

A reduced basis method for linear evolution equations

Dominik Garmatter

dominik.garmatter@mathematik.uni-stuttgart.de

Chair of Optimization and Inverse Problems University of Stuttgart

Joint work with Bernard Haasdonk

Workshop on Numerical Methods for Optimal Control and Inverse Problems March 11 - 13, 2013 Munich

D. Garmatter: A reduced basis method for linear evolution equations

Universität Stuttgart

Motivation

> Parabolic parametrized partial differential equation of the form

$$\partial_t u(\mathbf{x}, t; \mu) + \mathcal{L}u(\mathbf{x}, t; \mu) = f,$$
 (1a)

$$u(\mathbf{x}, 0; \mu) = u_0, \tag{1b}$$

- Solution of (1) for many different parameters in a small amount of time (i.e. design optimization, optimal control, online-simulation, financial markets)
- Computation of a detailed solution (i.e. FEM, FV, FD) is rather expensive
- \rightsquigarrow model order reduction

Let $X \subset Y := L^2(\Omega)$ be a Hilbert space and $\mu \in \mathcal{P} \subset \mathbb{R}^p$. We want the solution sequence $u = (u^k)_{k=0}^M \in (X)^{M+1}$ of the **detailed** evolution scheme

$$u^0 = P_X(u_0) \tag{2a}$$

$$\mathfrak{L}^{\prime}(\mu, t^{k})u^{k+1} = \mathfrak{L}^{\mathcal{E}}(\mu, t^{k})u^{k} + b(\mu, t^{k})$$
(2b)

$$s^{k}(\mu) = I(u^{k}, \mu), \qquad (2c)$$

with $\mathfrak{L}^{I}, \mathfrak{L}^{E} \in L(X), P_{X} : Y \to X$ the continuous projection, $I : X \times \mathcal{P} \to \mathbb{R}$ a linear and continuous functional, $u_{0} \in Y$ the initial values and $b \in X$ the inhomogeniety, so that

$$u^k(x;\mu) \approx u(x,t^k;\mu), \ k=0,\ldots,M.$$

Let a problem (2) be given. Let $X_N \subset X$ be a reduced basis space, $\mu \in \mathcal{P}$. We want the solution sequence $u_N = (u_N^k)_{k=0}^M \in (X_N)^{M+1}$ of the **reduced evolution scheme**

$$u_N^0 = P_{X_N}(P_X(u_0))$$
 (3a)

$$\mathfrak{L}_{N}^{\prime}(\mu, t^{k})u_{N}^{k+1} = \mathfrak{L}_{N}^{E}(\mu, t^{k})u_{N}^{k} + b_{N}(\mu, t^{k})$$
(3b)

$$\mathfrak{s}_{N}^{\kappa}(\mu) = I(u_{N}^{\kappa}, \mu), \tag{3c}$$

with $P_{X_N}: X \to X_N$ the orthogonal projection related to the scalar product $\langle \cdot, \cdot \rangle_X$ and with the operators

$$\begin{split} \mathfrak{L}'_N &:= P_{X_N} \circ \mathfrak{L}' \\ \mathfrak{L}^E_N &:= P_{X_N} \circ \mathfrak{L}^E \\ b_N &:= P_{X_N}(b). \end{split}$$

D. Garmatter: A reduced basis method for linear evolution equations

Universität Stuttgart

Offline (high-dimensional quantities)

- Compute the reduced basis Φ_N and the reduced basis space X_N
- Compute the matrices $K := (\langle \psi_i, \psi_j \rangle_X)_{i,j=1}^H$ and $K_N = \Phi_N^t K \Phi_N$
- Compute the parameter-independant components

$$L_N^{I,q} = \Phi_N^t K L^{I,q} \Phi_N$$
$$L_N^{E,q} = \Phi_N^t K L^{E,q} \Phi_N$$
$$b_N^q = \Phi_N^t K b^q$$

Online (low-dimensional quantities)

- For new µ and all time steps evaluate the parameterdependant coefficients Θ^q_I(µ, t^k), Θ^q_E(µ, t^k), Θ^q_b(µ, t^k)
- ► Assemble scheme components $L_N^I(\mu, t^k)$, $L_N^E(\mu, t^k)$, $b_N(\mu, t^k)$
- Solve the small linear system $L_N^l u_N^{k+1} = L_N^E u_N^k + b_N$ in (3)

Demands on X_N

Small approximation error

$$\|u^k(\mu) - u^k_N(\mu)\|_X, \quad \forall \mu \in \mathcal{P}, \ k = 0, \dots, M$$

- "Small" dimension N of X_N
- Reduced basis Φ_N should be ONB (numerical stability)
- "Rich" training set of parameters $P_{train} \subset \mathcal{P}$

Idea of the POD-Greedy-procedure

$$X_{N} := \operatorname*{arg\,min}_{\substack{Y \subset X \\ \dim Y = N}} \max_{\mu \in P_{train}} \frac{1}{M+1} \sum_{k=0}^{M} \|u^{k}(\mu) - P_{Y}u^{k}(\mu)\|^{2}$$

Definition of the residual

$$R^{k} := \frac{1}{\Delta t} \left(\mathfrak{L}^{E} u_{N}^{k-1} - \mathfrak{L}^{I} u_{N}^{k} + b \right) \in X.$$

Error estimator

Let u and u_N be solutions of (2) and (3), then the error $e^k := \|u^k - u_N^k\|_X$ is bounded by

$$\|u^k - u^k_N\|_X \leq \Delta_N(\mu, t^k)$$

with

$$\Delta_N(\mu, t^k) := \sum_{i=1}^k \left(\frac{\gamma^E}{\alpha^I}\right)^{k-i} \frac{\Delta t}{\alpha^I} \|R^i\|_X + \left(\frac{\gamma^E}{\alpha^I}\right)^k \|e^0\|.$$

Improved reduced output

$$s_N^*(\mu) = \tilde{l}(u_N^{pr}(\mu)) - r^{pr}(u_N^{du}(\mu);\mu)$$

with correction term $r^{pr}(u_N^{du}(\mu);\mu)$

Improved output error estimator having quadratic effect

$$|s(\mu)-s^*_{\mathcal{N}}(\mu)|\leq \Delta^{s,*}_{\mathcal{N}}(\mu):=rac{\|m{v}^{pr}_r\|\,\|m{v}^{du}_r\|}{ ilde{lpha}_{LB}(\mu)}$$

with $v_r^{pr}, v_r^{du} \in \tilde{X}'$ the riesz-representants of the respective residuals

Pricing of a vanilla European put option, i.e. searching the solution $P(S_1, S_2, t, \mu)$ of the parametrized parabolic PDE

$$\frac{\partial P}{\partial t} - \frac{1}{2} \sum_{k,l=1}^{2} \Xi(k,l) S_k S_l \frac{\partial^2 P}{\partial S_k \partial S_l} - \sum_{k=1}^{2} r S_k \frac{\partial P}{\partial S_k} + r P = 0$$

with the parameter matrix

$$\Xi = \begin{pmatrix} \sigma_1^2 & \frac{2\rho}{1+\rho^2}\sigma_1\sigma_2\\ \frac{2\rho}{1+\rho^2}\sigma_1\sigma_2 & \sigma_2^2 \end{pmatrix}$$

and the parameter vector $\mu = (r, \rho, \sigma_1, \sigma_2).$

Figure: Sequences of the error $e^k := ||u^k - u_N^k||_X$ (red) and the error estimator $\Delta_N(\mu, t^k)$ (blue) over the time steps t^k for a reduced basis with 200 basis vectors and $\mu = (0.05, 0.4, 2, 0.5)$.

 \blacktriangleright Average time for a detailed solution: ~ 21.5 seconds

Reduced Basis with 100 basis vectors

- ▶ Offline-time: 2581 seconds
- Average online-time: \sim 0.02 seconds
- \blacktriangleright Error estimator ranges between 10^{-2} and 10^{-1}

 \Rightarrow Approximation for \sim 121 different parameters required until the reduced basis method pays off.

Reduced Basis with 200 basis vectors

- Offline-time: 5928 seconds
- Average online-time: \sim 0.04 seconds
- \blacktriangleright Error estimator ranges between 10^{-3} and 10^{-2}

 \Rightarrow Approximation for \sim 277 different parameters required until the reduced basis method pays off.

functional /	$rac{1}{ \mathcal{G}_0 }\sum_{x_{ij}\in\mathcal{G}_0}P_{i,j}^k$	$\frac{1}{ G_0 } \sum_{x_{ij} \in G_0} \frac{P_{i+1,j}^k - P_{i-1,j}^k}{2h_1}$
$s^{20}(\mu)$	13.8331045579815	-0.248507988692125
$s_{N}^{20}(\mu)$	13.8324367556314	-0.248461984173756
$s_N^*(\mu)$	13.8324367558403	-0.248461984698320
Δ_N^s	$2.975 \cdot 10^4$	$2.661 \cdot 10^4$
$\Delta_N^{s,*}$	0.062	0.018

Table: Table including detailed output $s^{20}(\mu)$, reduced output $s_N^{20}(\mu)$, reduced improved output $s_N^*(\mu)$ and the difference between the output error estimator Δ_N^s and improved output error estimator $\Delta_N^{s,*}$ for various output functionals and $\mu = (0.05, 0.4, 2, 0.5)$.

Conclusion

- Reduced basis methods can accelerate forward solvers when solution is required for a high number of parameters.
- Additional dual problem improves accuracy of output

Outlook

On March 1st, 2013, I have started to work on my PhD thesis supervised by Bastian Harrach (University of Stuttgart) on the subject of reduced basis methods for optimization and inverse problems.