

Reduced Basis Methods for Inverse Problems

Dominik Garmatter

garmatter@math.uni-frankfurt.de

Group for Numerics of Partial Differential Equations, Goethe University Frankfurt, Germany

Joint work with Bastian Harrach and Bernard Haasdonk

SimTech MOR-Seminar Stuttgart, Germany, 9th of February, 2017.

Introduction

Abstract problem formulation

- ▶ Parameter-to-solution map: $F : \sigma \in \mathcal{P} \mapsto u^{\sigma} \in X$ (elliptic PDE)
- Imaging context: P very high-dimensional
- The (measured) data can be u^{σ} or just depend on u^{σ}

Aim: speed-up solution procedure of inverse problem.

Iterative solution of Inverse Problem

Usually parameter-to-solution map F is expensive

~ Reduced Basis Methods

Reduced Basis Methods (RBM): Idea

- Solution manifold $\mathcal{M} := \{ u^{\sigma} \mid \sigma \in \mathcal{P} \}$
- Construction of X_N via *carefully* chosen *snapshots* u^{σ_i}

Assume: snapshot-based reduced basis (RB) space given: $X_N := \operatorname{span} \{\phi_1, \dots, \phi_N\}$ with $\phi_i = u^{\sigma_i}$.

Reduced problem (Galerkin projection)

For $\sigma \in \mathcal{P}$, find $u_N^{\sigma} \in X_N \subset X$, the reduced solution, of

$$b(u_N^{\sigma}, v; \sigma) = f(v), \quad \forall v \in X_N.$$

RBM: Properties

- Reproduction of solutions: $u^{\sigma} \in X_N \Rightarrow u^{\sigma}_N = u^{\sigma}$
- Offline/Online-decomposition: rapid computation of u_N^{σ}

$$\|\boldsymbol{u}^{\sigma} - \boldsymbol{u}_{N}^{\sigma}\|_{X} \leq \Delta_{N}(\sigma) := \frac{\|\boldsymbol{v}_{r}\|_{X}}{\alpha(\sigma)}, \text{ with}$$
$$\langle \boldsymbol{v}_{r}, \boldsymbol{v} \rangle_{X} := r(\boldsymbol{v}; \sigma) := f(\boldsymbol{v}) - b(\boldsymbol{u}_{N}^{\sigma}, \boldsymbol{v}; \sigma), \forall \boldsymbol{v} \in X$$

Naive approach

- ► Construct global X_N approximating whole $\mathcal{M} \rightsquigarrow$ offline-phase
- Use u_N^{σ} instead of u^{σ} in the solution procedure \rightsquigarrow "online-phase"

Limitation: Only feasible for low-dimensional parameter spaces, not feasible for imaging.

Our approach: Create problem-adapted RB-space by iterative enrichment (inspired by Druskin & Zaslavski 2007, Zahr & Fahrhat 2015 and Lass 2014).

Problem I: Academic Example

G./Haasdonk/Harrach, A Reduced Basis Landweber method for nonlinear inverse problems, 2016 Inverse Problems 32 (3) (doi).

Forward problem

Consider

$$abla \cdot (\sigma(x) \nabla u(x)) = 1, \ x \in \Omega := (0, 1)^2, \ u(x) = 0, \ x \in \partial \Omega.$$

• Assume: σ is piecewise constant $\rightsquigarrow \sigma(x) = \sum_{q=1}^{p} \sigma_q \chi_{\Omega_q}(x)$.

Forward operator

$$F: \mathcal{P} \to X := H_0^1(\Omega), \ \sigma \mapsto u^{\sigma}, \ u^{\sigma} \text{ the detailed solution solving}$$
$$b(u^{\sigma}, v; \sigma) = f(v), \text{ for all } v \in X, \text{ with}$$
(1a)
$$b(u, w; \sigma) := \int_{\Omega} \sigma \nabla u \cdot \nabla w \ dx, \quad f(v) := -\int_{\Omega} v \ dx.$$
(1b)

For given $X_N \subset X$: associated $F_N : \mathcal{P} \to X_N, \sigma \mapsto u_N^{\sigma}$.

Inverse Problem

For given solution $u \in X$ of (1), find corresponding parameter $\sigma^+ \in \mathcal{P}$ with $F(\sigma^+) = u$.

 Ill-posedness: solving σ⁺ = F⁻¹(u) fails (gen. F⁻¹ discont.) → Small errors get amplified
 Noisy data: u^δ with ||u - u^δ||_X < δ given (δ known) → F⁻¹(u^δ) → F⁻¹(u) as δ → 0

Goal: $R_{n(u^{\delta},\delta)}(u^{\delta}) \rightarrow F^{-1}(u)$ as $\delta \rightarrow 0$.

Idea (linear F)

- ▶ solve $F\sigma = u$ for $\sigma \rightsquigarrow$ Gaussian normal equation
- Fixed-point formulation (damping parameter ω)

$$\sigma = \sigma - \omega (F^* F \sigma - F^* u) = \sigma + \omega F^* (u - F \sigma)$$

• Iteration (for
$$u^{\delta} \in X$$
): $\sigma_{n+1}^{\delta} := \sigma_n^{\delta} + \omega F^*(u^{\delta} - F \sigma_n^{\delta})$

Landweber iteration (nonlinear: $F(\sigma) = u$)

•
$$\sigma_{n+1}^{\delta} := \sigma_n^{\delta} + \omega F'(\sigma_n^{\delta})^*(u^{\delta} - F(\sigma_n^{\delta}))$$

• Terminate as $\|F(\sigma_{n+1}^{\delta}) - u^{\delta}\|_X \le \tau \delta$ (discrepancy principle)

Algorithm 1 RBL($\sigma_{start}, \tau, \Phi_N$)

1: $n := 0, \ \sigma_0^{\delta} := \sigma_{start}$ 2: while $||F(\sigma_n^{\delta}) - u^{\delta}||_X > \tau \delta$ do enrich RB Φ_N using σ_n^{δ} 3: 4: $i := 1, \sigma_i^{\delta} := \sigma_n^{\delta}$ repeat 5: calculate reduced LW update $s_{n,i}$ (dual problem + $F_N(\sigma_i^{\delta})$) 6: 7: $\sigma_{i+1}^{\delta} := \sigma_i^{\delta} + \omega \mathbf{S}_{n\,i}$ i := i + 18: 9: until $\|F_N(\sigma_i^{\delta}) - u^{\delta}\|_X \leq \tau \delta$ or $\Delta_N(\sigma_i^{\delta}) > (\tau - 2)\delta$ 10: $\sigma_{n+1}^{\delta} := \sigma_i^{\delta}$ 11: n := n + 112: end while 13: return $\sigma_{BBL} := \sigma_n^{\delta}$

Numerics: compare reconstructions

Setting: p = 900, $\tau = 2.5$, $\delta = 1\%$ and $\omega = \frac{1}{2} (\|F'(\sigma_{start})\|)^{-1}$.

Figure: σ_{start} (top left), σ^+ (top right), σ_{RBL} (bottom left), σ_{LW} (bottom right).

Numerics: time comparison

- Outer iteration: space enrichment, projection ("offline")
- Inner iteration: one iteration of repeat loop ("online")

Algorithm	Landweber	RBL	
time (s)	187189	14661	
# Iterations	608067	outer	20
		inner	608083
time per Iteration (s)	0.308	outer	3.705
		inner	0.024
# forward solves	1216134	40	

$$\|\sigma_{RBL} - \sigma_{LW}\|_{\mathcal{P}} \approx 1.118 \cdot 10^{-5}$$

Indermediate Conclusion

- Solving inverse coefficient problem requires many PDE solves
- Reduced basis (RB) approach can speed up PDE solution
- But standard RB approach is only applicable for low dimensional parameter spaces
- Using adaptive problem-specific RB enrichment, we can handle high-dimensional parameter spaces, e.g. for imaging problems

Question: Performance and applicability of the methodology in modern algorithms?

Problem II: Magnetic Resonance Electrical Impedance Tomography¹

¹Based on Seo, Woo, et al. since 2003

Motivation: Electrical Impedance Tomography (EIT)

- ▶ Setting: Imaging object $O \subset \mathbb{R}^3$ with electrode pairs attached
- Aim: reconstruct cross-sectional (Ω = O ∩ {z = z₀} ⊂ ℝ²) image of electrical conductivity inside Ω

In EIT

- Data: Current-Voltage measurements on boundary
- Difficulty: highly ill-posed
 volume low spatial resolution

Aim: achieve higher resolution of conductivity σ .

MREIT: Setting

- ► Object Ω with two electrode pairs E[±]_j attached
- Place object inside MRI-Scanner
- Apply current / between electrode pair
- Generates magnetic flux density B (z-comp. measurable with MRI scanner)

→ Full internal data set to overcome ill-posedness

Forward problem

Consider (j = 1, 2 determines active electrode pair)

$$\nabla \cdot (\sigma \nabla u_j) = 0 \text{ in } \Omega, \quad I_j = \int_{E_j^+} \sigma \frac{\partial u_j}{\partial \mathbf{n}} ds = -\int_{E_j^-} \sigma \frac{\partial u_j}{\partial \mathbf{n}} ds \quad (2a)$$
$$\nabla u_j \times \mathbf{n} = 0, \text{ on } E_j^+ \cup E_j^-, \quad \sigma \frac{\partial u_j}{\partial \mathbf{n}} = 0 \text{ on } \partial \Omega \setminus \overline{\left(E_j^+ \cup E_j^-\right)} \quad (2b)$$

$$\blacktriangleright \mathcal{P} \equiv \mathcal{C}^1_{\pm}(\bar{\Omega}) := \{ \sigma \in \mathcal{C}^1(\bar{\Omega}) \mid 0 < \underline{\sigma} \le \sigma \le \overline{\sigma} < \infty \}$$

Unique solution of (2) up to an additive constant

Inverse Problem

Aim: Determine σ from *B*.

Maxwell Equations

$$-\sigma
abla u_j = rac{1}{\mu_0}
abla imes B^j$$
 (Ampère's law) and $abla \cdot B^j = 0$

•
$$\nabla \times$$
 of Ampère's law $\rightsquigarrow \nabla u_j \times \nabla \sigma = \frac{1}{\mu_0} \nabla^2 B^j$

• Only B_z^{I} measurable and two different electrode pairs/currents

Recovery of σ from $\nabla\sigma$

So far: $\nabla \sigma$ obtainable in Ω from $\nabla^2 B_z^j$ via (**CR**). How to get σ ?

► Fundamental solution: for $\mathbf{r} = (x, y), \mathbf{r}' = (x', y') \in \Omega \subset \mathbb{R}^2$

$$\Phi(\mathbf{r} - \mathbf{r}') := \frac{1}{2\pi} \ln |\mathbf{r} - \mathbf{r}'| \quad \text{fulfilling} \quad \nabla^2 \Phi(\mathbf{r} - \mathbf{r}') = \delta(\mathbf{r} - \mathbf{r}')$$

• For $\sigma \in C^1(\overline{\Omega})$ one can show

$$\sigma(\mathbf{r}) = -\int_{\Omega} \nabla_{\mathbf{r}'} \Phi(\mathbf{r} - \mathbf{r}') \cdot \nabla \sigma(\mathbf{r}') d\mathbf{r}' + \int_{\partial \Omega} \nu(\mathbf{r}') \cdot \nabla_{\mathbf{r}'} \Phi(\mathbf{r} - \mathbf{r}') \sigma(\mathbf{r}') dl_{\mathbf{r}'}$$
(3)

GOETHE UNIVERSITÄT FRANKFURT AM MAIN

Harmonic B_z Algorithm²

- Idea: fixed-point iteration of (3) + (CR) for $\nabla \sigma$ in Ω
- ► Assume: $\sigma^+ \in \mathcal{P}$ with $\sigma^+ \mid_{\Omega \setminus \tilde{\Omega}} = \sigma_b, \sigma_b > 0, \tilde{\Omega} \subset \Omega, \sigma_b$ known

Algorithm 2 BZ(σ_b , μ_0 , tol)

1:
$$n := 0, \sigma^{0} := \sigma_{b}$$

2: Calculate BI(\mathbf{r}) := $\int_{\partial\Omega} \nu(\mathbf{r}') \cdot \nabla_{\mathbf{r}'} \Phi(\mathbf{r} - \mathbf{r}') \ln \sigma^{+}(\mathbf{r}') dI_{\mathbf{r}'}$
3: repeat
4: GU(\mathbf{r}) := $\frac{1}{\mu_{0}} \sigma^{n} \mathbb{A}[\sigma^{n}]^{-1} \left(\begin{array}{c} \nabla^{2} B_{Z,+}^{1} \\ \nabla^{2} B_{Z,+}^{2} \end{array} \right) (\mathbf{r})$
5: $\ln \sigma^{n+1}(\mathbf{r}) := \mathrm{BI}(\mathbf{r}) - \int_{\Omega} \nabla_{\mathbf{r}'} \Phi(\mathbf{r} - \mathbf{r}') \cdot \mathrm{GU}(\mathbf{r}') d\mathbf{r}'$
6: $n := n + 1$
7: until $\| \ln \sigma^{n} - \ln \sigma^{n-1} \|_{\mathcal{P}} \le tol$
8: return $\sigma_{BZ} := \sigma^{n}$

²Seo, Woo 2003

Harmonic B_z Algorithm: convergence

Define
$$\exists (\sigma_b, \epsilon_0) := \{ \sigma \in \mathcal{P} \mid \sigma \mid_{\Omega \setminus \tilde{\Omega}} = \sigma_b, \|\nabla \ln \sigma\|_{\mathcal{C}(\Omega)} < \epsilon_0 \}.$$

Theorem³

There exists $0 < \epsilon < \epsilon_0$, such that for each $\sigma^+ \in \Xi(\sigma_b, \epsilon_0)$ with $\|\nabla \ln \sigma^+\|_{C(\Omega)} \le \epsilon$ the sequence $\{\sigma^n\}$ generated by the Harmonic B_z Algorithm with initial guess σ_b satisfies

$$\sigma^{n} \equiv \sigma_{b} \text{ in } \Omega \setminus \tilde{\Omega}, \quad \| \ln \sigma^{n} - \ln \sigma^{+} \|_{C^{1}(\tilde{\Omega})} \leq K \left(\frac{1}{2} \right)^{n} \epsilon,$$

with $K := diam(\Omega) + 1$.

³Seo, Woo, Liu, 2010

Harmonic B_z Algorithm and RBM

- ► Idea: Replace $u_i^{\sigma_n}$ (see $\mathbb{A}[\sigma^n]$) in Algo. 2 by approximations $u_{i,N}^{\sigma_n}$
- Assumptions (for all n = 0, 1, 2, ...)
 - $u_{j,N}^{\sigma_n} \in C^1(\tilde{\Omega})$
 - $\| \nabla u_{j,N}^{\sigma_n} \nabla u_j^{\sigma_n} \|_{C(\tilde{\Omega})} \leq \epsilon^{n+1} C, \quad \epsilon \text{ from Theorem and } C > 0$

Assumptions fulfilled \Rightarrow Theorem is replicated

Applications

- Fineness of FEM-mesh (actual numerical convergence)
- For RB-version: how to control ||∇u^{σ_n}_{j,N} − ∇uⁿ_j||_{C(Ω̃)}?
 → work in progress (proof W^{1,∞} version of Theorem)

Reduced Basis Harmonic B_z Algorithm

Algorithm 3 RBZ(
$$\sigma_b, \mu_0, tol_1, tol_2, \Psi_{n,1}, \Psi_{n,2}$$
)

1:
$$n := 0, \sigma_0 := \sigma_b$$

2: Calculate BI(\mathbf{r}) := $\int_{\partial\Omega} \nu(\mathbf{r}') \cdot \nabla_{\mathbf{r}'} \Phi(\mathbf{r} - \mathbf{r}') \ln \sigma^+(\mathbf{r}') dl_{\mathbf{r}'}$
3: **repeat**
4: enrich RBs $\Psi_{n,1}, \Psi_{n,2}$ using $u_1^{\sigma_n}, u_2^{\sigma_n}$
5: $i := 1, \sigma^i := \sigma^n$
6: **repeat**
7: $\operatorname{GU}(\mathbf{r}) := \frac{1}{\mu_0} \sigma^i \mathbb{A}_N[\sigma^i]^{-1} \left(\begin{array}{c} \nabla^2 B_{2,+}^1 \\ \nabla^2 B_{2,+}^2 \end{array} \right) (\mathbf{r})$
8: $\ln \sigma^{i+1}(\mathbf{r}) := \operatorname{BI}(\mathbf{r}) - \int_{\Omega} \nabla_{\mathbf{r}'} \Phi(\mathbf{r} - \mathbf{r}') \cdot \operatorname{GU}(\mathbf{r}') d\mathbf{r}'$
9: $i = i + 1$
10: **until** $\|\sigma^i - \sigma^{i-1}\|_{\mathcal{P}} \leq tol_1 \operatorname{or} \Delta_{N,1}(\sigma_i) > tol_2 \operatorname{or} \Delta_{N,2}(\sigma_i) > tol_2$
11: $\sigma^{n+1} := \sigma^i, n := n + 1$
12: **until** $\|\sigma^i - \sigma^{i-1}\|_{\mathcal{P}} \leq tol_1$
13: **return** $\sigma_{BBZ} := \sigma^n$

Numerics - Setting

•
$$\Omega := [-1, 1] \times [-2, 2]$$

• $E_1^{\pm} := \{(\pm 1, y) \mid |y| < 0.1\}, E_2^{\pm} := \{(x, \pm 2) \mid |x| < 0.1\}$
• For $r = \sqrt{x^2 + y^2}, x, y \in \Omega$

$$\sigma^+ pprox \sigma(r) := egin{cases} 10\left(\cos(r) - rac{\sqrt{3}}{2}
ight) + 2, \ 0 \leq r \leq \pi/6 \ 2, \ ext{otherwise} \end{cases} \in \mathcal{P}$$

using 40 × 80 rectangles (piecewise constant approximation) • $\sigma_b = 2, \mu_0 = 1, tol_1 = 10^{-5}, tol_2 = \frac{1}{100}$, no noise

Numerics - Comparison

Figure: σ_b (top left), σ^+ (top right), σ_{BZ} (bottom left), σ_{RBZ} (bottom right).

► BZ: 3.45s and 16 PDE solves RBZ: 2.21s and 6 PDE solves ► $\|\sigma^+ - \sigma_{BZ}\|_{\mathcal{P}} \approx 0.05$, $\|\sigma_{BZ} - \sigma_{RBZ}\|_{\mathcal{P}} \approx 6.760 \cdot 10^{-6}$

Conclusion

Summary:

- Standard RB approach can not be applied to speed-up inverse problems in imaging context
- Adaptive RB approach works very well, both in academic and complex real-world problems
- Interesting observation: type of approximation does not affect convergence Theorem for RB-MREIT
- Future work:
 - Improve theoretical and numerical results in MREIT
 - Publish MREIT paper

Thank you for your attention!

Appendix

The dual problem

Recall
$$\sigma_{n+1}^{\delta} := \sigma_n^{\delta} + \omega F'(\sigma_n^{\delta})^* (u^{\delta} - F(\sigma_n^{\delta}))$$

For $\sigma, \kappa \in \mathcal{P}$ and $l \in X$, one can show

$$\langle \kappa, F'(\sigma)^* I \rangle_{\mathcal{P}} = \int_{\Omega} \kappa \nabla u^{\sigma} \cdot \nabla u_I^{\sigma} \, dx,$$
 (4)

with $u_l^{\sigma} \in X$ the unique solution of the dual problem

$$b(u, v; \sigma) = m(v; l)$$
, for all $v \in X$, $m(v; l) := -\int_{\Omega}^{\infty} l v dx$.

In Algorithm 1: two RB spaces $X_{N,1}$, $X_{N,2}$

- enrich $X_{N,1}$ via $F(\sigma_n^{\delta})$ and $X_{N,2}$ via $u_l^{\sigma_n^{\delta}}$ with $l := u^{\delta} F(\sigma_n^{\delta})$
- calculate s_{n,i} using (4) and associated reduced solutions

Numerics - algorithmic behaviour

Figure: Update error $||s_{n,RBL} - s_{n,LW}||_{\mathcal{P}}$ over the course of the iteration.

Numerics - convergence

