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The reduced basis method
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Motivation & forward operator

Consider ∇·(σ(x)∇u(x)) = 1, x ∈ Ω := (0, 1)2, u(x) = 0, x ∈ ∂Ω.
Assume σ is piecewise constant σ(x) =

∑p
q=1 σqχΩq (x).

Forward operator

F : P ⊂ Rp → X ⊂ H1
0 , σ 7→ uσ, with uσ, the detailed solution of

b(uσ, v ;σ) = f (v ;σ), ∀v ∈ X , with (1a)

b(u,w ;σ) :=

∫
Ω
σ∇u · ∇w dx , f (v ;σ) := −

∫
Ω

v dx . (1b)

Setting: Rapid and numerous evaluation of F (expensive!), e.g.
optimal control, real-time-simulation, inverse problems.

 model order reduction
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Reduced forward operator

Assume
Reduced basis (RB) space XN := span{ΦN} = span{φ1, . . . , φN},
e.g. via φi = F(σi) carefully selected snapshots, is given.

Reduced forward operator (Galerkin projection)

FN :P ⊂ Rp → XN ⊂ X , σ 7→ uσN with uσN , the reduced solution of

b(uσN , v ;σ) = f (v ;σ), ∀v ∈ XN .
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Properties

Certification - rigorous a-posteriori error estimator

‖uσ − uσN‖X ≤ ∆N(σ) :=
‖vr‖X

α(σ)
, with

〈vr , v〉X := r(v ;σ) := f (v ;σ)− b(uσN , v ;σ), ∀v ∈ X .

I Reproduction of solutions: F(σ) ∈ XN ⇒ FN(σ) = F(σ)

I Offline/online decomposition: enables efficient and cheap
computation of FN(σ)
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RBM and Inverse problems

G./Haasdonk/Harrach, A Reduced Basis Landweber method for
nonlinear inverse problems, 2016 Inverse Problems 32 (3) (doi).
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Inverse problem & Landweber method

Inverse Problem

For given solution u ∈ X of (1), find corresponding parameter
σ+ ∈ P with F(σ+) = u (”a-example“).

Task: Given uδ, ‖u − uδ‖X ≤ δ, δ > 0, find approximation σδ to σ+.

Nonlinear Landweber iteration
I σδn+1 := σδn + ωF ′(σδn)∗(uδ − F(σδn))

I Terminate as ‖F(σδn)− uδ‖X ≤ τδ (discrepancy principle)

 Many-query setting
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RBM & Landweber method - Various approaches

Naive approach
I Construct global XN approximating whole R(F) (i.e. providing

good reduced solutions uσN , ∀σ ∈ P) ”offline-phase“.
I Rapidly compute FN(σ) and substitute F(σ) for FN(σ) in the

Landweber iteration ”online-phase“

Limitation: Only feasible for low-dimensional parameter spaces
(≤ 30), not feasible for imaging.

Our approach: Create problem-adapted RB-space by iterative
enrichment (inspired by Druskin & Zaslavski 2007, Zahr & Fahrhat

2015 and Lass 2014).
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Combining RBM & LW - Idea
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Combining RBM & LW - Idea
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Reduced Basis Landweber (RBL) method

Algorithm 1 RBL(σstart , τ,ΦN )

1: n := 0, σδ0 := σstart

2: while ‖F(σδn)− uδ‖X > τδ do
3: enrich RB ΦN using σδn
4: i := 1, σδi := σδn
5: repeat
6: calculate reduced Landweber update sn,i

7: σδi+1 := σδi + ωsn,i

8: i := i + 1
9: until ‖FN(σδi )− uδ‖X ≤ τδ or ∆N(σδi ) > (τ − 2)δ

10: σδn+1 := σδi
11: n := n + 1
12: end while
13: return σRBL := σδn
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The dual problem

Recall σδn+1 := σδn + ωF ′(σδn)∗(uδ − F(σδn))

For σ, κ ∈ P and l ∈ X , one can show

〈κ,F ′(σ)∗ l〉P =

∫
Ω
κ∇uσ · ∇uσl dx , (2)

with uσl ∈ X the unique solution of the dual problem

b(u, v ;σ) = m(v ; l), for all v ∈ X , m(v ; l) := −
∫

Ω
l v dx .

In Algorithm 1 two RB spaces XN,1, XN,2

I enrich XN,1 via F(σδn) and XN,2 via uσ
δ
n

l with l := uδ − F(σδn)

I calculate sn,i using (2) and associated reduced solutions
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Numerics - compare reconstructions

Setting: p = 900, τ = 2.5, δ = 1% and ω = 1
2 (‖F ′(σstart)‖)−1.
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Figure: σstart (top left), exact solution σ+ (top right). Reconstruction via RBL
method (bottom left) and Landweber method (bottom right).
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Numerics - time comparison

I Outer iteration: space enrichment, projection (”offline“)
I Inner iteration: one iteration of repeat loop (”online“)

Algorithm Landweber RBL
time (s) 187189 14661

# Iterations 608067
outer 20
inner 608083

time per Iteration (s) 0.308
outer 3.705
inner 0.024

# forward solves 1216134 40

‖σRBL − σLW‖P ≈ 1.118 · 10−5
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Numerics - algorithmic behaviour

Update error - ‖sn,RBL − sn,LW‖P
sn,RBL := σn+1,RBL − σn,RBL, sn,LW := σn+1,LW − σn,LW
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Figure: Update error ‖sn,RBL − sn,LW‖P over the course of the iteration.
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Numerics - convergence
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Figure: Error ‖σRBL − σ+‖P over the decreasing relative noise level δ.
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Conclusion

I Solving inverse coefficient problem requires many PDE solves
I Reduced basis (RB) approach can speed up PDE solution
I But standard RB approach is only applicable for low

dimensional parameter spaces
I Using adaptive problem-specific RB enrichment, we can handle

high-dimensional parameter spaces, e.g. for imaging problems

 RBL method outperforms standard Landweber
(exp.: 13 times faster without loss of accuracy)

Future work
I Theoretical investigation of RBL method (convergence)
I Apply methodology to other inverse problems and more

sophisticated regularization algorithms
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Thank you for your attention!
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