— Blatt 9 —

Abgabe bis 19. Dezember, 10 Uhr im Fach zum Tutorium.

Aufgabe 1. (4 Punkte) In den reellen Zahlen ist \mathbb{Z} abgeschlossen. Gilt das auch in \mathbb{Q}_p ?

- Berechnen Sie den Abschluss von \mathbb{Z} in \mathbb{Q}_p .
- Folgern Sie, dass in \mathbb{Q}_p gilt: Cauchy-Folgen in $\mathbb{Z} \subset \mathbb{Q}_p$ konvergieren in \mathbb{Q}_p mit einem Grenzwert in \mathbb{Z}_p .

Aufgabe 2. (4 Punkte)

- Zeigen Sie, dass eine p-adische Zahl $x = \sum_{n=n_0}^{\infty} a_n p^n$ mit $0 \le a_n \le p-1$ in \mathbb{Q} liegt, wenn die Folge $(a_n)_{n \ge n_0}$ periodisch wird, d. h. wenn es einen Index $N \ge n_0$ und eine natürliche Zahl k gibt mit der Eigenschaft $a_{n+k} = a_n$ für alle $n \ge N$.
- Finden Sie die rationale Zahl, die durch die 3-adische Reihe

$$2+3+3^2+2\cdot 3^3+3^4+3^6+2\cdot 3^7+3^8+3^{10}+2\cdot 3^{11}+3^{12}+\dots$$

(Die Ziffernfolge ist also 21121012101210...) dargestellt wird.

Hinweis. Der Beweis verläuft analog zum Beweis der Rationalität periodischer Dezimalbrüche.

Bemerkung. Die Periodizität der Dezimalbruchentwicklung ist auch bei \mathbb{R} eine Charakterisierung der rationalen Zahlen.