

Reduced Basis Landweber method for nonlinear ill-posed inverse problems

Dominik Garmatter

garmatter@math.uni-frankfurt.de

Group for Numerics of Partial Differential Equations, Goethe University Frankfurt, Germany

Joint work with Bastian Harrach and Bernard Haasdonk

ECCOMAS Congress 2016 Crete, Greece, June 5-10, 2016.

Introduction

The forward problem

Consider

$$\nabla \cdot (\sigma(x)\nabla u(x)) = 1, \ x \in \Omega := (0,1)^2, \ u(x) = 0, \ x \in \partial\Omega.$$

Assume: σ is piecewise constant $\rightsquigarrow \sigma(x) = \sum_{q=1}^{p} \sigma_q \chi_{\Omega_q}(x)$.

Forward operator

$$F: \mathcal{P} \subset \mathbb{R}^p \to X \subset H^1_0(\Omega), \ \sigma \mapsto u^{\sigma}$$
, the detailed solution, solving

$$b(u^{\sigma}, v; \sigma) = f(v)$$
, for all $v \in X$, with (1a)

$$b(u, w; \sigma) := \int_{\Omega} \sigma \nabla u \cdot \nabla w \, dx, \quad f(v) := -\int_{\Omega} v \, dx.$$
 (1b)

Inverse Problem

For given solution $u \in X$ of (1), find corresponding parameter $\sigma^+ \in \mathcal{P}$ with $F(\sigma^+) = u$ ("a-example").

Naive inversion (solving $\sigma^+ = F^{-1}(u)$) fails due to ill-posedness of the problem (in general F^{-1} discontinuous!)

→ Small errors get amplified!

► Typically only noisy data u^{δ} ($\|u - u^{\delta}\|_X < \delta$) given $\leadsto F^{-1}(u^{\delta}) \nrightarrow F^{-1}(u)$ as $\delta \to 0$!

Goal:
$$R_{n(u^{\delta},\delta)}(u^{\delta}) \to F^{-1}(u)$$
 as $\delta \to 0$.

Landweber method

Landweber iteration

- ▶ Terminate as $||F(\sigma_n^{\delta}) u^{\delta}||_X \le \tau \delta$ (discrepancy principle)

- ▶ Numerous evaluations of *F* for many different parameters.
- Detailed solution (e.g. FEM, FV, FD) is expensive.

→ model order reduction

The reduced problem & Properties

Assume: snapshot based reduced basis (RB) space X_N is given.

Reduced forward operator

 $F_N: \mathcal{P} \to X_N, \, \sigma \mapsto u_N^{\sigma}$ with u_N^{σ} , the reduced solution, solving

$$b(u_N^{\sigma}, v; \sigma) = f(v), \quad \forall v \in X_N.$$

- ► Certification: $\|u^{\sigma} u_{N}^{\sigma}\|_{X} \leq \Delta_{N}(\sigma) := \frac{\|v_{r}\|_{X}}{\alpha(\sigma)}$, with $\langle v_{r}, v \rangle_{X} := r(v; \sigma) := f(v) b(u_{N}^{\sigma}, v; \sigma), \forall v \in X$
- Offline/online decomposition: rapid computation of u_N^{σ}
- ▶ Reproduction of solutions: $u^{\sigma} \in X_N \Rightarrow u_N^{\sigma} = u^{\sigma}$

RBM and Inverse problems

G./Haasdonk/Harrach, A Reduced Basis Landweber method for nonlinear inverse problems, 2016 Inverse Problems 32 (3) (doi).

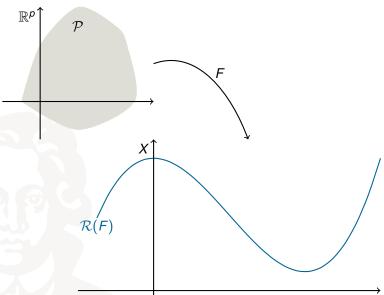
RBM & Landweber method - Various approaches

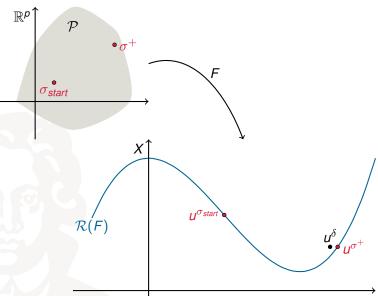
Naive approach

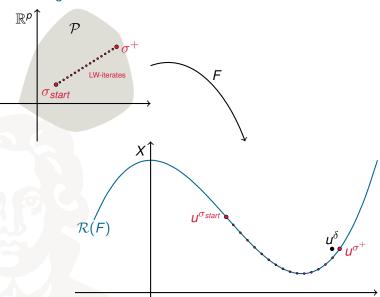
- ► Construct global X_N approximating whole $\mathcal{R}(F)$ (offline-phase)
- ▶ Rapidly compute $F_N(\sigma)$ and substitute $F(\sigma)$ for $F_N(\sigma)$ in the Landweber iteration ("online-phase")

Limitation: Only feasible for low-dimensional parameter spaces, not feasible for imaging.

Our approach: Create problem-adapted RB-space by iterative enrichment (inspired by Druskin & Zaslavski 2007, Zahr & Fahrhat 2015 and Lass 2014).



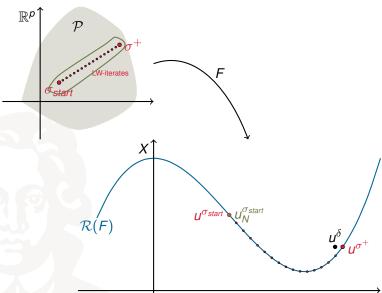




D. Garmatter: Reduced Basis Landweber method for nonlinear ill-posed inverse problems

GOETHE UNIVERSITÄT

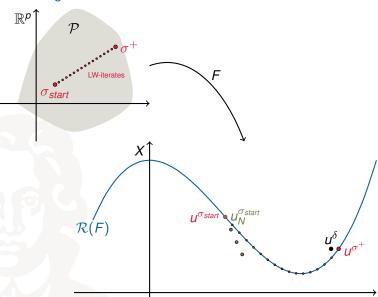
Combining RBM & LW - Idea



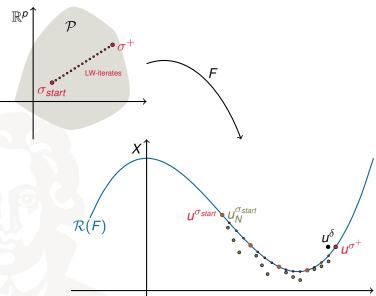
D. Garmatter: Reduced Basis Landweber method for nonlinear ill-posed inverse problems

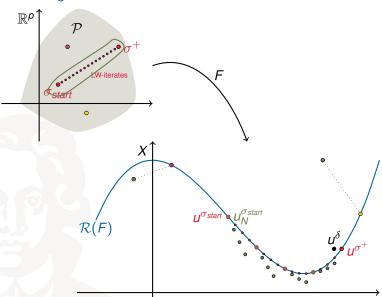
GOETHE UNIVERSITÄT

Combining RBM & LW - Idea



D. Garmatter: Reduced Basis Landweber method for nonlinear ill-posed inverse problems





Reduced Basis Landweber (RBL) method

Algorithm 1 RBL($\sigma_{start}, \tau, \Phi_N$)

- 1: $n:=0,\ \sigma_0^\delta:=\sigma_{start}$ 2: **while** $\|F(\sigma_n^\delta)-u^\delta\|_X>\tau\delta$ **do** 3: enrich RB using σ_n^δ 4: $i:=1,\ \sigma_i^\delta:=\sigma_n^\delta$ 5: **repeat**
- 6: calculate reduced Landweber update $s_{n,i}$
- 7: $\sigma_{i+1}^{\delta} := \sigma_{i}^{\delta} + \omega s_{n,i}$
- 8: i := i + 1
- 9: until $\|F_N(\sigma_i^{\delta}) u^{\delta}\|_X \le \tau \delta$ or $\Delta_N(\sigma_i^{\delta}) > (\tau 2)\delta$
- 10: $\sigma_{n+1}^{\delta} := \sigma_{i}^{\delta}$
- 11: n := n + 1
- 12: end while
- 13: **return** $\sigma_{RBL} := \sigma_n^{\delta}$

The dual problem

Recall
$$\sigma_{n+1}^{\delta} := \sigma_n^{\delta} + \omega F'(\sigma_n^{\delta})^* (u^{\delta} - F(\sigma_n^{\delta}))$$

For $\sigma, \kappa \in \mathcal{P}$ and $I \in X$, one can show

$$\langle \kappa, F'(\sigma)^* I \rangle_{\mathcal{P}} = \int_{\Omega} \kappa \nabla u^{\sigma} \cdot \nabla u^{\sigma}_{I} \, dx,$$
 (2)

with $u_I^{\sigma} \in X$ the unique solution of the dual problem

$$b(u, v; \sigma) = m(v; l)$$
, for all $v \in X$, $m(v; l) := -\int_{\Omega} l v dx$.

In Algorithm 1 \rightsquigarrow two RB spaces $X_{N.1}$, $X_{N.2}$

- enrich $X_{N,1}$ via $F(\sigma_n^{\delta})$ and $X_{N,2}$ via $u_I^{\sigma_n^{\delta}}$ with $I:=u^{\delta}-F(\sigma_n^{\delta})$
- \triangleright calculate $s_{n,i}$ using (2) and associated reduced solutions

Numerics - compare reconstructions

Setting:
$$p = 900$$
, $\tau = 2.5$, $\delta = 1\%$ and $\omega = \frac{1}{2}(\|F'(\sigma_{start})\|)^{-1}$.

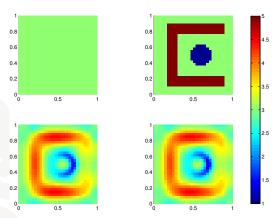


Figure: σ_{start} (top left), exact solution σ^+ (top right). Reconstruction via RBL method (bottom left) and Landweber method (bottom right).

Numerics - time comparison

- Outer iteration: space enrichment, projection ("offline")
- ► Inner iteration: one iteration of repeat loop ("online")

Algorithm	Landweber	RBL	
time (s)	187189	14661	
# Iterations	608067	outer	20
		inner	608083
time per Iteration (s)	0.308	outer	3.705
		inner	0.024
# forward solves	1216134	40	

$$\|\sigma_{RBL} - \sigma_{LW}\|_{\mathcal{P}} \approx 1.118 \cdot 10^{-5}$$

Numerics - regularization property

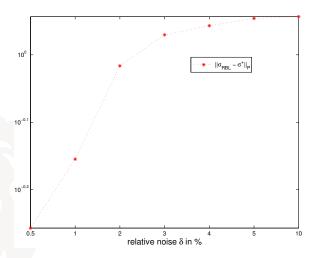
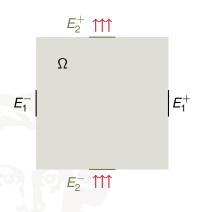


Figure: Error $\|\sigma_{RBL} - \sigma^+\|_{\mathcal{P}}$ over the decreasing relative noise level δ .

Current Work

Magnet Resonance Eletrical Impedance Tomography



Inverse Problem

- Object Ω with electrode pairs E_j[±] attached to it
- Apply current between electrode pair
- generates magnetic flux density B (measurable with MRI scanner)
- Use this data to reconstruct conductivity of object

 $\rightsquigarrow \nabla^2$ -Bz-Algorithm (Seo, Woo, et al. 2003)

MREIT - first numerics (10000 pixels, no noise)

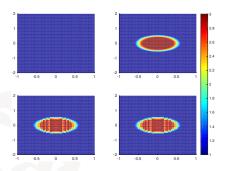


Figure: initial guess (top left), exact solution (top right), reconstruction via ∇^2 -Bz-Algorithm (bottom left) and it's RB-variant (bottom right).

- ▶ ∇²-Bz Algorithm
 14 forward solves
- RB-variant10 forward solves
- no time reduction (err. est., ...)

speed-up → work in progress!

Conclusion

- Solving inverse coefficient problem requires many PDE solves
- Reduced basis (RB) approach can speed up PDE solution
- But standard RB approach is only applicable for low dimensional parameter spaces
- ▶ Using adaptive problem-specific RB enrichment, we can handle high-dimensional parameter spaces, e.g. for imaging problems

→ RBL method outperforms standard Landweber (exp.: 13 times faster without loss of accuracy)

Further improve RB-variant of ∇^2 -Bz Algorithm

Thank you for your attention!