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Motivation

◮ Parabolic parametrized partial differential equation of the form

∂tu(x, t;µ) + Lu(x, t;µ) = f , (1a)

u(x, 0;µ) = u0, (1b)

◮ Solution of (1) for many different parameters in a small amount
of time (i.e. design optimization, optimal control,
online-simulation, financial markets)

◮ Computation of a detailed solution (i.e. FEM, FV, FD) is
rather expensive

 model order reduction
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The detailed (semi-discretized) evolution problem

Let X ⊂ Y := L2(Ω) be a Hilbert space and µ ∈ P ⊂ R
p. We want

the solution sequence u =
(

uk
)M

k=0
∈ (X )M+1 of the detailed

evolution scheme

u0 = PX (u0) (2a)

L
I (µ, tk)uk+1 = L

E (µ, tk)uk + b(µ, tk) (2b)

sk(µ) = l(uk , µ), (2c)

with L
I ,LE ∈ L(X ), PX : Y → X the continuous projection,

l : X × P → R a linear and continuous functional, u0 ∈ Y the initial
values and b ∈ X the inhomogeniety, so that

uk(x ;µ) ≈ u(x , tk ;µ), k = 0, . . . ,M.
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The reduced (semi-discretized) evolution problem

Let a problem (2) be given. Let XN ⊂ X be a reduced basis space,

µ ∈ P. We want the solution sequence uN =
(

ukN
)M

k=0
∈ (XN)

M+1

of the reduced evolution scheme

u0N = PXN
(PX (u0)) (3a)

L
I
N(µ, t

k)uk+1
N = L

E
N(µ, t

k)ukN + bN(µ, t
k) (3b)

skN(µ) = l(ukN , µ), (3c)

with PXN
: X → XN the orthogonal projection related to the scalar

product 〈·, ·〉X and with the operators

L
I
N := PXN

◦ LI

L
E
N := PXN

◦ LE

bN := PXN
(b).
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Offline/Online decomposition

Offline (high-dimensional quantities)

◮ Compute the reduced basis ΦN and the reduced basis space XN

◮ Compute the matrices K := (〈ψi , ψj 〉X )
H
i ,j=1

and KN = Φt
NKΦN

◮ Compute the parameter-independant components

L
I ,q
N = Φt

NKL
I ,qΦN

L
E ,q
N = Φt

NKL
E ,qΦN

b
q
N = Φt

NKb
q

Online (low-dimensional quantities)

◮ For new µ and all time steps evaluate the parameterdependant

coefficients Θq
I (µ, t

k), Θq
E (µ, t

k), Θq
b(µ, t

k)

◮ Assemble scheme components LIN(µ, t
k), LEN(µ, t

k), bN(µ, t
k)

◮ Solve the small linear system LINu
k+1
N = LENu

k
N + bN in (3)
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Regarding the reduced space XN

Demands on XN

◮ Small approximation error

‖uk(µ)− ukN(µ)‖X , ∀µ ∈ P, k = 0, . . . ,M

◮ ”Small” dimension N of XN

◮ Reduced basis ΦN should be ONB (numerical stability)

◮ ”Rich” training set of parameters Ptrain ⊂ P

Idea of the POD-Greedy-procedure

XN := argmin
Y⊂X

dimY=N

max
µ∈Ptrain

1

M + 1

M
∑

k=0

‖uk(µ)− PY u
k(µ)‖2
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A-posteriori error estimator

Definition of the residual

Rk :=
1

∆t

(

L
Euk−1

N − L
IukN + b

)

∈ X .

Error estimator
Let u and uN be solutions of (2) and (3), then the error
ek := ‖uk − ukN‖X is bounded by

‖uk − ukN‖X ≤ ∆N(µ, t
k)

with

∆N(µ, t
k) :=

k
∑

i=1

(

γE

αI

)k−i
∆t

αI
‖R i‖X +

(

γE

αI

)k

‖e0‖.
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Benefits of a dual problem

◮ Improved reduced output

s∗N(µ) = l̃(uprN (µ))− rpr (uduN (µ);µ)

with correction term rpr (uduN (µ);µ)

◮ Improved output error estimator having quadratic effect

|s(µ)− s∗N(µ)| ≤ ∆s,∗
N (µ) :=

‖vprr ‖ ‖vdur ‖

α̃LB(µ)

with v
pr
r , v

du
r ∈ X̃ ′ the riesz-representants of the respective

residuals
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Application - The Black-Scholes-Equation

Pricing of a vanilla European put option, i.e. searching the solution
P(S1,S2, t, µ) of the parametrized parabolic PDE

∂P

∂t
−

1

2

2
∑

k,l=1

Ξ(k , l)SkSl
∂2P

∂Sk∂Sl
−

2
∑

k=1

rSk
∂P

∂Sk
+ rP = 0

with the parameter matrix

Ξ =

(

σ21
2ρ

1+ρ2
σ1σ2

2ρ
1+ρ2

σ1σ2 σ22

)

and the parameter vector µ = (r , ρ, σ1, σ2).
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Numerical results - error estimator
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Figure: Sequences of the error ek := ‖uk − ukN‖X (red) and the error
estimator ∆N(µ, t

k ) (blue) over the time steps tk for a reduced basis with
200 basis vectors and µ = (0.05, 0.4, 2, 0.5).

D. Garmatter: A reduced basis method for linear evolution equations Universität Stuttgart



Numerical results - speedup

◮ Average time for a detailed solution: ∼ 21.5 seconds

Reduced Basis with 100 basis vectors

◮ Offline-time: 2581 seconds

◮ Average online-time: ∼ 0.02 seconds

◮ Error estimator ranges between 10−2 and 10−1

⇒ Approximation for ∼ 121 different parameters required until the
reduced basis method pays off.

Reduced Basis with 200 basis vectors

◮ Offline-time: 5928 seconds

◮ Average online-time: ∼ 0.04 seconds

◮ Error estimator ranges between 10−3 and 10−2

⇒ Approximation for ∼ 277 different parameters required until the
reduced basis method pays off.
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Numerical results - dual problem improvements

functional l 1
|G0|

∑

xij∈G0
Pk
i ,j

1
|G0|

∑

xij∈G0

Pk
i+1,j−Pk

i−1,j

2h1

s20(µ) 13.8331045579815 −0.248507988692125
s20N (µ) 13.8324367556314 −0.248461984173756
s∗N(µ) 13.8324367558403 −0.248461984698320
∆s

N 2.975 · 104 2.661 · 104

∆s,∗
N 0.062 0.018

Table: Table including detailed output s20(µ), reduced output s20N (µ),
reduced improved output s∗N(µ) and the difference between the output
error estimator ∆s

N and improved output error estimator ∆s,∗
N for various

output functionals and µ = (0.05, 0.4, 2, 0.5).
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Conclusion & Outlook

Conclusion

◮ Reduced basis methods can accelerate forward solvers when
solution is required for a high number of parameters.

◮ Additional dual problem improves accuracy of output

Outlook
On March 1st, 2013, I have started to work on my PhD thesis
supervised by Bastian Harrach (University of Stuttgart) on the
subject of reduced basis methods for optimization and inverse
problems.
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