Reduced Basis Methods for Inverse Problems

Dominik Garmatter
garmatter@math.uni-frankfurt.de
Group for Numerics of Partial Differential Equations, Goethe University Frankfurt, Germany
Joint work with Bastian Harrach and Bernard Haasdonk
SimTech MOR-Seminar
Stuttgart, Germany, 9th of February, 2017.

Introduction

D. Garmatter: Reduced Basis Methods for Inverse Problems

Abstract problem formulation

- Parameter-to-solution map: $F: \sigma \in \mathcal{P} \mapsto u^{\sigma} \in X$ (elliptic PDE)
- Imaging context: \mathcal{P} very high-dimensional
- The (measured) data can be u^{σ} or just depend on u^{σ}

Aim: speed-up solution procedure of inverse problem.

Iterative solution of Inverse Problem

- Given initial guess $\sigma^{0}:=\sigma^{\text {start }}$

- Usually parameter-to-solution map F is expensive
\rightsquigarrow Reduced Basis Methods

Reduced Basis Methods (RBM): Idea

- Solution manifold $\mathcal{M}:=\left\{u^{\sigma} \mid \sigma \in \mathcal{P}\right\}$
- Construction of X_{N} via carefully chosen snapshots $u^{\sigma_{i}}$
D. Garmatter: Reduced Basis Methods for Inverse Problems

Detailed problem (e.g. fine grid FEM)

For $\sigma \in \mathcal{P}$, find $u^{\sigma} \in X$, the detailed solution, of

$$
b\left(u^{\sigma}, v ; \sigma\right)=f(v), \text { for all } v \in X
$$

Assume: snapshot-based reduced basis (RB) space given:

$$
X_{N}:=\operatorname{span}\left\{\phi_{1}, \ldots, \phi_{N}\right\} \text { with } \phi_{i}=u^{\sigma_{i}}
$$

Reduced problem (Galerkin projection)

For $\sigma \in \mathcal{P}$, find $u_{N}^{\sigma} \in X_{N} \subset X$, the reduced solution, of

$$
b\left(u_{N}^{\sigma}, v ; \sigma\right)=f(v), \quad \forall v \in X_{N}
$$

RBM: Properties

- Reproduction of solutions: $u^{\sigma} \in X_{N} \Rightarrow u_{N}^{\sigma}=u^{\sigma}$
- Offline/Online-decomposition: rapid computation of u_{N}^{σ}

Certification - rigorous a-posteriori error estimator

$$
\begin{aligned}
& \left\|u^{\sigma}-u_{N}^{\sigma}\right\|_{x} \leq \Delta_{N}(\sigma):=\frac{\left\|v_{r}\right\|_{x}}{\alpha(\sigma)}, \text { with } \\
& \left\langle v_{r}, v\right\rangle_{x}:=r(v ; \sigma):=f(v)-b\left(u_{N}^{\sigma}, v ; \sigma\right), \forall v \in X
\end{aligned}
$$

Naive approach

- Construct global X_{N} approximating whole $\mathcal{M} \rightsquigarrow$ offline-phase
- Use u_{N}^{σ} instead of u^{σ} in the solution procedure \rightsquigarrow „online-phase" Limitation: Only feasible for low-dimensional parameter spaces, not feasible for imaging.

Our approach: Create problem-adapted RB-space by iterative enrichment (inspired by Druskin \& Zaslavski 2007, Zahr \& Fahrhat 2015 and Lass 2014).

Adaptive RBM \& IP: Idea

Adaptive RBM \& IP: Idea

Adaptive RBM \& IP: Idea

Adaptive RBM \& IP: Idea

Problem I: Academic Example

G./Haasdonk/Harrach, A Reduced Basis Landweber method for nonlinear inverse problems, 2016 Inverse Problems 32 (3) (doi).

Forward problem

- Consider

$$
\nabla \cdot(\sigma(x) \nabla u(x))=1, x \in \Omega:=(0,1)^{2}, u(x)=0, x \in \partial \Omega
$$

- Assume: σ is piecewise constant $\rightsquigarrow \sigma(x)=\sum_{q=1}^{p} \sigma_{q} \chi_{\Omega_{q}}(x)$.

Forward operator

$F: \mathcal{P} \rightarrow X:=H_{0}^{1}(\Omega), \sigma \mapsto u^{\sigma}, u^{\sigma}$ the detailed solution solving

$$
\begin{equation*}
b\left(u^{\sigma}, v ; \sigma\right)=f(v), \text { for all } v \in X, \text { with } \tag{1a}
\end{equation*}
$$

$b(u, w ; \sigma):=\int_{\Omega} \sigma \nabla u \cdot \nabla w d x, \quad f(v):=-\int_{\Omega} v d x$.

- For given $X_{N} \subset X$: associated $F_{N}: \mathcal{P} \rightarrow X_{N}, \sigma \mapsto u_{N}^{\sigma}$.

Inverse problem and its difficulties

Inverse Problem

For given solution $u \in X$ of (1), find corresponding parameter $\sigma^{+} \in \mathcal{P}$ with $F\left(\sigma^{+}\right)=u$.

- III-posedness: solving $\sigma^{+}=F^{-1}(u)$ fails (gen. F^{-1} discont.)
\rightsquigarrow Small errors get amplified
- Noisy data: u^{δ} with $\left\|u-u^{\delta}\right\| x<\delta$ given (δ known)

$$
\rightsquigarrow F^{-1}\left(u^{\delta}\right) \nrightarrow F^{-1}(u) \text { as } \delta \rightarrow 0
$$

Goal: $R_{n\left(u^{\delta}, \delta\right)}\left(u^{\delta}\right) \rightarrow F^{-1}(u)$ as $\delta \rightarrow 0$.

Landweber method - a Fixed-point iteration

Idea (linear F)

- solve $F \sigma=u$ for $\sigma \rightsquigarrow$ Gaussian normal equation
- Fixed-point formulation (damping parameter ω)

$$
\sigma=\sigma-\omega\left(F^{*} F \sigma-F^{*} u\right)=\sigma+\omega F^{*}(u-F \sigma)
$$

- Iteration (for $u^{\delta} \in X$): $\sigma_{n+1}^{\delta}:=\sigma_{n}^{\delta}+\omega F^{*}\left(u^{\delta}-F \sigma_{n}^{\delta}\right)$

Landweber iteration (nonlinear: $F(\sigma)=u$)

- $\sigma_{n+1}^{\delta}:=\sigma_{n}^{\delta}+\omega F^{\prime}\left(\sigma_{n}^{\delta}\right)^{*}\left(u^{\delta}-F\left(\sigma_{n}^{\delta}\right)\right)$
- Terminate as $\left\|F\left(\sigma_{n+1}^{\delta}\right)-u^{\delta}\right\| x \leq \tau \delta$ (discrepancy principle)

Algorithm $1 \mathrm{RBL}\left(\sigma_{\text {start }}, \tau, \Phi_{N}\right)$

1: $n:=0, \sigma_{0}^{\delta}:=\sigma_{\text {start }}$
2: while $\left\|F\left(\sigma_{n}^{\delta}\right)-u^{\delta}\right\|_{x}>\tau \delta$ do
3: enrich $\operatorname{RB} \Phi_{N}$ using σ_{n}^{δ}
4: $\quad i:=1, \sigma_{i}^{\delta}:=\sigma_{n}^{\delta}$
5: repeat
6: \quad calculate reduced LW update $s_{n, i}$ (dual problem $+F_{N}\left(\sigma_{i}^{\delta}\right)$)
7: $\quad \sigma_{i+1}^{\delta}:=\sigma_{i}^{\delta}+\omega s_{n, i}$
8: $\quad i:=i+1$
9: until $\left\|F_{N}\left(\sigma_{i}^{\delta}\right)-u^{\delta}\right\|_{x} \leq \tau \delta$ or $\Delta_{N}\left(\sigma_{i}^{\delta}\right)>(\tau-2) \delta$
10: $\quad \sigma_{n+1}^{\delta}:=\sigma_{i}^{\delta}$
11: $n:=n+1$
12: end while
13: return $\sigma_{R B L}:=\sigma_{n}^{\delta}$

Setting: $p=900, \tau=2.5, \delta=1 \%$ and $\omega=\frac{1}{2}\left(\left\|F^{\prime}\left(\sigma_{\text {start }}\right)\right\|\right)^{-1}$.

Figure: $\sigma_{\text {start }}$ (top left), σ^{+}(top right), $\sigma_{R B L}$ (bottom left), $\sigma_{L W}$ (bottom right).

- Outer iteration: space enrichment, projection („offline")
- Inner iteration: one iteration of repeat loop („online")

Algorithm	Landweber	RBL	
time (s)	187189	14661	
\# Iterations	608067	outer	20
		inner	608083
time per Iteration (s)	0.308	outer	3.705
		inner	0.024
\# forward solves	1216134	40	

$$
\left\|\sigma_{R B L}-\sigma_{L W}\right\|_{\mathcal{P}} \approx 1.118 \cdot 10^{-5}
$$

- Solving inverse coefficient problem requires many PDE solves
- Reduced basis (RB) approach can speed up PDE solution
- But standard RB approach is only applicable for low dimensional parameter spaces
- Using adaptive problem-specific RB enrichment, we can handle high-dimensional parameter spaces, e.g. for imaging problems

Question: Performance and applicability of the methodology in modern algorithms?

Problem II: Magnetic Resonance Electrical Impedance Tomography ${ }^{1}$

${ }^{1}$ Based on Seo, Woo, et al. since 2003
D. Garmatter: Reduced Basis Methods for Inverse Problems

Motivation: Electrical Impedance Tomography (EIT)

- Setting: Imaging object $O \subset \mathbb{R}^{3}$ with electrode pairs attached
- Aim: reconstruct cross-sectional $\left(\Omega=O \cap\left\{z=z_{0}\right\} \subset \mathbb{R}^{2}\right)$ image of electrical conductivity inside Ω

In EIT

- Data: Current-Voltage measurements on boundary
- Difficulty: highly ill-posed
\rightsquigarrow low spatial resolution

MREIT: Setting

Aim: achieve higher resolution of conductivity σ.

- Object Ω with two electrode pairs $E_{j}^{ \pm}$ attached
- Place object inside MRI-Scanner
- Apply current / between electrode pair
- Generates magnetic flux density B (z-comp. measurable with MRI scanner)
\rightsquigarrow Full internal data set to overcome ill-posedness

Forward problem

Consider ($j=1,2$ determines active electrode pair)

$$
\begin{align*}
& \nabla \cdot\left(\sigma \nabla u_{j}\right)=0 \text { in } \Omega, \quad l_{j}=\int_{E_{j}^{+}} \sigma \frac{\partial u_{j}}{\partial \mathbf{n}} d s=-\int_{E_{j}^{-}} \sigma \frac{\partial u_{j}}{\partial \mathbf{n}} d s \tag{2a}\\
& \nabla u_{j} \times \mathbf{n}=0, \text { on } E_{j}^{+} \cup E_{j}^{-}, \quad \sigma \frac{\partial u_{j}}{\partial \mathbf{n}}=0 \text { on } \partial \Omega \backslash \overline{\left(E_{j}^{+} \cup E_{j}^{-}\right)} \tag{2b}\\
& \nabla \mathcal{P} \equiv C_{ \pm}^{1}(\bar{\Omega}):=\left\{\sigma \in C^{1}(\bar{\Omega}) \mid 0<\underline{\sigma} \leq \sigma \leq \bar{\sigma}<\infty\right\}
\end{align*}
$$

- Unique solution of (2) up to an additive constant

Aim: Determine σ from B.

- Maxwell Equations

$$
-\sigma \nabla u_{j}=\frac{1}{\mu_{0}} \nabla \times B^{j} \text { (Ampère's law) and } \nabla \cdot B^{j}=0
$$

- $\nabla \times$ of Ampère's law $\rightsquigarrow \nabla u_{j} \times \nabla \sigma=\frac{1}{\mu_{0}} \nabla^{2} B^{j}$
- Only B_{z}^{j} measurable and two different electrode pairs/currents

Core-relation (point-wise in Ω)

$$
\binom{\frac{\partial \sigma}{\partial x}}{\frac{\partial \sigma}{\partial y}}=\frac{1}{\mu_{0}} \mathbb{A}[\sigma]^{-1}\binom{\nabla^{2} B_{z}^{1}}{\nabla^{2} B_{z}^{2}}, \mathbb{A}[\sigma]:=\left(\begin{array}{ll}
\frac{\partial u_{1}}{\partial y} & -\frac{\partial u_{1}}{\partial x} \tag{CR}\\
\frac{\partial u_{2}}{\partial y} & -\frac{\partial u_{2}}{\partial x}
\end{array}\right)
$$

Recovery of σ from $\nabla \sigma$

So far: $\nabla \sigma$ obtainable in Ω from $\nabla^{2} B_{z}^{j}$ via (CR). How to get σ ?

- Fundamental solution: for $\mathbf{r}=(x, y), \mathbf{r}^{\prime}=\left(x^{\prime}, y^{\prime}\right) \in \Omega \subset \mathbb{R}^{2}$

$$
\Phi\left(\mathbf{r}-\mathbf{r}^{\prime}\right):=\frac{1}{2 \pi} \ln \left|\mathbf{r}-\mathbf{r}^{\prime}\right| \quad \text { fulfilling } \quad \nabla^{2} \Phi\left(\mathbf{r}-\mathbf{r}^{\prime}\right)=\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right)
$$

- For $\sigma \in C^{1}(\bar{\Omega})$ one can show

$$
\begin{align*}
\sigma(\mathbf{r})= & -\int_{\Omega} \nabla_{\mathbf{r}^{\prime}} \Phi\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \cdot \nabla \sigma\left(\mathbf{r}^{\prime}\right) \mathrm{d} \mathbf{r}^{\prime} \tag{3}\\
& +\int_{\partial \Omega} \nu\left(\mathbf{r}^{\prime}\right) \cdot \nabla_{\mathbf{r}^{\prime}} \Phi\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \sigma\left(\mathbf{r}^{\prime}\right) \mathrm{d} / \mathbf{r}^{\prime}
\end{align*}
$$

- Idea: fixed-point iteration of (3) $+(\mathbf{C R})$ for $\nabla \sigma$ in Ω
- Assume: $\sigma^{+} \in \mathcal{P}$ with $\left.\sigma^{+}\right|_{\Omega \backslash \tilde{\Omega}}=\sigma_{b}, \sigma_{b}>0, \tilde{\Omega} \subset \Omega, \sigma_{b}$ known

Algorithm 2 BZ $\left(\sigma_{b}, \mu_{0}\right.$, tol $)$

1: $n:=0, \sigma^{0}:=\sigma_{b}$
2: Calculate $\operatorname{BI}(\mathbf{r}):=\int_{\partial \Omega} \nu\left(\mathbf{r}^{\prime}\right) \cdot \nabla_{\mathbf{r}^{\prime}} \Phi\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \ln \sigma^{+}\left(\mathbf{r}^{\prime}\right) \mathrm{d} / \mathbf{r}^{\prime}$
3: repeat
4: $\mathrm{GU}(\mathbf{r}):=\frac{1}{\mu_{0}} \sigma^{n} \mathbb{A}\left[\sigma^{n}\right]^{-1}\binom{\nabla^{2} B_{z,+}^{1}}{\nabla^{2} B_{z,+}^{2}}$
5: $\quad \ln \sigma^{n+1}(\mathbf{r}):=\mathrm{BI}(\mathbf{r})-\int_{\Omega} \nabla_{\mathbf{r}^{\prime}} \Phi\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \cdot \mathrm{GU}\left(\mathbf{r}^{\prime}\right) \mathrm{d} \mathbf{r}^{\prime}$
6: $\quad n:=n+1$
7: until $\left\|\ln \sigma^{n}-\ln \sigma^{n-1}\right\|_{\mathcal{P}} \leq$ tol
8: return $\sigma_{B Z}:=\sigma^{n}$
${ }^{2}$ Seo, Woo 2003
D. Garmatter: Reduced Basis Methods for Inverse Problems

$$
\text { Define } \equiv\left(\sigma_{b}, \epsilon_{0}\right):=\left\{\sigma \in \mathcal{P}|\sigma|_{\Omega \backslash \tilde{\Omega}}=\sigma_{b},\|\nabla \ln \sigma\|_{C(\Omega)}<\epsilon_{0}\right\}
$$

Theorem ${ }^{3}$

There exists $0<\epsilon<\epsilon_{0}$, such that for each $\sigma^{+} \in \equiv\left(\sigma_{b}, \epsilon_{0}\right)$ with $\left\|\nabla \ln \sigma^{+}\right\|_{C(\Omega)} \leq \epsilon$ the sequence $\left\{\sigma^{n}\right\}$ generated by the Harmonic B_{z} Algorithm with initial guess σ_{b} satisfies

$$
\sigma^{n} \equiv \sigma_{b} \text { in } \Omega \backslash \tilde{\Omega}, \quad\left\|\ln \sigma^{n}-\ln \sigma^{+}\right\|_{C^{1}(\tilde{\Omega})} \leq K\left(\frac{1}{2}\right)^{n} \epsilon
$$

with $K:=\operatorname{diam}(\Omega)+1$.
${ }^{3}$ Seo, Woo, Liu, 2010
D. Garmatter: Reduced Basis Methods for Inverse Problems

- Idea: Replace $u_{j}^{\sigma_{n}}$ (see $\mathbb{A}\left[\sigma^{n}\right]$) in Algo. 2 by approximations $u_{j, N}^{\sigma_{n}}$
- Assumptions (for all $n=0,1,2, \ldots$)
- $u_{j, N}^{\sigma_{n}} \in C^{1}(\Omega)$
- $\left\|\nabla u_{j, N}^{\sigma_{n}}-\nabla u_{j}^{\sigma_{n}}\right\|_{C(\tilde{\Omega})} \leq \epsilon^{n+1} C, \quad \epsilon$ from Theorem and $C>0$

Assumptions fulfilled \Rightarrow Theorem is replicated

Applications

- Fineness of FEM-mesh (actual numerical convergence)
- For RB-version: how to control $\left\|\nabla u_{j, N}^{\sigma_{n}}-\nabla u_{j}^{n}\right\|_{C(\tilde{\Omega})}$? \rightsquigarrow work in progress (proof $W^{1, \infty}$ version of Theorem)

Algorithm $3 \operatorname{RBZ}\left(\sigma_{b}, \mu_{0}\right.$, tol $\left._{1}, t o l_{2}, \Psi_{n, 1}, \Psi_{n, 2}\right)$
1: $n:=0, \sigma_{0}:=\sigma_{b}$
2: Calculate $\operatorname{BI}(\mathbf{r}):=\int_{\partial \Omega} \nu\left(\mathbf{r}^{\prime}\right) \cdot \nabla_{\mathbf{r}^{\prime}} \Phi\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \ln \sigma^{+}\left(\mathbf{r}^{\prime}\right) \mathrm{d} / \mathbf{r}^{\prime}$
3: repeat
4: enrich RBs $\Psi_{n, 1}, \Psi_{n, 2}$ using $u_{1}^{\sigma_{n}}, u_{2}^{\sigma_{n}}$
5: $\quad i:=1, \sigma^{i}:=\sigma^{n}$
6: repeat
7: $\quad \operatorname{GU}(\mathbf{r}):=\frac{1}{\mu_{0}} \sigma^{i} \mathbb{A}_{N}\left[\sigma^{i}\right]^{-1}\binom{\nabla^{2} B_{z,+}^{1}}{\nabla^{2} B_{z,+}^{2}}(\mathbf{r})$
8: $\quad \ln \sigma^{i+1}(\mathbf{r}):=\mathrm{BI}(\mathbf{r})-\int_{\Omega} \nabla_{\mathbf{r}^{\prime}} \Phi\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \cdot \mathrm{GU}\left(\mathbf{r}^{\prime}\right) \mathrm{d} \mathbf{r}^{\prime}$
9: $\quad i=i+1$
10: until $\left\|\sigma^{i}-\sigma^{i-1}\right\|_{\mathcal{P}} \leq$ tol $_{1}$ or $\Delta_{N, 1}\left(\sigma_{i}\right)>$ tol $_{2}$ or $\Delta_{N, 2}\left(\sigma_{i}\right)>$ tol $_{2}$
11: $\quad \sigma^{n+1}:=\sigma^{i}, n:=n+1$
12: until $\left\|\sigma^{i}-\sigma^{i-1}\right\|_{\mathcal{P}} \leq$ tol $_{1}$
13: return $\sigma_{R B Z}:=\sigma^{n}$
D. Garmatter: Reduced Basis Methods for Inverse Problems

- $\Omega:=[-1,1] \times[-2,2]$
- $E_{1}^{ \pm}:=\{(\pm 1, y)| | y \mid<0.1\}, E_{2}^{ \pm}:=\{(x, \pm 2)| | x \mid<0.1\}$
- For $r=\sqrt{x^{2}+y^{2}}, x, y \in \Omega$

$$
\sigma^{+} \approx \sigma(r):=\left\{\begin{array}{l}
10\left(\cos (r)-\frac{\sqrt{3}}{2}\right)+2,0 \leq r \leq \pi / 6 \\
2, \text { otherwise }
\end{array} \in \mathcal{P}\right.
$$

using 40×80 rectangles (piecewise constant approximation)

- $\sigma_{b}=2, \mu_{0}=1$, tol $_{1}=10^{-5}$, tol $_{2}=\frac{1}{100}$, no noise

Figure: σ_{b} (top left), σ^{+}(top right), $\sigma_{B Z}$ (bottom left), $\sigma_{R B Z}$ (bottom right).

- BZ: 3.45 s and 16 PDE solves | RBZ: 2.21s and 6 PDE solves
- $\left\|\sigma^{+}-\sigma_{B Z}\right\|_{\mathcal{P}} \approx 0.05,\left\|\sigma_{B Z}-\sigma_{R B Z}\right\|_{\mathcal{P}} \approx 6.760 \cdot 10^{-6}$

Conclusion

- Summary:
- Standard RB approach can not be applied to speed-up inverse problems in imaging context
- Adaptive RB approach works very well, both in academic and complex real-world problems
- Interesting observation: type of approximation does not affect convergence Theorem for RB-MREIT
- Future work:
- Improve theoretical and numerical results in MREIT
- Publish MREIT paper

Thank you for your attention!

Appendix

D. Garmatter: Reduced Basis Methods for Inverse Problems

The dual problem

$$
\text { Recall } \sigma_{n+1}^{\delta}:=\sigma_{n}^{\delta}+\omega F^{\prime}\left(\sigma_{n}^{\delta}\right)^{*}\left(u^{\delta}-F\left(\sigma_{n}^{\delta}\right)\right)
$$

For $\sigma, \kappa \in \mathcal{P}$ and $I \in X$, one can show

$$
\begin{equation*}
\left\langle\kappa, F^{\prime}(\sigma)^{*}\right\rangle_{\mathcal{P}}=\int_{\Omega} \kappa \nabla u^{\sigma} \cdot \nabla u_{l}^{\sigma} d x \tag{4}
\end{equation*}
$$

with $u_{l}^{\sigma} \in X$ the unique solution of the dual problem

$$
b(u, v ; \sigma)=m(v ; l), \text { for all } v \in X, \quad m(v ; l):=-\int_{\Omega} I v d x
$$

In Algorithm 1: two RB spaces $X_{N, 1}, X_{N, 2}$

- enrich $X_{N, 1}$ via $F\left(\sigma_{n}^{\delta}\right)$ and $X_{N, 2}$ via $u_{1}^{\sigma_{n}^{\delta}}$ with $I:=u^{\delta}-F\left(\sigma_{n}^{\delta}\right)$
- calculate $s_{n, i}$ using (4) and associated reduced solutions

Update error - $\left\|s_{n, R B L}-s_{n, L w}\right\|_{\mathcal{P}}$
 $s_{n, R B L}:=\sigma_{n+1, R B L}-\sigma_{n, R B L}, \quad s_{n, L W}:=\sigma_{n+1, L W}-\sigma_{n, L W}$

Figure: Update error $\left\|s_{n, R B L}-s_{n, L W}\right\|_{\mathcal{P}}$ over the course of the iteration.

Numerics - convergence

Figure: Error $\left\|\sigma_{R B L}-\sigma^{+}\right\|_{\mathcal{P}}$ over the decreasing relative noise level δ.
D. Garmatter: Reduced Basis Methods for Inverse Problems

