Regularization of an inverse nonlinear parabolic problem with time-dependent coefficient and locally Lipschitz source term

Tuan Nguyen Huy ${ }^{\text {a }}$, Mokhtar Kirane ${ }^{\mathrm{c}, \mathrm{d}, *}$, Mach Nguyet Minh ${ }^{\text {b }}$
${ }^{a}$ Applied Analysis Research Group, Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
${ }^{b}$ Department of Mathematics, Goethe University Frankfurt, Germany
${ }^{c}$ Laboratoire de Mathmatiques Pôle Sciences et Technologie, Universié de La Rochelle, Aénue M. Crépeau, 17042 La
Rochelle Cedex, France
${ }^{d}$ Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

Abstract

We consider a backward problem of finding a function u satisfying a nonlinear parabolic equation in the form $u_{t}+a(t) A u(t)=f(t, u(t))$ subject to the final condition $u(T)=\varphi$. Here A is a positive self-adjoint unbounded operator in a Hilbert space H and f satisfies a locally Lipschitz condition. This problem is ill-posed. Using quasi-reversibility method, we shall construct a regularized solution u_{ε} from the measured data a_{ε} and φ_{ε}. We show that the regularized problem are well-posed and that their solutions converge to the exact solutions. Error estimate is given.

Keywords and phrases: Nonlinear parabolic problem, Backward problem, Quasi-reversibility, Illposed problem, Contraction principle.
Mathematics subject Classification 2000: $35 \mathrm{~K} 05,35 \mathrm{~K} 99,47 \mathrm{~J} 06,47 \mathrm{H} 10$.

1. Introduction

Let $(H,\|\cdot\|)$ be a Hilbert space with the inner product (\cdot, \cdot). Let A be a positive self-adjoint operator defined on a dense subspace $D(A) \subset H$ such that $-A$ generates a compact contraction semi-group $S(t)$ on H. Let $f:[0, T] \times H \rightarrow H$ satisfy the locally Lipschitz condition: for each $M>0$, there exists $k(M)>0$ such that

$$
\begin{equation*}
\|f(t, u)-f(t, v)\| \leq k(M)\|u-v\| \text { if } \max \{\|u\|,\|v\|\} \leq M . \tag{1}
\end{equation*}
$$

We shall consider a backward problem of finding a function $u:[0, T] \rightarrow H$ such that

$$
\begin{align*}
u_{t}+a(t) A u(t) & =f(t, u(t)), \quad 0<t<T, \\
u(T) & =\varphi, \tag{2}
\end{align*}
$$

where $a \in C([0, T])$ is a given real-valued function and $\varphi \in H$ is a prescribed final value.
This nonlinear nonhomogeneous problem is severely ill-posed. In fact, the problem is extremely sensitive to measurement errors (see, e.g., [2]). The final data is usually the result of discrete experimental measurements and is subject to error. Hence, a solution corresponding to the data does not

[^0]always exist, and in the case of existence, does not depend continuously on the given data. This, of course, shows that a naturally numerical treatment is impossible. Thus one has to resort to a regularization.

The backward problem (2) has a long history. The linear homogeneous case $f=0$ has been considered by many authors such as quasi-reversibility method $[7,8,6,10,1]$, quasi-boundary value method [4,5]. The problem with constant coefficient and nonlinear source term, i.e.

$$
\begin{align*}
u_{t}+A u(t) & =f(t, u(t)), \quad 0<t<T \\
u(T) & =\varphi \tag{3}
\end{align*}
$$

was studied in [3, 12, 13, 14]. However, in these papers, the source function f is assumed to be globally Lipschitz, that is

$$
\|f(t, u)-f(t, v)\| \leq k\|u-v\|
$$

where k is independent of t, u. Recently, in [15], a regularization method for locally Lipschitz source term has been established under an extra condition on the source term:

$$
\text { There exists a constant } L \geq 0 \text {, such that }\langle f(t, u)-f(t, v), u-v\rangle+\|u-v\|^{2} \geq 0
$$

This condition holds for the source $f(u)=u\|u\|_{H}^{2}$ (see [15]). However, it is not satisfied in several cases, for example, $f(u)=a u-b u^{3}(b>0)$ of the Ginzburg-Landau equation. Hence, another regularization method which can be applied to any locally Lipschitz source term is of interests. In this paper, we shall assume that the source term f is locally Lipschitz with respect to u (i.e. f satisfies (1)). Our main idea is approximating the function f by a sequence f_{ε} of Lipschitz functions

$$
\left\|f_{\varepsilon}(t, u)-f_{\varepsilon}(t, v)\right\| \leq k_{\varepsilon}\|u-v\| .
$$

Then, we use the results in $[12,14]$ to approximate problem (3) by the following problem

$$
\begin{align*}
\frac{d}{d t} u^{\varepsilon}(t)+A_{\varepsilon} u^{\varepsilon}(t) & =B(\varepsilon, t) f_{\varepsilon}\left(t, u^{\varepsilon}(t)\right), \quad t \in[0, T] \\
u^{\varepsilon}(T) & =\varphi \tag{4}
\end{align*}
$$

where $A_{\varepsilon}, B(\varepsilon, t)$ are defined appropriately.
When the perturbed coefficient a is time-dependent, the problems turns to be more complicated. Indeed, the strategies used for constant coefficient cannot be applied to the time-dependent coefficient case. The problem with time-dependent coefficient has been recently investigated in [9]. However, the methods proposed in [9] can be merely applied either for zero source with perturbed time-dependent coefficient or for globally Lipschitz source with unperturbed time-dependent coefficient. We would like to emphasize that our regularization method for constant coefficient also works for unperturbed time-dependent coefficient.

The paper is organized as follows. In Section 2, we shall investigate a regularization method for the case of constant coefficient $a \equiv 1$. In particular, we shall give precise formulas of $A_{\varepsilon}, B(\varepsilon, t)$ and $f_{\varepsilon}(t, v)$; show that the regularized problem (4) is well-posed and prove the convergence of u^{ε} to the exact solution in $C([0, T] ; H)$ with explicit error estimates. Section 3 provides a regularization method for perturbed time-dependent coefficient $a(t)$.

2. Regularization of backward parabolic problem with constant coefficient

2.1. The well-posedness of the regularized problem (4)

We shall first give the precise formula of the operator $S(t)$. Assume that A is a positive self-adjoint operator in the separable Hilbert space $(H,(\cdot, \cdot))$ and 0 is in its resolvent set. Since A^{-1} is a compact self-adjoint operator, there is an orthonormal eigenbasis $\left\{\phi_{n}\right\}_{n=1}^{\infty}$ of H corresponding to a sequence of its eigenvalues $\left\{\lambda_{n}^{-1}\right\}_{n=1}^{\infty}$ in which

$$
0<\lambda_{1} \leq \lambda_{2} \leq \lambda_{3} \leq \ldots \lim _{n \rightarrow \infty} \lambda_{n}=\infty .
$$

Thus $A^{-1} \phi_{n}=\lambda_{n}^{-1} \phi_{n}$ and $A \phi_{n}=\lambda_{n} \phi_{n}$ for each $n \geq 1$. The compact contraction semi-group $S(t)$ corresponding to A is

$$
S(t) v=\sum_{n=1}^{\infty} e^{-t \lambda_{n}}\left(\phi_{n}, v\right) \phi_{n}, v \in H
$$

Problem (3) can be written in the language of semi-group as follows.

$$
\begin{equation*}
u(t)=S(t-T) \varphi-\int_{t}^{T} S(t-s) f(s, u(s)) \mathrm{d} s \tag{5}
\end{equation*}
$$

For each $\varepsilon>0$, we define the bounded operator

$$
\begin{equation*}
A_{\varepsilon}(v)=-\frac{1}{T} \sum_{n=1}^{\infty} \ln \left(\varepsilon+e^{-T \lambda_{n}}\right)\left(\phi_{n}, v\right) \phi_{n} . \tag{6}
\end{equation*}
$$

The compact contraction semi-group $S_{\varepsilon}(t)$ corresponding to A_{ε} is

$$
S_{\varepsilon}(t) v=\sum_{n=1}^{\infty}\left(\varepsilon+e^{-T \lambda_{n}}\right)^{\frac{t}{T}}\left(\phi_{n}, v\right) \phi_{n}, v \in H .
$$

Obviously, (4) can be written as

$$
\begin{equation*}
u^{\varepsilon}(t)=S_{\varepsilon}(t-T) \varphi-\int_{t}^{T} S_{\varepsilon}(t-s) B(\varepsilon, s) f_{\varepsilon}\left(s, u^{\varepsilon}(s)\right) \mathrm{d} s \tag{7}
\end{equation*}
$$

For each $t \leq T$, define by $B(\varepsilon, t)$ the bounded operator

$$
B(\varepsilon, t):=S_{\varepsilon}(t-T) S(T-t) .
$$

The operator $B(\varepsilon, t)$ can be written explicitly as

$$
\begin{equation*}
B(\varepsilon, t)(v)=\sum_{n=1}^{\infty}\left(1+\varepsilon e^{T \lambda_{n}}\right)^{\frac{t}{T}-1}\left(\phi_{n}, v\right) \phi_{n}, v \in H . \tag{8}
\end{equation*}
$$

In particular,

$$
\begin{aligned}
B(\varepsilon, t) \phi_{n} & =S_{\varepsilon}(t-T) S(T-t) \phi_{n}=S_{\varepsilon}(t-T)\left(e^{-(T-t) \lambda_{n}} \phi_{n}\right) \\
& =\left(\varepsilon+e^{-T \lambda_{n}}\right)^{\frac{1-T}{T}} e^{-(T-t) \lambda_{n}} \phi_{n}=\left(\varepsilon e^{T \lambda_{n}}+1\right)^{\frac{t-T}{T}} \phi_{n}, \forall n \geq 1 .
\end{aligned}
$$

Our later calculations will be represented via operators $S_{\varepsilon}(t)$ and $B(\varepsilon, t)$. We shall need some upper bounds of these operators.

Lemma 1. Let $0 \leq t \leq T$. Then $S_{\varepsilon}(-t)$ and $B(\varepsilon, t)$ are bounded operators and

$$
\left\|S_{\varepsilon}(-t)\right\| \leq \varepsilon^{-\frac{t}{T}}, \quad\|B(\varepsilon, t)\| \leq 1 .
$$

Moreover,

$$
\left\|[B(\varepsilon, t)-I] \phi_{n}\right\| \leq \varepsilon e^{T \lambda_{n}}, \forall n \geq 1
$$

Proof. For each $n \geq 1$, one has

$$
\begin{aligned}
\left\|S_{\varepsilon}(t) \phi_{n}\right\| & =\left(\varepsilon+e^{-T \lambda_{n}}\right)^{-\frac{t}{T}} \leq \varepsilon^{-\frac{t}{T}} \\
\left\|B(\varepsilon, t) \phi_{n}\right\| & =\left(1+\varepsilon e^{T \lambda_{n}}\right)^{\frac{t}{T}-1} \leq 1 \\
\left\|[I-B(\varepsilon, t)] \phi_{n}\right\| & =1-\left(1+\varepsilon e^{T \lambda_{n}}\right)^{\frac{t}{T}-1} \\
& \leq 1-\left(1+\varepsilon e^{T \lambda_{n}}\right)^{-1} \leq \varepsilon e^{T \lambda_{n}} .
\end{aligned}
$$

The desired result follows.
Next, we define an approximation f_{ε} of f. Recall that $f:[0, T] \times H \rightarrow H$ satisfies the locally Lipschitz condition (1):

For each $M>0$, there exists $k(M)>0$ such that $\|f(t, u)-f(t, v)\| \leq k(M)\|u-v\|$ if $\max \{\|u\|,\|v\|\} \leq M$.
It is obvious that the function k is increasing on $[0, \infty)$. We can choose a set $\left\{M_{\varepsilon}>0\right\}_{\varepsilon>0}$ satisfying $\lim _{\varepsilon \rightarrow 0^{+}} M_{\varepsilon}=\infty$ and $k\left(M_{\varepsilon}\right) \leq \ln \left(\ln \left(\varepsilon^{-1}\right)\right) /(4 T)$. Define

$$
\begin{equation*}
f_{\varepsilon}(t, v)=f\left(t, \min \left\{\frac{M_{\varepsilon}}{\|v\|}, 1\right\} v\right), \quad \forall(t, v) \in[0, T] \times H \tag{9}
\end{equation*}
$$

in particular $f_{\varepsilon}(t, 0)=f(t, 0)$. With this definition, we claim that f_{ε} is a Lipschitz function. In fact, we have

Lemma 2. For $\varepsilon>0, t \in[0, T]$ and $v_{1}, v_{2} \in H$, one has

$$
\left\|f_{\varepsilon}\left(t, v_{1}\right)-f_{\varepsilon}\left(t, v_{2}\right)\right\| \leq k_{\varepsilon}\left\|v_{1}-v_{2}\right\|
$$

where $k_{\varepsilon}=2 k\left(M_{\varepsilon}\right) \leq \ln \left(\ln \left(\varepsilon^{-1}\right)\right) /(2 T)$.
Proof. Due to the continuity, it is enough to prove Lemma 2 for non-zero vectors v_{1}, v_{2}. We can assume that $\left\|v_{1}\right\| \geq\left\|v_{2}\right\|>0$. Using the locally Lipschitz property of f, one has

$$
\begin{aligned}
\left\|f_{\varepsilon}\left(t, v_{1}\right)-f_{\varepsilon}\left(t, v_{2}\right)\right\| & =\left\|f\left(t, \min \left\{\frac{M_{\varepsilon}}{\left\|v_{1}\right\|}, 1\right\} v_{1}\right)-f\left(t, \min \left\{\frac{M_{\varepsilon}}{\left\|v_{2}\right\|}, 1\right\} v_{2}\right)\right\| \\
& \leq k\left(M_{\varepsilon}\right)\left\|\min \left\{\frac{M_{\varepsilon}}{\left\|v_{1}\right\|}, 1\right\} v_{1}-\min \left\{\frac{M_{\varepsilon}}{\left\|v_{2}\right\|}, 1\right\} v_{2}\right\|
\end{aligned}
$$

It remains to show that

$$
\left\|\min \left\{\frac{M_{\varepsilon}}{\left\|v_{1}\right\|}, 1\right\} v_{1}-\min \left\{\frac{M_{\varepsilon}}{\left\|v_{2}\right\|}, 1\right\} v_{2}\right\| \leq 2\left\|v_{1}-v_{2}\right\|
$$

This inequality is trivial if $M_{\varepsilon} \geq\left\|v_{1}\right\| \geq\left\|v_{2}\right\|$. When $\left\|v_{1}\right\| \geq\left\|v_{2}\right\| \geq M_{\varepsilon}$, one has

$$
\begin{aligned}
\left\|\frac{M_{\varepsilon}}{\left\|v_{1}\right\|} v_{1}-\frac{M_{\varepsilon}}{\left\|v_{2}\right\|} v_{2}\right\| & =M_{\varepsilon}\left\|\frac{v_{1}-v_{2}}{\left\|v_{1}\right\|}+\frac{\left\|v_{2}\right\|-\left\|v_{1}\right\|}{\left\|v_{1}\right\| \cdot\left\|v_{2}\right\|} v_{2}\right\| \\
& \leq M_{\varepsilon}\left(\left\|\frac{v_{1}-v_{2}}{\left\|v_{1}\right\|}\right\|+\left\|\frac{\left\|v_{2}\right\|-\left\|v_{1}\right\|}{\left\|v_{1}\right\| \cdot\left\|v_{2}\right\|} v_{2}\right\|\right) \\
& =\frac{M_{\varepsilon}}{\left\|v_{1}\right\|}\left(\left\|v_{1}-v_{2}\right\|+\left\|v_{2}\right\|-\left\|v_{1}\right\| \|\right) \leq 2\left\|v_{1}-v_{2}\right\| .
\end{aligned}
$$

Finally, if $\left\|v_{1}\right\| \geq M_{\varepsilon} \geq\left\|v_{2}\right\|$ then

$$
\begin{aligned}
\left\|\frac{M_{\varepsilon}}{\left\|v_{1}\right\|} v_{1}-v_{2}\right\| & =\left\|\frac{M_{\varepsilon}-\left\|v_{1}\right\|}{\left\|v_{1}\right\|} v_{1}+v_{1}-v_{2}\right\| \\
& \leq\left\|\frac{M_{\varepsilon}-\left\|v_{1}\right\|}{\left\|v_{1}\right\|} v_{1}\right\|+\left\|v_{1}-v_{2}\right\| \\
& =\mid M_{\varepsilon}-\left\|v_{1}\right\|\|+\| v_{1}-v_{2}\|\leq 2\| v_{1}-v_{2} \| .
\end{aligned}
$$

Here we have used the inequality $\left|M_{\varepsilon}-\left\|v_{1}\right\|\|\leq\| v_{2}\|-\| v_{1}\|\mid \leq\| v_{1}-v_{2} \|\right.$.
We now study the existence, the uniqueness and the stability of a (weak) solution of problem (4).
Theorem 1. Let $\varepsilon>0$. For each $\varphi \in H$, problem (4) has a unique solution $u^{\varepsilon} \in C([0, T] ; H)$. Moreover, the solutions depend continuously on the data in the sense that if u_{j}^{ε} is the solution corresponding to $\varphi_{j}, j=1,2$, then

$$
\left\|u_{1}^{\varepsilon}(t)-u_{2}^{\varepsilon}(t)\right\| \leq \varepsilon^{\frac{t-T}{T}} e^{k_{\varepsilon}(T-t)}\left\|\varphi_{1}-\varphi_{2}\right\|
$$

Proof. Step 1: Uniqueness

Fix $\varphi \in H$. For each $w \in C([0, T] ; H)$, define by

$$
F(w)(t):=S_{\varepsilon}(t-T) \varphi-\int_{t}^{T} S_{\varepsilon}(t-s) B(\varepsilon, s) f_{\varepsilon}(s, w(s)) \mathrm{d} s
$$

It is sufficient to show that F has a unique fixed point in $C([0, T] ; H)$. This fact will be proved by contraction principle.

We claim by induction with respect to $m=1,2, \ldots$ that, for all $w, v \in C([0, T] ; H)$,

$$
\begin{equation*}
\left\|F^{m}(w)(t)-F^{m}(v)(t)\right\| \leq\left(\frac{k_{\varepsilon}}{\varepsilon}\right)^{m} \frac{(T-t)^{m}}{m!}\|w(s)-v(s)\|, \tag{10}
\end{equation*}
$$

where $|||.|| |$ is the sup norm in $C([0, T] ; H)$. For $m=1$, using lemmas 1 and 2 , we have

$$
\begin{aligned}
\|F(w)(t)-F(v)(t)\| & =\left\|\int_{t}^{T} S_{\varepsilon}(t-s) B(\varepsilon, s)\left[f_{\varepsilon}(s, w(s))-f_{\varepsilon}(s, v(s))\right] \mathrm{d} s\right\| \\
& \leq \int_{t}^{T}\left\|S_{\varepsilon}(t-s)\right\| \cdot\|B(\varepsilon, s)\| \cdot\left\|f_{\varepsilon}(s, w(s))-f_{\varepsilon}(s, v(s))\right\| \mathrm{d} s \\
& \leq k_{\varepsilon} \int_{t}^{T} \varepsilon^{\frac{t s}{T}}\|w-v\| \mathrm{d} s \leq \frac{k_{\varepsilon}}{\varepsilon} \int_{t}^{T}\|w-v\| \mathrm{d} s \\
& \leq \frac{k_{\varepsilon}}{\varepsilon}(T-t)\|w(s)-v(s)\| .
\end{aligned}
$$

Suppose that (10) holds for $m=j$. We prove that (10) holds for $m=j+1$. Infact, we have

$$
\begin{aligned}
\left\|F^{j+1}(w)(t)-F^{j+1}(v)(t)\right\| & =\left\|F\left(F^{j}(w)\right)(t)-F\left(F^{j}(v)\right)(t)\right\| \\
& \leq \frac{k_{\varepsilon}}{\varepsilon} \int_{t}^{T}\left\|F^{j}(w)(s)-F^{j}(v)(s)\right\| \mathrm{d} s \\
& \leq \frac{k_{\varepsilon}}{\varepsilon} \int_{t}^{T}\left(\frac{k_{\varepsilon}}{\varepsilon}\right)^{j} \frac{(T-s)^{j}}{j!}\| \| w(s)-v(s)\| \| \mathrm{d} s \\
& =\left(\frac{k_{\varepsilon}}{\varepsilon}\right)^{j+1} \frac{(T-t)^{j+1}}{(j+1)!}\|w(s)-v(s)\| \|
\end{aligned}
$$

Therefore (11) holds for all $m=1,2, \ldots$ by the induction principle. In particular, one has

$$
\left.\left\|F^{m}(w)(t)-F^{m}(v)(t)\right\|\left\|\leq\left(\frac{k_{\varepsilon} T}{\varepsilon}\right)^{m} \frac{1}{m!}\right\| \right\rvert\, w(s)-v(s)\| \|
$$

Since

$$
\lim _{m \rightarrow \infty}\left(\frac{k_{\varepsilon} T}{\varepsilon}\right)^{m} \frac{1}{m!}=0
$$

there exists a positive integer number m_{0} such that $F^{m_{0}}$ is a contraction mapping. It follows that $F^{m_{0}}$ has a unique fixed point u^{ε} in $C([0, T] ; H)$. Since $F^{m_{0}}\left(F\left(u^{\varepsilon}\right)\right)=F\left(F^{m_{0}}\left(u^{\varepsilon}\right)\right)=F\left(u^{\varepsilon}\right)$, we obtain $F\left(u^{\varepsilon}\right)=u^{\varepsilon}$ due to the uniqueness of the fixed point of $F^{m_{0}}$. The uniqueness of the fixed point of F also follows the uniqueness fixed point of $F^{m_{0}}$. The unique fixed point u^{ε} of F is the solution of (7) corresponding to final value φ.

Step 2: Continuous dependence on the data

We now let u_{1}^{ε} and u_{2}^{ε} be two solutions corresponding to final values φ_{1} and φ_{2}, respectively. In the same manner as Step 1, we have for every $w, v \in C([0, T] ; H)$

$$
\|F(w)(t)-F(v)(t)\| \leq k_{\varepsilon} \int_{t}^{T} \varepsilon^{\frac{t-s}{T}}\|w(s)-v(s)\| \mathrm{d} s
$$

Hence

$$
\begin{aligned}
\left\|u_{1}^{\varepsilon}(t)-u_{2}^{\varepsilon}(t)\right\| & =\left\|S_{\varepsilon}(t-T)\left(\varphi_{1}-\varphi_{2}\right)+F\left(u_{1}^{\varepsilon}\right)(t)-F\left(u_{2}^{\varepsilon}\right)(t)\right\| \\
& \leq\left\|S_{\varepsilon}(t-T)\right\| \cdot\left\|\varphi_{1}-\varphi_{2}\right\|+\left\|F\left(u_{1}^{\varepsilon}\right)(t)-F\left(u_{2}^{\varepsilon}\right)(t)\right\| \\
& \leq \varepsilon^{\frac{t-T}{T}}\left\|\varphi_{1}-\varphi_{2}\right\|+k_{\varepsilon} \int_{t}^{T} e^{\frac{t-s}{T}}\left\|u_{1}^{\varepsilon}(s)-u_{2}^{\varepsilon}(s)\right\| d s
\end{aligned}
$$

The latter inequality can be written as

$$
\varepsilon^{-\frac{t}{T}}\left\|u_{1}^{\varepsilon}(t)-u_{2}^{\varepsilon}(t)\right\| \leq \varepsilon^{-1}\left\|\varphi_{1}-\varphi_{2}\right\|+k_{\varepsilon} \int_{t}^{T} e^{-\frac{s}{T}}\left\|u_{1}^{\varepsilon}(s)-u_{2}^{\varepsilon}(s)\right\| d s
$$

It follows from Gronwall's inequality that

$$
\varepsilon^{-\frac{t}{T}}\left\|u_{1}^{\varepsilon}(t)-u_{2}^{\varepsilon}(t)\right\| \leq \varepsilon^{-1} e^{k_{\varepsilon}(T-t)}\left\|\varphi_{1}-\varphi_{2}\right\|, t \in[0, T]
$$

This completes the proof of Theorem 1.

2.2. Regularization of problem (3)

Our purpose in this section is to construct a regularized solution of the ill-posed problem (3). We mention that the existence of a solution of (3) is not considered here. Instead, we assume that there is an exact solution u corresponding to the exact datum φ, and our aim is to construct, from the given datum φ_{ε} approximating φ, a regularized solution U_{ε} which approximates u.

Denote by u^{ε} the solution of problem (4) corresponding to the final condition φ_{ε}. We shall show that for each fixed time $t>0$, the function $u^{\varepsilon}(t)$ gives a good approximation of $u(t)$, where the order of approximation is $\varepsilon^{\frac{t}{2 t}}$. However, it is difficult to derive an approximation at $t=0$. We therefore need an adjustment in choosing the regularized solution. The main idea is that we first use the continuity of u to approximate the initial value $u(0)$ by $u\left(t_{\varepsilon}\right)$ for some suitable small time $t_{\varepsilon}>0$, and then approximate $u\left(t_{\varepsilon}\right)$ by $u^{\varepsilon}\left(t_{\varepsilon}\right)$. The parameter t_{ε} will be choosen as follows.

Lemma 3. Let $T>0$ and let $\varepsilon>0$ small enough. There exists a unique $t_{\varepsilon}>0$ such that $\varepsilon^{\frac{t_{\varepsilon}}{T}}=t_{\varepsilon}$. Moreover,

$$
t_{\varepsilon} \leq \frac{2 T \ln \left(\ln \left(\varepsilon^{-1}\right)\right)}{\ln \left(\varepsilon^{-1}\right)}
$$

Proof. Note that each solution $t>0$ of $\varepsilon^{\frac{t}{2 T}}=t$ is a zero of the function

$$
h(t)=\ln (t)+\frac{\ln \left(\varepsilon^{-1}\right)}{2 T} t, \quad t>0 .
$$

We have h is strictly increasing as $h^{\prime}(t)>0$. Moreover, $\lim _{t \rightarrow 0^{+}} h(t)=-\infty$ and

$$
h\left(\frac{2 T \ln \left(\ln \left(\varepsilon^{-1}\right)\right)}{\ln \left(\varepsilon^{-1}\right)}\right)=\ln \left[2 T \ln \left(\ln \left(\varepsilon^{-1}\right)\right)\right]>0
$$

for $\varepsilon>0$ small enough. Thus the equation $h(t)=0$ has a unique solution $t_{\varepsilon}>0$ such that

$$
t_{\varepsilon} \leq \frac{2 T \ln \left(\ln \left(\frac{1}{\varepsilon}\right)\right)}{\ln \left(\frac{1}{\varepsilon}\right)}
$$

We have the following regularization result.
Theorem 2. Let $u \in C^{1}([0, T] ; H)$ be a solution of problem (3) corresponding to $\varphi \in H$. Assume that

$$
\sup _{t \in[0, T]}\left[\sum_{n=1}^{\infty} e^{2 T \lambda_{n}}\left|\left(\phi_{n}, u(t)\right)\right|^{2}+\left\|u^{\prime}(t)\right\|\right]=M<\infty .
$$

Let φ_{ε} be a measured datum satisfying $\left\|\varphi_{\varepsilon}-\varphi\right\| \leq \varepsilon$ with $\varepsilon>0$, and let u^{ε} be the solution of problem (4) corresponding to φ_{ε}. Choose $t_{\varepsilon}>0$ as in Lemma 3. Define the regularized solution $U^{\varepsilon}:[0, T] \rightarrow H$ by

$$
U^{\varepsilon}(t)=u^{\varepsilon}\left(\max \left\{t, t_{\varepsilon}\right\}\right), t \in[0, T] .
$$

Then one has the error estimate, for $\varepsilon>0$ small enough, $t \in[0, T]$,

$$
\left\|U^{\varepsilon}(t)-u(t)\right\| \leq(2 M+1) \min \left\{\varepsilon^{\frac{t}{2 T}}, \frac{2 T \ln \left(\ln \left(\varepsilon^{-1}\right)\right)}{\ln \left(\varepsilon^{-1}\right)}\right\} .
$$

Proof. We have in view of (5)

$$
u(t)=S(t-T) \varphi-\int_{t}^{T} S(t-s) f(s, u(s)) \mathrm{d} s
$$

Using $B(\varepsilon, t)=S_{\varepsilon}(t-T) S(T-t)$, one has

$$
B(\varepsilon, t) u(t)=S_{\varepsilon}(t-T) \varphi-\int_{t}^{T} S_{\varepsilon}(t-s) B(\varepsilon, s) f(s, u(s)) \mathrm{d} s
$$

We have in view of (7)

$$
u^{\varepsilon}(t)=S_{\varepsilon}(t-T) \varphi_{\varepsilon}-\int_{t}^{T} S_{\varepsilon}(t-s) B(\varepsilon, s) f_{\varepsilon}\left(s, u^{\varepsilon}(s)\right) \mathrm{d} s
$$

Thus

$$
\begin{aligned}
u^{\varepsilon}(t)-u(t)= & S_{\varepsilon}(t-T)\left(\varphi_{\varepsilon}-\varphi\right)+[B(\varepsilon, t)-I] u(t)+ \\
& -\int_{t}^{T} S_{\varepsilon}(t-s) B(\varepsilon, s)\left[f_{\varepsilon}\left(s, u^{\varepsilon}(s)\right)-f(s, u(s))\right] \mathrm{d} s
\end{aligned}
$$

Using Lemma 1 and noting that $f(s, u(s))=f_{\varepsilon}(s, u(s))$ for $\varepsilon>0$ small enough, $M_{\varepsilon} \geq \sup _{t \in[0, T]}\|u(t)\|$, we get

$$
\begin{aligned}
\left\|u^{\varepsilon}(t)-u(t)\right\| \leq & \left\|S_{\varepsilon}(t-T)\right\| \cdot\left\|\varphi_{\varepsilon}-\varphi\right\|+\|[B(\varepsilon, t)-I] u(t)\|+ \\
& +\int_{t}^{T}\left\|S_{\varepsilon}(t-s)\right\| \cdot\|B(\varepsilon, s)\| \cdot\left\|f_{\varepsilon}\left(s, u^{\varepsilon}(s)\right)-f(s, u(s))\right\| \mathrm{d} s \\
\leq & \varepsilon^{\frac{t-T}{T}} \cdot \varepsilon+\varepsilon \sqrt{\sum_{n=1}^{\infty} e^{2 T \lambda_{n}}\left|\left(\phi_{n}, u\right)\right|^{2}}+k_{\varepsilon} \int_{t}^{T} \varepsilon^{\frac{t-s}{T}}\left\|u^{\varepsilon}(s)-u(s)\right\| \mathrm{d} s \\
\leq & (M+1) \varepsilon^{\frac{t}{T}}+k_{\varepsilon} \int_{t}^{T} \varepsilon^{\frac{t-s}{T}}\left\|u^{\varepsilon}(s)-u(s)\right\| \mathrm{d} s
\end{aligned}
$$

The latter inequality can be written as

$$
\varepsilon^{-\frac{t}{T}}\left\|u^{\varepsilon}(t)-u(t)\right\| \leq(M+1)+k_{\varepsilon} \int_{t}^{T} \varepsilon^{-\frac{s}{T}}\left\|u^{\varepsilon}(s)-u(s)\right\| \mathrm{d} s
$$

It follows from Gronwall's inequality that

$$
\varepsilon^{-\frac{t}{T}}\left\|u^{\varepsilon}(t)-u(t)\right\| \leq(M+1) e^{k_{\varepsilon} T}, \forall t \in(0, T]
$$

In particular, if $t \in\left[t_{\varepsilon}, T\right]$ then

$$
\begin{aligned}
\left\|U^{\varepsilon}(t)-u(t)\right\|=\left\|u^{\varepsilon}(t)-u(t)\right\| & \leq(M+1) e^{k_{\varepsilon} T} \varepsilon^{\frac{t}{T}} \\
& \leq(M+1) \varepsilon^{\frac{t}{2 T}} \leq \frac{2 T(M+1) \ln \left(\ln \left(\varepsilon^{-1}\right)\right)}{\ln \left(\varepsilon^{-1}\right)}
\end{aligned}
$$

where we have used

$$
\begin{equation*}
e^{k_{s} T} \leq \sqrt{\ln \left(\varepsilon^{-1}\right)} \leq \frac{\ln \left(\varepsilon^{-1}\right)}{2 T \ln \left(\ln \left(\varepsilon^{-1}\right)\right)} \leq t_{\varepsilon}^{-1}=\varepsilon^{-\frac{t_{\varepsilon}}{2 T}} \leq \varepsilon^{-\frac{t}{2 T}} \tag{11}
\end{equation*}
$$

Let us now consider $t \in\left[0, t_{\varepsilon}\right]$. One has

$$
\left\|U^{\varepsilon}(t)-u(t)\right\|=\left\|u^{\varepsilon}\left(t_{\varepsilon}\right)-u(t)\right\| \leq\left\|u^{\varepsilon}\left(t_{\varepsilon}\right)-u\left(t_{\varepsilon}\right)\right\|+\left\|u\left(t_{\varepsilon}\right)-u(t)\right\| .
$$

Due to the continuity of u_{t}, we get for ε small enough

$$
\left\|u\left(t_{\varepsilon}\right)-u(t)\right\|=\left\|\int_{t}^{t_{\varepsilon}} u_{t}(s) d s\right\| \leq \int_{0}^{t_{\varepsilon}}\left\|u_{t}(s)\right\| d s \leq M t_{\varepsilon}
$$

Thus, for $t \in\left[0, t_{\varepsilon}\right]$,

$$
\begin{aligned}
\left\|U^{\varepsilon}(t)-u(t)\right\| & \leq(M+1) \varepsilon^{\frac{t_{\varepsilon}}{2 T}}+M t_{\varepsilon}=(2 M+1) t_{\varepsilon} \\
& \leq(2 M+1) \min \left\{\varepsilon^{\frac{t}{t}}, \frac{2 T \ln \left(\ln \left(\varepsilon^{-1}\right)\right)}{\ln \left(\varepsilon^{-1}\right)}\right\} .
\end{aligned}
$$

This completes the proof of Theorem 2.

3. Regularization of backward parabolic problem with time-dependent coefficient

In this section, we consider the following backward nonlinear parabolic problem with timedependent coefficient

$$
\begin{align*}
u_{t}+a(t) A u(t) & =f(t, u(t)), \quad 0<t<T \\
u(T) & =\varphi \tag{12}
\end{align*}
$$

where $a \in C([0, T])$ is given. The function a is noised by the perturbed data $a_{\varepsilon} \in C[0, T]$ such that

$$
\begin{equation*}
\left\|a_{\varepsilon}-a\right\|_{C([0, T])} \leq \varepsilon \tag{13}
\end{equation*}
$$

where the norm $\|\cdot\|_{C([0, T])}$ is given by the sup norm, i.e., $\|v\|_{C([0, T])}=\sup _{0 \leq t \leq T}|v(t)|$ for every continuous function $v:[0, T] \rightarrow \mathbb{R}$. We would like to emphasize that it is impossible to apply the technique in Section 2 to solve problem (12) when the time-dependent coefficient is perturbed by noise. Therefore, we investigate a new regularized problem as follows

$$
\left\{\begin{align*}
\frac{d}{d t} v_{\varepsilon}(t)+a_{\varepsilon}(t) \widetilde{A}_{\varepsilon} v_{\varepsilon}(t) & =f_{\varepsilon}\left(t, v_{\varepsilon}(t)\right), \quad 0<t<1 \tag{14}\\
v_{\varepsilon}(T) & =\varphi_{\varepsilon}
\end{align*}\right.
$$

where $\widetilde{A_{\varepsilon}}$ is defined by

$$
\begin{equation*}
\widetilde{A}_{\varepsilon}(v):=-\frac{1}{Q T} \sum_{n=1}^{\infty} \ln \left(\varepsilon+e^{-Q T \lambda_{n}}\right)\left\langle v, \phi_{n}\right\rangle \phi_{n} \tag{15}
\end{equation*}
$$

and $Q=\left\|a_{\varepsilon}\right\|_{C([0, T])}$.
The regularization result for time-dependent perturbed coefficient is given in the following theorem.

Theorem 3. Let $u \in C^{1}([0, T] ; H)$ be a solution of problem (12) corresponding to $\varphi \in H$. Assume that

$$
\sup _{t \in[0, T]}\left[\sum_{n=1}^{\infty} e^{2 Q T \lambda_{n}}\left|\left(\phi_{n}, u(t)\right)\right|^{2}+\left\|u^{\prime}(t)\right\|\right]=E_{Q}<\infty .
$$

Let φ_{ε} and a_{ε} be measured data satisfying $\left\|\varphi_{\varepsilon}-\varphi\right\| \leq \varepsilon$ and $\left\|a_{\varepsilon}-a\right\|_{C(0, T])} \leq \varepsilon$ for $\varepsilon>0$. We denote by v_{ε} the solution of problem (14) corresponding to φ_{ε} and a_{ε}. Choose $t_{\varepsilon}>0$ as in Lemma 3. Define the regularized solution $W^{\varepsilon}:[0, T] \rightarrow H$ by

$$
W^{\varepsilon}(t)=v_{\varepsilon}\left(\max \left\{t, t_{\varepsilon}\right\}\right), t \in[0, T]
$$

Then one has the following error estimate for $\varepsilon>0$ small enough and $t \in[0, T]$,

$$
\left\|W^{\varepsilon}(t)-u(t)\right\| \leq 2 E_{Q} \sqrt{2\left(\frac{1}{Q}+1\right)} e^{2 T} \min \left\{\varepsilon^{\frac{t}{2 T}}, \frac{2 T \ln \left(\ln \left(\varepsilon^{-1}\right)\right)}{\ln \left(\varepsilon^{-1}\right)}\right\}
$$

Proof. The existence of solutions to problem (12) can be proved in the same manner as Theorem 1. It remains to prove the error estimation between W_{ε} and u. To this end, we first need the error estimation between u_{ε} and u. The technique we use here is different from Theorem 2 . The problem (12) can be written as

$$
\left\{\begin{align*}
u^{\prime}(t)+a_{\varepsilon}(t) \widetilde{A}_{\varepsilon} u(t) & =a_{\varepsilon}(t) \widetilde{A}_{\varepsilon} u(t)-a(t) A u(t)+f(t, u(t)) \tag{16}\\
u(T) & =\varphi
\end{align*}\right.
$$

Recall that v_{ε} solves the following equation

$$
\left\{\begin{align*}
v_{\varepsilon}^{\prime}(t)+a_{\varepsilon}(t) \widetilde{A}_{\varepsilon} v_{\varepsilon}(t) & =f_{\varepsilon}\left(t, v_{\varepsilon}(t)\right) \tag{17}\\
v_{\varepsilon}(T) & =\varphi_{\varepsilon}
\end{align*}\right.
$$

Substituting (17) into (16) bothsides, we obtain

$$
\left\{\begin{align*}
v_{\varepsilon}^{\prime}(t)-u^{\prime}(t)= & -a_{\varepsilon}(t) \widetilde{A}_{\varepsilon}\left(v_{\varepsilon}(t)-u(t)\right)-a_{\varepsilon}(t) \widetilde{A}_{\varepsilon} u(t)+a(t) A u(t) \tag{18}\\
& +f_{\varepsilon}\left(t, v_{\varepsilon}(t)\right)-f(t, u(t)) \\
v_{\varepsilon}(T)-u_{\varepsilon}(T)= & \varphi_{\varepsilon}-\varphi
\end{align*}\right.
$$

For $\widetilde{b}>0$, we define by

$$
z_{\varepsilon}(t):=e^{\widetilde{b}(t-T)}\left(v_{\varepsilon}(t)-u(t)\right)
$$

By differentiating $z_{\varepsilon}(t)$ with respect t and combining to (18) gives

$$
\begin{align*}
z_{\varepsilon}^{\prime}(t)= & \widetilde{b} e^{\widetilde{b}(t-T)}\left(v_{\varepsilon}(t)-u(t)\right)+e^{\widetilde{b}(t-T)}\left(v_{\varepsilon}^{\prime}(t)-u^{\prime}(t)\right) \\
= & \widetilde{b}_{\varepsilon}(t)+e^{\widetilde{b}(t-T)}\left[-a_{\varepsilon}(t) \widetilde{A}_{\varepsilon}\left(v_{\varepsilon}(t)-u(t)\right)+f\left(t, v_{\varepsilon}(t)\right)-f(t, u(t))\right] \\
& -e^{\widetilde{b}(t-T)}\left[\left(a_{\varepsilon}(t)-a(t)\right) A u(t)+a_{\varepsilon}(t)\left(\widetilde{A_{\varepsilon}}-A\right) u(t)\right] \\
= & \widetilde{b}_{\varepsilon}(t)-\widetilde{A}_{\varepsilon} z_{\varepsilon}(t)+e^{\widetilde{b}(t-T)}\left[f\left(t, v_{\varepsilon}(t)\right)-f(t, u(t))\right] \\
& -e^{\widetilde{b}(t-T)}\left(a_{\varepsilon}(t)-a(t)\right) A u(t)-e^{\widetilde{b}(t-T)} a_{\varepsilon}(t)\left(\widetilde{A_{\varepsilon}}-A\right) u(t) . \tag{19}
\end{align*}
$$

By taking the inner product (19) with $z_{\varepsilon}(t)$, we get

$$
\begin{align*}
\left\langle z_{\varepsilon}^{\prime}(t)+a_{\varepsilon}(t) \widetilde{A_{\varepsilon}} z_{\varepsilon}(t)-\widetilde{b} z_{\varepsilon}(t), z_{\varepsilon}(t)\right\rangle= & \left\langle e^{\widetilde{b}(t-T)}\left[f\left(t, v_{\varepsilon}(t)\right)-f(t, u(t))\right], z_{\varepsilon}(t)\right\rangle \\
& -e^{\widetilde{b}(t-T)}\left\langle\left(a_{\varepsilon}(t)-a(t)\right) A u(t), z_{\varepsilon}(t)\right\rangle \\
& -e^{\widetilde{b}(t-T)}\left\langle\left(\widetilde{A_{\varepsilon}}-A\right) u(t), z_{\varepsilon}(t)\right\rangle . \tag{20}
\end{align*}
$$

A direct computation implies that

$$
\begin{align*}
\frac{d}{d t}\left\|z_{\varepsilon}(t)\right\|_{H}^{2}= & 2\left\langle-a_{\varepsilon}(t) \widetilde{A}_{\varepsilon} z_{\varepsilon}(t), z_{\varepsilon}(t)\right\rangle+2 \widetilde{b}\left\langle z_{\varepsilon}(t), z_{\varepsilon}(t)\right\rangle \\
& +2\left\langle e^{\widetilde{b}(t-T)}\left[f\left(t, v_{\varepsilon}(t)\right)-f(t, u(t))\right], z_{\varepsilon}(t)\right\rangle \\
& -2 e^{\widetilde{b}(t-T)}\left\langle\left(a_{\varepsilon}(t)-a(t)\right) A u(t), z_{\varepsilon}(t)\right\rangle \\
& -2 e^{\widetilde{b}(t-T)}\left\langle\left(\widetilde{A_{\varepsilon}}-A\right) u(t), z_{\varepsilon}(t)\right\rangle \\
= & 2\left(\widetilde{I}_{1}+\widetilde{I}_{2}+\widetilde{I}_{3}+\widetilde{I}_{4}\right) \tag{21}
\end{align*}
$$

where

$$
\begin{aligned}
& \widetilde{I}_{1}=\left\langle-a_{\varepsilon}(t) \widetilde{A_{\varepsilon}} z_{\varepsilon}(t), z_{\varepsilon}(t)\right\rangle+\widetilde{b}\left\langle z_{\varepsilon}(t), z_{\varepsilon}(t)\right\rangle \\
& \widetilde{I_{2}}=\left\langle e^{\widetilde{b}(t-T)}\left[f_{\varepsilon}\left(t, v_{\varepsilon}(t)\right)-f(t, u(t))\right], z_{\varepsilon}(t)\right\rangle \\
& \widetilde{I_{3}}=-e^{\widetilde{b}(t-T)}\left\langle\left(a_{\varepsilon}(t)-a(t)\right) A u(t), z_{\varepsilon}(t)\right\rangle \\
& \widetilde{I_{4}}=-e^{\widetilde{b}(t-T)}\left\langle\left(\widetilde{A_{\varepsilon}}-A\right) u(t), z_{\varepsilon}(t)\right\rangle
\end{aligned}
$$

Since $Q=\sup _{t \in[0, T]}\left|a_{\varepsilon}(t)\right|$, we have

$$
\begin{aligned}
\left|\left\langle-a_{\varepsilon}(t) \widetilde{A}_{\varepsilon} z_{\varepsilon}(t), z_{\varepsilon}(t)\right\rangle\right| & \leq \sup _{t \in[0,1]} \mid a_{\varepsilon}(t)\left\|\widetilde{A}_{\varepsilon} z_{\varepsilon}(t)\right\|_{H}\left\|z_{\varepsilon}(t)\right\|_{H} \\
& \leq Q \frac{1}{Q T} \ln \left(\frac{1}{\varepsilon}\right)\left\|z_{\varepsilon}(t)\right\|_{H}^{2} \\
& \leq \frac{1}{T} \ln \left(\frac{1}{\varepsilon}\right)\left\|z_{\varepsilon}(t)\right\|_{H}^{2}
\end{aligned}
$$

which gives

$$
\left\langle-a_{\varepsilon}(t) \widetilde{A}_{\varepsilon} z_{\varepsilon}(t), z_{\varepsilon}(t)\right\rangle \geq-\frac{1}{T} \ln \left(\frac{1}{\varepsilon}\right)\left\|z_{\varepsilon}(t)\right\|_{H}^{2}
$$

Then the term \widetilde{I}_{1} is estimated by

$$
\begin{align*}
\widetilde{I}_{1} & =\left\langle-a_{\varepsilon}(t) \widetilde{A}_{\varepsilon} z_{\varepsilon}(t), z_{\varepsilon}(t)\right\rangle+\widetilde{b}\left\langle z_{\varepsilon}(t), z_{\varepsilon}(t)\right\rangle \\
& \geq-\frac{1}{T} \ln \left(\frac{1}{\varepsilon}\right)\left\|z_{\varepsilon}(t)\right\|_{H}^{2}+\widetilde{b}\left\|z_{\varepsilon}(t)\right\|_{H}^{2} \tag{22}
\end{align*}
$$

Using Lemma 1 and noting that $f(s, u(s))=f_{\varepsilon}(s, u(s))$ for $\varepsilon>0$ small enough, $M_{\varepsilon} \geq \sup _{t \in[0, T]}\|u(t)\|$, we have the following estimate

$$
\begin{align*}
\widetilde{I}_{2} & =\left\langle e^{-\widetilde{b}(T-t)}\left[f_{\varepsilon}\left(t, v_{\varepsilon}(t)\right)-f(t, u(t))\right], z_{\varepsilon}(t)\right\rangle \\
& =e^{-2 \widetilde{b}(T-t)}\left\langle f_{\varepsilon}\left(v_{\varepsilon}(t), t\right)-f_{\varepsilon}(t, u(t)), v_{\varepsilon}(t)-u(t)\right\rangle \\
& \geq-k_{\varepsilon} e^{-2 \widetilde{b}(T-t)}\left\|v_{\varepsilon}(t)-u(t)\right\|_{H}^{2} \\
& =-k_{\varepsilon}\left\|z_{\varepsilon}\right\|_{H}^{2} . \tag{23}
\end{align*}
$$

Employing Hölder inequality, we can bound \widetilde{I}_{3} as follows

$$
\begin{align*}
\widetilde{I}_{3} & =\left\langle e^{-\widetilde{b}(T-t)}\left(a_{\varepsilon}(t)-a(t)\right) A u(t), z_{\varepsilon}(t)\right\rangle \\
& \leq e^{-2 \widetilde{b}(T-t)}\left|a_{\varepsilon}(t)-a(t)\right|^{2}\|A u(t)\|_{H}^{2}+\left\|z_{\varepsilon}(t)\right\|_{H}^{2} \\
& \leq e^{-2 \widetilde{b}(T-t)}\left|a_{\varepsilon}(t)-a(t)\right|^{2}\left(\sum_{n=1}^{\infty} \lambda_{n}^{2}\left|\left\langle u(t), \phi_{n}\right\rangle\right|^{2}\right)+\left\|z_{\varepsilon}(t)\right\|_{H}^{2} \\
& \leq e^{-2 \widetilde{b}(T-t)}\left|a_{\varepsilon}(t)-a(t)\right|^{2}\left(\sum_{n=1}^{\infty} \frac{1}{Q^{2} T^{2}} e^{2 Q T \lambda_{n}}\left|\left\langle u(t), \phi_{n}\right\rangle\right|^{2}\right)+\left\|z_{\varepsilon}(t)\right\|_{H}^{2} \\
& \leq \frac{e^{-2 \widetilde{b}(T-t)} \varepsilon^{2} E_{Q}^{2}}{Q T}+\left\|z_{\varepsilon}(t)\right\|_{H}^{2} . \tag{24}
\end{align*}
$$

Using Hölder inequality again, \widetilde{I}_{4} can be bounded as

$$
\begin{align*}
\widetilde{I}_{4}= & \left\langle e^{-\widetilde{b}(T-t)} a_{\varepsilon}(t)\left(\widetilde{A_{\varepsilon}}(t)-A(t)\right) u(t), z_{\varepsilon}(t)\right\rangle \\
\leq & e^{-2 \widetilde{b}(T-t)}\left|a_{\varepsilon}(t)\right|^{2}\left\|\left(\widetilde{A_{\varepsilon}}-A\right) u(t)\right\|_{H}^{2}+\left\|z_{\varepsilon}(t)\right\|_{H}^{2} \\
\leq & e^{-2 \widetilde{b}(T-t)}\left|a_{\varepsilon}(t)\right|^{2} \sum_{n=1}^{\infty}\left|\frac{1}{Q T} \ln \left(\frac{1}{\varepsilon+e^{-Q T \lambda_{n}}}\right)-\frac{1}{Q T} \ln \left(e^{Q T \lambda_{n}}\right)\right|^{2}\left|\left\langle u(t), \phi_{n}\right\rangle\right|^{2} \\
& +\left\|z_{\varepsilon}(t)\right\|_{H}^{2} \\
\leq & e^{-2 \widetilde{b}(T-t)}\left|a_{\varepsilon}(t)\right|^{2} \frac{1}{Q^{2} T^{2}} \sum_{n=1}^{\infty}\left|\ln \left(\frac{1}{\varepsilon e^{Q T \lambda_{n}}+1}\right)\right|^{2}\left|\left\langle u(t), \phi_{n}\right\rangle\right|^{2}+\left\|z_{\varepsilon}(t)\right\|_{H}^{2} \\
\leq & \frac{1}{T^{2}} e^{-2 \widetilde{b}(T-t)} \sum_{n=1}^{\infty} \ln ^{2}\left(\varepsilon e^{Q T \lambda_{n}}+1\right)\left|\left\langle u(t), \phi_{n}\right\rangle\right|^{2}+\left\|z_{\varepsilon}(t)\right\|_{H}^{2} \\
\leq & \frac{1}{T^{2}} e^{-2 \widetilde{2 b}(T-t)} \varepsilon^{2} \sum_{n=1}^{\infty} e^{2 Q T \lambda_{n}}\left|\left\langle u(t), \phi_{n}\right\rangle\right|^{2}+\left\|z_{\varepsilon}(t)\right\|_{H}^{2} \\
\leq & \frac{1}{T^{2}} e^{-2 \widetilde{b}(T-t)} \varepsilon^{2} E_{Q}^{2}+\left\|z_{\varepsilon}(t)\right\|_{H}^{2} . \tag{25}
\end{align*}
$$

Thus, (21), (22), (23), (24) and (25) yields

$$
\begin{align*}
\frac{d}{d t}\left\|z_{\varepsilon}(t)\right\|_{H}^{2} \geq & \left(-\frac{2}{T} \ln \left(\frac{1}{\varepsilon}\right)+2 \widetilde{b}-2 k_{\varepsilon}-4\right)\left\|z_{\varepsilon}(t)\right\|_{H}^{2} \\
& -2 e^{-2 \widetilde{b}(T-t)} \varepsilon^{2} E_{Q}^{2}\left(\frac{1}{Q T}+\frac{1}{T}\right) \tag{26}
\end{align*}
$$

Since $b=\frac{1}{T} \ln \left(\frac{1}{\varepsilon}\right)$ we obtain

$$
\frac{d}{d t}\left\|z_{\varepsilon}(t)\right\|_{H}^{2} \geq\left(-2 k_{\varepsilon}-4\right)\left\|z_{\varepsilon}(t)\right\|_{H}^{2}-2 \varepsilon^{2} E_{Q}^{2}\left(\frac{1}{Q T}+\frac{1}{T}\right)
$$

Integrating the above inequality from t to T, we get

$$
\begin{aligned}
\left\|z_{\varepsilon}(T)\right\|_{H}^{2}-\left\|z_{\varepsilon}(t)\right\|_{H}^{2} \geq & \left(-2 k_{\varepsilon}-4\right) \int_{t}^{T}\left\|z_{\varepsilon}(s)\right\|_{H}^{2} d s \\
& -2 E_{Q}^{2} \varepsilon^{2}\left(\frac{1}{Q T}+\frac{1}{T}\right)(T-t)
\end{aligned}
$$

Since $\left\|z_{\varepsilon}(T)\right\|_{H}^{2}=\left\|\varphi_{\varepsilon}-\varphi\right\| \leq \varepsilon$, we have

$$
\left\|z_{\varepsilon}(t)\right\|_{H}^{2} \leq\left(2 k_{\varepsilon}+4\right) \int_{t}^{1}\left\|z_{\varepsilon}(s)\right\|_{H}^{2} d s+2 E_{Q}^{2} \varepsilon^{2}\left(\frac{1}{Q}+1\right)+\varepsilon^{2} .
$$

This implies that

$$
\begin{aligned}
e^{-2 \widetilde{b}(T-t)}\left\|v_{\varepsilon}(t)-u(t)\right\|_{H}^{2} \leq & \left(2 k_{\varepsilon}+4\right) \int_{t}^{T} e^{-2 \widetilde{b}(T-s)}\left\|v_{\varepsilon}(s)-u(s)\right\|_{H}^{2} d s \\
& +2 E_{Q}^{2} \varepsilon^{2}\left(\frac{1}{Q}+1\right)+\varepsilon^{2}
\end{aligned}
$$

Multiplying bothside to $e^{2 \widetilde{b} T}$, we obtain

$$
\begin{aligned}
e^{2 \widetilde{b} t}\left\|v_{\varepsilon}(t)-u(t)\right\|_{H}^{2} \leq & \left(2 k_{\varepsilon}+4\right) \int_{t}^{T} e^{2 b s}\left\|v_{\varepsilon}(s)-u(s)\right\|_{H}^{2} d s \\
& +2 E_{Q}^{2}\left(\frac{1}{Q}+1\right)
\end{aligned}
$$

Applying Grönwall's inequality, we get

$$
e^{2 \widetilde{b} t}\left\|v_{\varepsilon}(t)-u(t)\right\|_{H}^{2} \leq 2 E_{Q}^{2}\left(\frac{1}{Q}+1\right) e^{\int_{t}^{T}\left(2 k_{\varepsilon}+4\right) d s}
$$

or

$$
e^{2 \widetilde{b} t}\left\|v_{\varepsilon}(t)-u(t)\right\|^{2} \leq 2 E_{Q}^{2}\left(\frac{1}{Q}+1\right) e^{\left(2 k_{\varepsilon}+4\right)(T-t)} .
$$

Hence

$$
\left\|v_{\varepsilon}(t)-u(t)\right\|_{H}^{2} \leq 2 E_{Q}^{2}\left(\frac{1}{Q}+1\right) e^{\left(2 k_{\varepsilon}+4\right)(T-t)} e^{-\frac{2 t}{T} \ln \left(\frac{1}{\varepsilon}\right)} .
$$

In particular, if $t \in\left[t_{\varepsilon}, T\right]$ then

$$
\begin{aligned}
\left\|W^{\varepsilon}(t)-u(t)\right\|=\left\|v_{\varepsilon}(t)-u(t)\right\| & \leq E_{Q} \sqrt{2\left(\frac{1}{Q}+1\right)} e^{2 T} e^{k_{\varepsilon} T} \varepsilon^{\frac{t}{T}} \\
& \leq E_{Q} \sqrt{2\left(\frac{1}{Q}+1\right)} e^{2 T} \varepsilon^{\frac{t}{2 T}} \\
& \leq E_{Q} \sqrt{2\left(\frac{1}{Q}+1\right)} e^{2 T} \frac{2 T \ln \left(\ln \left(\varepsilon^{-1}\right)\right)}{\ln \left(\varepsilon^{-1}\right)}
\end{aligned}
$$

where we have used (11).
Let us now consider $t \in\left[0, t_{\varepsilon}\right]$. One has

$$
\left\|W^{\varepsilon}(t)-u(t)\right\|=\left\|v_{\varepsilon}\left(t_{\varepsilon}\right)-u(t)\right\| \leq\left\|v_{\varepsilon}\left(t_{\varepsilon}\right)-u\left(t_{\varepsilon}\right)\right\|+\left\|u\left(t_{\varepsilon}\right)-u(t)\right\| .
$$

Due to the continuity, we get for ε small enough

$$
\left\|u\left(t_{\varepsilon}\right)-u(t)\right\|=\left\|\int_{t}^{t_{\varepsilon}} u_{t}(s) d s\right\| \leq \int_{0}^{t_{\varepsilon}}\left\|u_{t}(s)\right\| d s \leq E_{Q} t_{\varepsilon}
$$

Thus, for $t \in\left[0, t_{\varepsilon}\right]$,

$$
\begin{aligned}
\left\|W^{\varepsilon}(t)-u(t)\right\| & \leq E_{Q} \sqrt{2\left(\frac{1}{Q}+1\right)} e^{2 T} \varepsilon^{\frac{\varepsilon_{\varepsilon}}{2 T}}+E_{Q} t_{\varepsilon} \\
& \leq 2 E_{Q} \sqrt{2\left(\frac{1}{Q}+1\right)} e^{2 T} \min \left\{\varepsilon^{\frac{t}{2 T}}, \frac{2 T \ln \left(\ln \left(\varepsilon^{-1}\right)\right)}{\ln \left(\varepsilon^{-1}\right)}\right\} .
\end{aligned}
$$

This completes the proof of Theorem 3.

References

[1] Alekseeva, S. M. and Yurchuk, N. I., The quasi-reversibility method for the problem of the control of an initial condition for the heat equation with an integral boundary condition, Differential Equations 34, $n^{0} 4,1998$, pp. 493-500.
[2] Beck, J.V., Blackwell, B. and St. Clair, C. R., Inverse heat conduction, Ill-posed problems, Wiley, New YorkChichester, 1985.
[3] Hetrick, B. M. C. and Hughes, R. J., Continuous dependence on modeling for nonlinear ill-posed problems, J. Math. Anal. Appl. 349 (2009), no. 2, 420-435.
[4] Clark, G. and Oppenheimer, C., Quasi-reversibility methods for non-well-posed problem, Electronic Journal of Differential Equations, Vol. 1994, $n^{0} 08,1994$, pp. 1-9.
[5] Denche, M. and Bessila, K., A modified quasi-boundary value method for ill-posed problems, J. Math. Anal. Appl, Vol.301, 2005, pp.419-426.
[6] Gajewski, H. and Zacharias, K., Zur Regularizierung einer Klasse nichkorrecter probleme bei Evolutionsgleichungen, J. Math. Anal. Appl. 38, 1972, pp. 784-789.
[7] Lattes, R. and Lion, J.L., Méthode de Quasi-Reversibilité et Applications, Dunod, Paris, 1967.
[8] Miller, K., Stabilized quasi-reversibility and other nearly-best-possible methods for non-well-posed problems, Symposium on Non-Well-posed Problems and Logarithmic Convexity, Lecture Notes in Math., Vol. 316, Springer-Verlag, Berlin, 1973, pp. 161-176.
[9] P.H. Quan, D.D. Trong, L.M. Triet On a backward nonlinear parabolic equation with time and space dependent thermal conductivity: regularization and error estimates. J. Inverse Ill-Posed Probl. 22 (2014), no. 3, 375?-401.
[10] Showalter, R. E., Quasi-reversibility of first and second order parabolic evolution equations, Improperly posed boundary value problems (Conf., Univ. New Mexico, Albuquerque, N. M., 1974), pp. 76-84. Res. Notes in Math., $n^{0} 1$, Pitman, London, 1975.
[11] Showalter, R. E., The final value problem for evolution equations, J. Math. Anal. Appl., Vol.47, 1974, pp. 563-572.
[12] Trong, D.D., Quan, P.H., Khanh, T.V. and Tuan, N.H., A nonlinear case of the 1-D backward heat problem: Regularization and error estimate, Zeitschrift Analysis und ihre Anwendungen, Volume 26, Issue 2, 2007, pp. 231-245.
[13] Tuan, N.H. and Trong, D.D., A nonlinear parabolic equation backward in time: regularization with new error estimates, Nonlinear Anal. 73 (2010), no. 6, pp. 1842-1852.
[14] Tuan, N.H., Trong, D.D., Quan, P.H., Nhat, N.D.M., A nonlinear parabolic backward in time problem : regularization by quasi-reversibility and error estimates, Asian-Eur. J. Math, Vol 4, No 1, 2011, 147-163.
[15] Trong, D.D. and Tuan, N.H., On a backward parabolic problem with local Lipschitz source, J. Math. Anal. Appl., Vol. 414, Issue 2, 678-692, 2014.

[^0]: *Corresponding author
 Email address: mokhtar.kirane@univ-lr.fr (Mokhtar Kirane)

