduction and Approximation for Complex Systems”, SIAM.
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Extensions - constructing Xy

v

Efficient Greedy: Hesthaven, Stamm, Zhang, 2013
Optimization Greedy: Urban, Volkwein, Zeeb, 2014

Partitioning methods: Eftang, Patera, Renquist, 2010; Eftang,
Knezevic, Patera, 2011; Haasdonk, Dihimann, Ohlberger, 2012

Domain decomposition: Huynh, Knezevic, Patera, 2013

v

v

v

D. Garmatter: The reduced basis method and its application to inverse problems



GOETHE @4

UNIVERSITAT

FRANKFURT AM MAIN

RBM and Inverse problems

G./Haasdonk/Harrach, A Reduced Basis Landweber method for
nonlinear inverse problems, 2016 Inverse Problems 32 (3) (doi).
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Forward problem

Consider: V-(o(x)Vu(x)) =1, xeQ := (0,1)2, u(x) = 0, x€ Q.

Forward operator

F:P — X, o —> u° with u?, the detailed solution, solving

b(u?,v;0) = f(v), forallv € X. (1)

Reduced forward operator (Xy C X given)

Fn : P — Xn, 0 — ug, with ug, the reduced solution, solving

b(ug, v; o) = f(v), forall v e Xy.
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Inverse problem and its difficulties ONIERSITAT

Inverse Problem

For given solution u € X of (1), find corresponding parameter
ot € P with F(o1) = u (,a-example®).

» Naive inversion (solving o™ = F~'(u)) fails due to ill-posedness
of the problem (in general F~' discontinuous!)

~ Small errors get amplified!
» Typically only noisy data u° (|lu — u’||x < &) given
~s FY(u®) » F~'(u) as 6 — 0!

Goal: Ry 5)(U°) = F~'(u) as § — 0.
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Landweber method - a Fixed-point iteration ONIERSITAT

Idea (linear F)
» solve Fo = u for o ~~ Gaussian normal equation
» Fixed-point formulation

o=0—w(F*Fo — F'u) =0+ wF*(u— Fo)
> lteration (for u° € X): 03,4 := 0 + wF*(u’ — Fo?d)

Landweber iteration (nonlinear® - F(o) = u)
> ol = o)+ wF (o) (U — F(o?)

» Terminate as ||F(c09) — u’||x < 76 (discrepancy principle)

~~» Many-query setting

3Hanke, Neubauer, Scherzer 1995
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RBM & Landweber method - Various approaches ONIERSITAT

Naive approach

» Construct global Xy approximating whole R(F) (= M)
~+ offline-phase

» Rapidly compute Fy(o) and substitute F(o) for Fy(o) in the
Landweber iteration ~~ ,online-phase”

Limitation: Only feasible for low-dimensional parameter spaces
(< 30), not feasible for imaging.

Our approach: Create problem-adapted RB-space by iterative
enrichment (inspired by Druskin & Zaslavski 2007, Zahr & Fahrhat
2015 and Lass 2014).
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Reduced Basis Landweber (RBL) method ONIERSITAT

Algorithm 2 RBL(ogtzrt, 7, D)

n:= O, O'g .= Ostart
- while ||F(09) — u°||x > 76 do
enrich RB ¢ using ¢?
i=1, a? =0
repeat
calculate reduced Landweber update s,
U,‘-s+1 = 0’,(-; + WS,
i=1i4+1
until ||Fy(0?) — u?||x < 76 or An(0?) > (T —2)0
10: o0 =0
11: n:=n+1
12: end while
13: return opg, 1= 0?0

O Na~ N2

©

D. Garmatter: The reduced basis method and its application to inverse problems



corrne f4

UNIVERSITAT

The dual problem

Recall 03, := 03 + wF'(ad)* (v — F(c3))

For o,k € P and | € X, one can show

(k,F'(c)" )p = /QHVUJ -Vuy dx, (2)

with uf € X the unique solution of the dual problem

b(u,v;o) =m(v;l), forallve X, m(v;l):= —/ lvdx.
Q

In Algorithm 2 ~ two RB spaces Xy 1, Xy

8
> enrich Xy 1 via F(03) and Xy 2 via u;" with | := u® — F(0?)

» calculate s, j using (2) and associated reduced solutions
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Numerics - compare reconstructions UNIVERSITAT
Setting: p =900, 7 = 2.5, = 1% and w = 1(||F'(ostart)||) "
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Figure: oy (top left), exact solution ot (top right). Reconstruction via RBL
method (bottom left) and Landweber method (bottom right).
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Numerics - time comparison

» Outer iteration: space enrichment, projection (,offline")

» Inner iteration: one iteration of repeat loop (,online®)
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Algorithm Landweber RBL
time (s) 187189 14661
. outer 20
# lterations 608067 iner | 608083
h . outer | 3.705
time per lteration (s) 0.308 ner | 0.024
# forward solves 1216134 40
HUH‘BL — O'Lpr ~ 1.118 - 10_5
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Numerics - algorithmic behaviour ONIERSITAT
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Update error - ||, pa. — Sniw | P

Sn,RBL ‘= On+1,RBL — On,RBL; Sn W ‘= Ont1,IW — On,LW
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Figure: Update error ||sp,gs. — Sn,uw||» over the course of the iteration.

D. Garmatter: The reduced basis method and its application to inverse problems



UNIVERSI

Numerics - convergence
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Conclusion A AN

v

Solving inverse coefficient problem requires many PDE solves
Reduced basis (RB) approach can speed up PDE solution

But standard RB approach is only applicable for low
dimensional parameter spaces

Using adaptive problem-specific RB enrichment, we can handle
high-dimensional parameter spaces, e.g. for imaging problems

v

v

v

~~ RBL method outperforms standard Landweber
(exp.: 13 times faster without loss of accuracy)

Future work
» Theoretical investigation of RBL method (convergence)

» Apply methodology to other inverse problems and more
sophisticated regularization algorithms
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Thank you for your attention!
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