

Reduced Basis Landweber method for nonlinear ill-posed inverse problems

Dominik Garmatter

garmatter@math.uni-frankfurt.de

Group for Numerics of Partial Differential Equations, Goethe University Frankfurt, Germany

Joint work with Bastian Harrach and Bernard Haasdonk

Workshop on Numerical Methods for Optimal Control and Inverse Problems Munich, Germany, March 14-16, 2016.

The reduced basis method

GOETHE UNIVERSITÄT

Motivation & forward operator

Consider $\nabla \cdot (\sigma(x) \nabla u(x)) = 1$, $x \in \Omega := (0, 1)^2$, u(x) = 0, $x \in \partial \Omega$. Assume σ is piecewise constant $\rightsquigarrow \sigma(x) = \sum_{q=1}^{p} \sigma_q \chi_{\Omega_q}(x)$.

Forward operator

$$F: \mathcal{P} \subset \mathbb{R}^{p} \to X \subset H_{0}^{1}, \sigma \mapsto u^{\sigma}$$
, with u^{σ} , the detailed solution of

$$b(u^{\sigma}, v; \sigma) = f(v; \sigma), \forall v \in X, \text{ with}$$
 (1a)

$$b(u,w;\sigma) := \int_{\Omega} \sigma \nabla u \cdot \nabla w \, dx, \quad f(v;\sigma) := -\int_{\Omega} v \, dx. \quad (1b)$$

Setting: Rapid and numerous evaluation of *F* (expensive!), e.g. optimal control, real-time-simulation, inverse problems.

→ model order reduction

Reduced forward operator

Assume

Reduced basis (RB) space $X_N := \operatorname{span}\{\Phi_N\} = \operatorname{span}\{\phi_1, \dots, \phi_N\}$, e.g. via $\phi_i = F(\sigma_i)$ carefully selected snapshots, is given.

Reduced forward operator (Galerkin projection)

 $F_N: \mathcal{P} \subset \mathbb{R}^p \to X_N \subset X, \sigma \mapsto u_N^{\sigma}$ with u_N^{σ} , the reduced solution of

$$b(u_N^{\sigma}, v; \sigma) = f(v; \sigma), \quad \forall v \in X_N.$$

Properties

Certification - rigorous a-posteriori error estimator

$$\|u^{\sigma} - u_{N}^{\sigma}\|_{X} \leq \Delta_{N}(\sigma) := \frac{\|v_{r}\|_{X}}{\alpha(\sigma)}, \text{ with}$$
$$\langle v_{r}, v \rangle_{X} := r(v; \sigma) := f(v; \sigma) - b(u_{N}^{\sigma}, v; \sigma), \forall v \in X.$$

- Reproduction of solutions: $F(\sigma) \in X_N \Rightarrow F_N(\sigma) = F(\sigma)$
- Offline/online decomposition: enables efficient and cheap computation of $F_N(\sigma)$

RBM and Inverse problems

G./Haasdonk/Harrach, A Reduced Basis Landweber method for nonlinear inverse problems, 2016 Inverse Problems 32 (3) (doi).

Inverse Problem

For given solution $u \in X$ of (1), find corresponding parameter $\sigma^+ \in \mathcal{P}$ with $F(\sigma^+) = u$ ("a-example").

Task: Given u^{δ} , $||u - u^{\delta}||_{X} \leq \delta$, $\delta > 0$, find approximation σ^{δ} to σ^{+} .

Nonlinear Landweber iteration

- $\bullet \ \sigma_{n+1}^{\delta} := \sigma_n^{\delta} + \omega F'(\sigma_n^{\delta})^* (u^{\delta} F(\sigma_n^{\delta}))$
- Terminate as $\|F(\sigma_n^{\delta}) u^{\delta}\|_X \le \tau \delta$ (discrepancy principle)

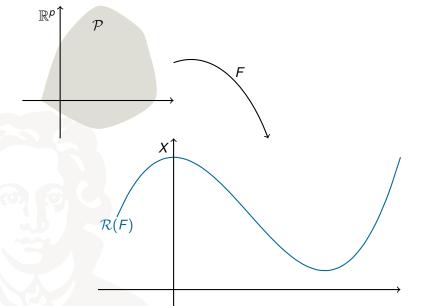
~ Many-query setting

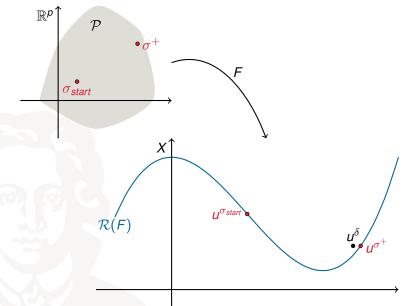
Naive approach

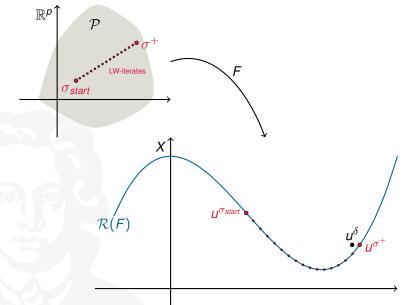
- Construct global X_N approximating whole R(F) (i.e. providing good reduced solutions u^σ_N, ∀σ ∈ P) → "offline-phase".
- ▶ Rapidly compute $F_N(\sigma)$ and substitute $F(\sigma)$ for $F_N(\sigma)$ in the Landweber iteration \rightsquigarrow "online-phase"

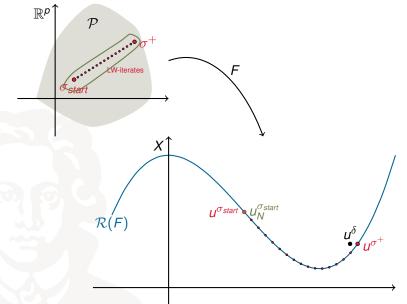
Limitation: Only feasible for low-dimensional parameter spaces (≤ 30) , not feasible for imaging.

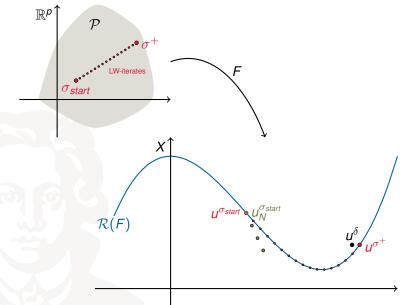
Our approach: Create problem-adapted RB-space by iterative enrichment (inspired by Druskin & Zaslavski 2007, Zahr & Fahrhat 2015 and Lass 2014).

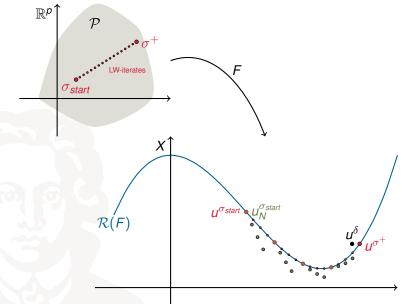


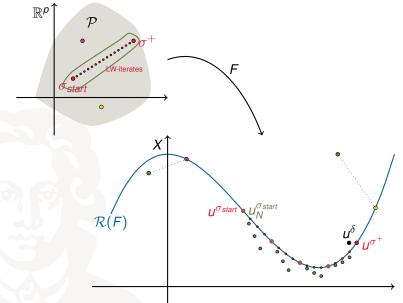












Algorithm 1 RBL($\sigma_{start}, \tau, \Phi_N$)

1:
$$n := 0$$
, $\sigma_0^{\delta} := \sigma_{start}$
2: while $||F(\sigma_n^{\delta}) - u^{\delta}||_X > \tau \delta$ do
3: enrich RB Φ_N using σ_n^{δ}
4: $i := 1$, $\sigma_i^{\delta} := \sigma_n^{\delta}$
5: repeat
6: calculate reduced Landweber update $s_{n,i}$
7: $\sigma_{i+1}^{\delta} := \sigma_i^{\delta} + \omega s_{n,i}$
8: $i := i + 1$
9: until $||F_N(\sigma_i^{\delta}) - u^{\delta}||_X \le \tau \delta$ or $\Delta_N(\sigma_i^{\delta}) > (\tau - 2)\delta$
10: $\sigma_{n+1}^{\delta} := \sigma_i^{\delta}$
11: $n := n + 1$
12: end while
13: return $\sigma_{RBL} := \sigma_n^{\delta}$

The dual problem

Recall
$$\sigma_{n+1}^{\delta} := \sigma_n^{\delta} + \omega F'(\sigma_n^{\delta})^* (u^{\delta} - F(\sigma_n^{\delta}))$$

For $\sigma, \kappa \in \mathcal{P}$ and $l \in X$, one can show

$$\langle \kappa, F'(\sigma)^* I \rangle_{\mathcal{P}} = \int_{\Omega} \kappa \nabla u^{\sigma} \cdot \nabla u^{\sigma}_I \, dx,$$
 (2)

with $u_l^{\sigma} \in X$ the unique solution of the dual problem

$$b(u, v; \sigma) = m(v; l)$$
, for all $v \in X$, $m(v; l) := -\int_{\Omega}^{\infty} l v dx$.

In Algorithm 1 \rightsquigarrow two RB spaces $X_{N,1}$, $X_{N,2}$

- enrich $X_{N,1}$ via $F(\sigma_n^{\delta})$ and $X_{N,2}$ via $u_l^{\sigma_n^{\delta}}$ with $l := u^{\delta} F(\sigma_n^{\delta})$
- calculate s_{n,i} using (2) and associated reduced solutions

Numerics - compare reconstructions

Setting: $\rho = 900$, $\tau = 2.5$, $\delta = 1\%$ and $\omega = \frac{1}{2} (\|F'(\sigma_{start})\|)^{-1}$.

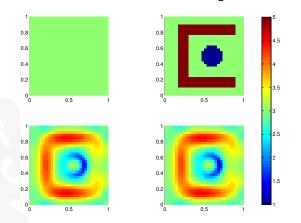


Figure: σ_{start} (top left), exact solution σ^+ (top right). Reconstruction via RBL method (bottom left) and Landweber method (bottom right).

Numerics - time comparison

- Outer iteration: space enrichment, projection ("offline")
- Inner iteration: one iteration of repeat loop ("online")

Algorithm	Landweber	RBL	
time (s)	187189	14661	
# Iterations	608067	outer	20
		inner	608083
time per Iteration (s)	0.308	outer	3.705
		inner	0.024
# forward solves	1216134	40	

 $\|\sigma_{RBL} - \sigma_{LW}\|_{\mathcal{P}} \approx 1.118 \cdot 10^{-5}$

Numerics - algorithmic behaviour

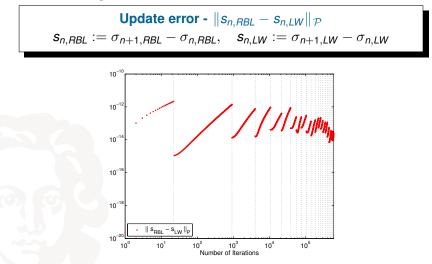
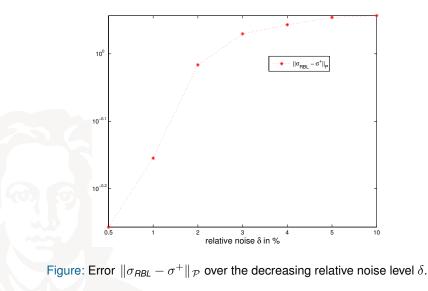


Figure: Update error $||s_{n,RBL} - s_{n,LW}||_{\mathcal{P}}$ over the course of the iteration.

Numerics - convergence



Conclusion

- Solving inverse coefficient problem requires many PDE solves
- Reduced basis (RB) approach can speed up PDE solution
- But standard RB approach is only applicable for low dimensional parameter spaces
- Using adaptive problem-specific RB enrichment, we can handle high-dimensional parameter spaces, e.g. for imaging problems

RBL method outperforms standard Landweber (exp.: 13 times faster without loss of accuracy)

Future work

- Theoretical investigation of RBL method (convergence)
- Apply methodology to other inverse problems and more sophisticated regularization algorithms

Thank you for your attention!