The reduced basis method and its application to inverse problems

Dominik Garmatter
garmatter@math.uni-frankfurt.de

Group for Numerics of Partial Differential Equations, Goethe University Frankfurt, Germany

Joint work with Bastian Harrach and Bernard Haasdonk
Rhein-Main Arbeitskreis Mathematics of Computation
Frankfurt, Germany, 5th of February, 2016.

The reduced basis method ${ }^{1}$

${ }^{1}$ Haasdonk, Chapter to appear in P. Benner, A. Cohen, M. Ohlberger and K. Willcox: "Model Reduction and Approximation for Complex Systems", SIAM.
D. Garmatter: The reduced basis method and its application to inverse problems

- Desired simulation result \rightsquigarrow parametrized PDE with parametric solution $u^{\sigma} \in X$ and parameter domain \mathcal{P}
- Different szenarios
- Many-query: u^{σ} required for many different $\sigma \in \mathcal{P}$ (optimization, inverse problems, design)
- Real-time: u^{σ} required very fast (control, others)
- Slim-computing: computational capabilities are limited - still simulation results are required (tablet/smartphone apps, techincal controllers)
\rightsquigarrow model order reduction

- Solution manifold $\mathcal{M}:=\left\{u^{\sigma} \mid \sigma \in \mathcal{P}\right\}$
- Construction of X_{N} via carefully chosen snapshots $u^{\sigma_{i}}$
D. Garmatter: The reduced basis method and its application to inverse problems

The detailed problem

Consider

$$
\nabla \cdot(\sigma(x) \nabla u(x))=1, x \in \Omega:=(0,1)^{2}, u(x)=0, x \in \partial \Omega
$$

Assume: σ is piecewise constant $\rightsquigarrow \sigma(x)=\sum_{q=1}^{p} \sigma_{q} \chi_{\Omega_{q}}(x)$.

Detailed problem (e.g. fine grid FEM)

For $\sigma \in \mathcal{P} \subset \mathbb{R}^{p}$, find $u^{\sigma} \in X \subset H_{0}^{1}(\Omega)$, the detailed solution, of

$$
b\left(u^{\sigma}, v ; \sigma\right)=f(v), \text { for all } v \in X, \text { with }
$$

$$
b(u, w ; \sigma):=\int_{\Omega} \sigma \nabla u \cdot \nabla w d x, \quad f(v):=-\int_{\Omega} v d x
$$

The reduced problem

Assume

Reduced basis (RB) space $X_{N}:=\operatorname{span}\left\{\Phi_{N}\right\}=\operatorname{span}\left\{\phi_{1}, \ldots, \phi_{N}\right\}$, e.g. with $\phi_{i}=u^{\sigma_{i}}$ carefully selected snapshots, is given.

Reduced problem (Galerkin projection)

For $\sigma \in \mathcal{P}$, find $u_{N}^{\sigma} \in X_{N} \subset X \subset H_{0}^{1}(\Omega)$, the reduced solution, of

$$
b\left(u_{N}^{\sigma}, v ; \sigma\right)=f(v), \quad \forall v \in X_{N}
$$

Properties

- Existence, Uniqueness \& stability: via Lax-Milgram
- Reproduction of solutions: $u^{\sigma} \in X_{N} \Rightarrow u_{N}^{\sigma}=u^{\sigma}$

Certification - rigorous a-posteriori error estimator

$$
\begin{aligned}
& \left\|u^{\sigma}-u_{N}^{\sigma}\right\|_{x} \leq \Delta_{N}(\sigma):=\frac{\left\|v_{r}\right\| x}{\alpha(\sigma)}, \text { with } \\
& \left\langle v_{r}, v\right\rangle_{x}:=r(v ; \sigma):=f(v)-b\left(u_{N}^{\sigma}, v ; \sigma\right), \forall v \in X
\end{aligned}
$$

Algorithm 1 Greedy-Algorithm $\left(M_{\text {train }}, \varepsilon_{\text {tol }}, \Delta_{N}(\cdot)\right)$

$$
\text { 1: } X_{N}:=\{0\}, \Phi_{N}:=\emptyset
$$

2: repeat
3: $\quad \sigma^{\star}:=\arg \max _{\sigma \in M_{\text {train }}} \Delta_{N}(\sigma)$
4: $\quad \phi:=u^{\sigma^{\star}}, \Phi_{N}:=\Phi_{N} \cup \phi, X_{N}:=X_{N}+\operatorname{span}(\phi)$
5: $\quad \varepsilon:=\max _{\sigma \in M_{\text {tain }}} \Delta_{N}(\sigma)$
6: until $\varepsilon \leq \varepsilon_{\text {tol }}$
7: return Φ_{N}, X_{N}

- Convergence: Binev, Cohen, Dahmen, DeVore, Petrova, Wojtaszcyk, 2011; Buffa, Maday, Patera, Prud'homme, Turinici, 2012
- Relies on finite $M_{\text {train }}$ covering $\mathcal{P} \subset \mathbb{R}^{p}$
\rightsquigarrow only viable for small p (say ≤ 10)

Computational efficiency - Offline/Online decomposition I
$\rightsquigarrow b, f$ are parameter-separable

$$
\begin{aligned}
b(u, v ; \sigma) & =\int_{\Omega} \sigma \nabla u \cdot \nabla w d x=\sum_{q=1}^{p} \sigma_{q} \int_{\Omega_{q}} \nabla u \cdot \nabla w d x:=\sum_{q=1}^{p} \Theta_{b}^{q}(\sigma) b^{q}(u, v) \\
f(v) & =-\int_{\Omega} v d x=1 \cdot f(v):=\sum_{q=1}^{1} \Theta_{f}^{q}(\sigma) f^{q}(v)
\end{aligned}
$$

for all $u, v \in X$, with coefficients and components.
$\rightsquigarrow \sigma$-independant components can be precomputed!
D. Garmatter: The reduced basis method and its application to inverse problems

Computational efficiency - Offline/Online decomposition II

Offline-phase (once)

- Compute RB $\Phi_{N}=\left\{\phi_{1}, \ldots, \phi_{N}\right\}$ and RB-space X_{N}
- Galerkin projection of components onto X_{N} : $\mathbf{B}_{N}^{q}:=\left(b^{q}\left(\phi_{i}, \phi_{j}\right)\right)_{i, j=1}^{N} \in \mathbb{R}^{N \times N}$ and $\mathbf{f}_{N}^{1}:=\left(f^{1}\left(\phi_{i}\right)\right)_{i=1}^{N} \in \mathbb{R}^{N}$

Online-phase (for each new σ)

- Evaluate parameter-dependant coefficients $\Theta_{b}^{q}(\sigma), \Theta_{f}^{1}(\sigma)$
- Assemble $\mathbf{B}_{N}(\sigma), \mathbf{f}_{N}(\sigma)$, solve $\mathbf{B}(\sigma) \mathbf{u}_{N}^{\sigma}=\mathbf{f}(\sigma)$ and obtain u_{N}^{σ}

Note: Offline/Online decomposition of error estimator possible

- General coercive, elliptic problem ${ }^{2}$:
- b non-symmetric, f parameter dependant
- Add output $s(\sigma):=I\left(u^{\sigma}\right)$ with functional $/$ to detailed problem
- primal/dual approach \rightsquigarrow sharper output error bound
- Instationary Problems ${ }^{2}$
- Inf-sup stability: Veroy, Prud'homme, Rovas, Patera, 2003
- Missing parameter-separability/nonlinear problems: Barrault, Maday, Nguyen, Patera 2004 (EIM)
- Nonlinear problems: Veroy, Prud'homme, Patera, 2003 (Burgers); Veroy, Patera, 2005 (steady incomp. NS)

[^0]- Efficient Greedy: Hesthaven, Stamm, Zhang, 2013
- Optimization Greedy: Urban, Volkwein, Zeeb, 2014
- Partitioning methods: Eftang, Patera, Rønquist, 2010; Eftang, Knezevic, Patera, 2011; Haasdonk, Dihlmann, Ohlberger, 2012
- Domain decomposition: Huynh, Knezevic, Patera, 2013

RBM and Inverse problems

> G./Haasdonk/Harrach, A Reduced Basis Landweber method for nonlinear inverse problems, 2016 Inverse Problems 32 (3) (doi).
D. Garmatter: The reduced basis method and its application to inverse problems

Consider: $\nabla \cdot(\sigma(x) \nabla u(x))=1, x \in \Omega:=(0,1)^{2}, u(x)=0, x \in \partial \Omega$.

Forward operator

$F: \mathcal{P} \longrightarrow X, \sigma \longmapsto u^{\sigma}$ with u^{σ}, the detailed solution, solving

$$
\begin{equation*}
b\left(u^{\sigma}, v ; \sigma\right)=f(v), \text { for all } v \in X \tag{1}
\end{equation*}
$$

Reduced forward operator ($X_{N} \subset X$ given)
$F_{N}: \mathcal{P} \longrightarrow X_{N}, \sigma \longmapsto u_{N}^{\sigma}$ with u_{N}^{σ}, the reduced solution, solving

$$
b\left(u_{N}^{\sigma}, v ; \sigma\right)=f(v), \text { for all } v \in X_{N} .
$$

Inverse Problem

For given solution $u \in X$ of (1), find corresponding parameter $\sigma^{+} \in \mathcal{P}$ with $F\left(\sigma^{+}\right)=u$ (,a-example").

- Naive inversion (solving $\sigma^{+}=F^{-1}(u)$) fails due to ill-posedness of the problem (in general F^{-1} discontinuous!)
\rightsquigarrow Small errors get amplified!
- Typically only noisy data $u^{\delta}\left(\left\|u-u^{\delta}\right\| x<\delta\right)$ given

$$
\rightsquigarrow F^{-1}\left(u^{\delta}\right) \nrightarrow F^{-1}(u) \text { as } \delta \rightarrow 0!
$$

Goal: $R_{n\left(u^{\delta}, \delta\right)}\left(u^{\delta}\right) \rightarrow F^{-1}(u)$ as $\delta \rightarrow 0$.

Landweber method - a Fixed-point iteration

Idea (linear F)

- solve $F \sigma=u$ for $\sigma \rightsquigarrow$ Gaussian normal equation
- Fixed-point formulation

$$
\sigma=\sigma-\omega\left(F^{*} F \sigma-F^{*} u\right)=\sigma+\omega F^{*}(u-F \sigma)
$$

- Iteration (for $\left.u^{\delta} \in X\right): \sigma_{n+1}^{\delta}:=\sigma_{n}^{\delta}+\omega F^{*}\left(u^{\delta}-F \sigma_{n}^{\delta}\right)$

Landweber iteration (nonlinear ${ }^{3}-F(\sigma)=u$)

- $\sigma_{n+1}^{\delta}:=\sigma_{n}^{\delta}+\omega F^{\prime}\left(\sigma_{n}^{\delta}\right)^{*}\left(u^{\delta}-F\left(\sigma_{n}^{\delta}\right)\right)$
- Terminate as $\left\|F\left(\sigma_{n}^{\delta}\right)-u^{\delta}\right\| x \leq \tau \delta$ (discrepancy principle)
\rightsquigarrow Many-query setting
${ }^{3}$ Hanke, Neubauer, Scherzer 1995
D. Garmatter: The reduced basis method and its application to inverse problems

Naive approach

- Construct global X_{N} approximating whole $\mathcal{R}(F)(\equiv \mathcal{M})$ \rightsquigarrow offline-phase
- Rapidly compute $F_{N}(\sigma)$ and substitute $F(\sigma)$ for $F_{N}(\sigma)$ in the Landweber iteration \rightsquigarrow „online-phase"
Limitation: Only feasible for low-dimensional parameter spaces
(≤ 30), not feasible for imaging.

Our approach: Create problem-adapted RB-space by iterative enrichment (inspired by Druskin \& Zaslavski 2007, Zahr \& Fahrhat 2015 and Lass 2014).

Combining RBM \& LW - Idea

D. Garmatter: The reduced basis method and its application to inverse problems

Combining RBM \& LW - Idea

D. Garmatter: The reduced basis method and its application to inverse problems

Combining RBM \& LW - Idea

D. Garmatter: The reduced basis method and its application to inverse problems

Combining RBM \& LW - Idea

D. Garmatter: The reduced basis method and its application to inverse problems

Combining RBM \& LW - Idea

D. Garmatter: The reduced basis method and its application to inverse problems

Combining RBM \& LW - Idea

D. Garmatter: The reduced basis method and its application to inverse problems

Combining RBM \& LW - Idea

D. Garmatter: The reduced basis method and its application to inverse problems

Algorithm $2 \operatorname{RBL}\left(\sigma_{\text {start }}, \tau, \Phi_{N}\right)$

1: $n:=0, \sigma_{0}^{\delta}:=\sigma_{\text {start }}$
2: while $\left\|F\left(\sigma_{n}^{\delta}\right)-u^{\delta}\right\|_{x}>\tau \delta$ do
3: enrich $\operatorname{RB} \Phi_{N}$ using σ_{n}^{δ}
4: $\quad i:=1, \sigma_{i}^{\delta}:=\sigma_{n}^{\delta}$
5: repeat
6: \quad calculate reduced Landweber update $s_{n, i}$
7: $\quad \sigma_{i+1}^{\delta}:=\sigma_{i}^{\delta}+\omega s_{n, i}$
8: $\quad i:=i+1$
9: until $\left\|F_{N}\left(\sigma_{i}^{\delta}\right)-u^{\delta}\right\|_{x} \leq \tau \delta$ or $\Delta_{N}\left(\sigma_{i}^{\delta}\right)>(\tau-2) \delta$
10: $\quad \sigma_{n+1}^{\delta}:=\sigma_{i}^{\delta}$
11: $n:=n+1$
12: end while
13: return $\sigma_{R B L}:=\sigma_{n}^{\delta}$

The dual problem

$$
\text { Recall } \sigma_{n+1}^{\delta}:=\sigma_{n}^{\delta}+\omega F^{\prime}\left(\sigma_{n}^{\delta}\right)^{*}\left(u^{\delta}-F\left(\sigma_{n}^{\delta}\right)\right)
$$

For $\sigma, \kappa \in \mathcal{P}$ and $I \in X$, one can show

$$
\begin{equation*}
\left\langle\kappa, F^{\prime}(\sigma)^{*} I\right\rangle_{\mathcal{P}}=\int_{\Omega} \kappa \nabla u^{\sigma} \cdot \nabla u_{l}^{\sigma} d x \tag{2}
\end{equation*}
$$

with $u_{l}^{\sigma} \in X$ the unique solution of the dual problem

$$
b(u, v ; \sigma)=m(v ; l), \text { for all } v \in X, \quad m(v ; l):=-\int_{\Omega} I v d x
$$

In Algorithm $2 \rightsquigarrow$ two RB spaces $X_{N, 1}, X_{N, 2}$

- enrich $X_{N, 1}$ via $F\left(\sigma_{n}^{\delta}\right)$ and $X_{N, 2}$ via $u_{1}^{\sigma_{n}^{\delta}}$ with $/:=u^{\delta}-F\left(\sigma_{n}^{\delta}\right)$
- calculate $s_{n, i}$ using (2) and associated reduced solutions

Numerics - compare reconstructions

Setting: $p=900, \tau=2.5, \delta=1 \%$ and $\omega=\frac{1}{2}\left(\left\|F^{\prime}\left(\sigma_{\text {start }}\right)\right\|\right)^{-1}$.

Figure: $\sigma_{\text {start }}$ (top left), exact solution σ^{+}(top right). Reconstruction via RBL method (bottom left) and Landweber method (bottom right).

- Outer iteration: space enrichment, projection („offline")
- Inner iteration: one iteration of repeat loop („online")

Algorithm	Landweber	RBL	
time (s)	187189	14661	
\# Iterations	608067	outer	20
		inner	608083
time per Iteration (s)	0.308	outer	3.705
		inner	0.024
\# forward solves	1216134	40	

$$
\left\|\sigma_{R B L}-\sigma_{L W}\right\|_{\mathcal{P}} \approx 1.118 \cdot 10^{-5}
$$

Update error - $\left\|s_{n, R B L}-s_{n, L W}\right\|_{\mathcal{P}}$
 $s_{n, R B L}:=\sigma_{n+1, R B L}-\sigma_{n, R B L}, \quad s_{n, L W}:=\sigma_{n+1, L W}-\sigma_{n, L W}$

Figure: Update error $\left\|s_{n, R B L}-s_{n, L W}\right\|_{\mathcal{P}}$ over the course of the iteration.
D. Garmatter: The reduced basis method and its application to inverse problems

Numerics - convergence

Figure: Error $\left\|\sigma_{R B L}-\sigma^{+}\right\|_{\mathcal{P}}$ over the decreasing relative noise level δ.
D. Garmatter: The reduced basis method and its application to inverse problems

- Solving inverse coefficient problem requires many PDE solves
- Reduced basis (RB) approach can speed up PDE solution
- But standard RB approach is only applicable for low dimensional parameter spaces
- Using adaptive problem-specific RB enrichment, we can handle high-dimensional parameter spaces, e.g. for imaging problems
\rightsquigarrow RBL method outperforms standard Landweber
(exp.: 13 times faster without loss of accuracy)

Future work

- Theoretical investigation of RBL method (convergence)
- Apply methodology to other inverse problems and more sophisticated regularization algorithms

Thank you for your attention!

[^0]: ${ }^{2}$ Haasdonk, Chapter to appear in P. Benner, A. Cohen, M. Ohlberger and K. Willcox: "Model Reduction and Approximation for Complex Systems", SIAM.

