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Abstract problem formulation

Parameter σ PDE-solution uσ Data

Inverse Problem

F

I Parameter-to-solution map: F : σ ∈ P 7→ uσ ∈ X (elliptic PDE)
I Imaging context: P very high-dimensional
I The (measured) data can be uσ or just depend on uσ

Aim: speed-up solution procedure of inverse problem.
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Iterative solution of Inverse Problem

I Given initial guess σ0 := σstart

σn uσn σn+1

Termination criterion
Deny

n := n+1
Accept

σ+ := σn+1

F

I Usually parameter-to-solution map F is expensive

 Reduced Basis Methods
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Reduced Basis Methods (RBM): Idea

XN

M

uσ1

uσ2

X

uσ
uσN

I Solution manifoldM := {uσ | σ ∈ P}
I Construction of XN via carefully chosen snapshots uσi
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RBM: The detailed & reduced problem

Detailed problem (e.g. fine grid FEM)

For σ ∈ P , find uσ ∈ X , the detailed solution, of

b(uσ, v ;σ) = f (v), for all v ∈ X .

Assume: snapshot-based reduced basis (RB) space given:
XN := span{φ1, . . . , φN} with φi = uσi .

Reduced problem (Galerkin projection)

For σ ∈ P , find uσN ∈ XN ⊂ X , the reduced solution, of

b(uσN , v ;σ) = f (v), ∀v ∈ XN .
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RBM: Properties

I Reproduction of solutions: uσ ∈ XN ⇒ uσN = uσ

I Offline/Online-decomposition: rapid computation of uσN

Certification - rigorous a-posteriori error estimator

‖uσ − uσN‖X ≤ ∆N(σ) :=
‖vr‖X

α(σ)
, with

〈vr , v〉X := r(v ;σ) := f (v)− b(uσN , v ;σ),∀v ∈ X
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RBM & Inverse Problems: Various approaches

Naive approach
I Construct global XN approximating wholeM offline-phase
I Use uσN instead of uσ in the solution procedure ”online-phase“

Limitation: Only feasible for low-dimensional parameter spaces, not
feasible for imaging.

Our approach: Create problem-adapted RB-space by iterative
enrichment (inspired by Druskin & Zaslavski 2007, Zahr & Fahrhat

2015 and Lass 2014).
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Adaptive RBM & IP: Idea

P

F

M

X
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Adaptive RBM & IP: Idea

uσstart

uσ
+

P

σstart

σ+

F

M

X
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Adaptive RBM & IP: Idea
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Adaptive RBM & IP: Idea
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Adaptive RBM & IP: Idea
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Adaptive RBM & IP: Idea
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Adaptive RBM & IP: Idea
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Problem I: Academic Example

G./Haasdonk/Harrach, A Reduced Basis Landweber method for
nonlinear inverse problems, 2016 Inverse Problems 32 (3) (doi).
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Forward problem

I Consider
∇ · (σ(x)∇u(x)) = 1, x ∈ Ω := (0, 1)2, u(x) = 0, x ∈ ∂Ω.

I Assume: σ is piecewise constant σ(x) =
∑p

q=1 σqχΩq (x).

Forward operator

F : P → X := H1
0 (Ω), σ 7→ uσ, uσ the detailed solution solving

b(uσ, v ;σ) = f (v), for all v ∈ X , with (1a)

b(u,w ;σ) :=

∫
Ω
σ∇u · ∇w dx , f (v) := −

∫
Ω

v dx . (1b)

I For given XN ⊂ X : associated FN : P → XN , σ 7→ uσN .
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Inverse problem and its difficulties

Inverse Problem

For given solution u ∈ X of (1), find corresponding parameter
σ+ ∈ P with F(σ+) = u.

I Ill-posedness: solving σ+ = F−1(u) fails (gen. F−1 discont.)

 Small errors get amplified
I Noisy data: uδ with ‖u − uδ‖X < δ given (δ known)

 F−1(uδ) 9 F−1(u) as δ → 0

Goal: Rn(uδ,δ)(uδ)→ F−1(u) as δ → 0.
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Landweber method - a Fixed-point iteration

Idea (linear F )
I solve Fσ = u for σ Gaussian normal equation
I Fixed-point formulation (damping parameter ω)

σ = σ − ω(F∗Fσ − F∗u) = σ + ωF∗(u − Fσ)

I Iteration (for uδ ∈ X ): σδn+1 := σδn + ωF∗(uδ − Fσδn)

Landweber iteration (nonlinear: F(σ) = u)
I σδn+1 := σδn + ωF ′(σδn)∗(uδ − F(σδn))

I Terminate as ‖F(σδn+1)− uδ‖X ≤ τδ (discrepancy principle)
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Reduced Basis Landweber (RBL) method

Algorithm 1 RBL(σstart , τ,ΦN )

1: n := 0, σδ0 := σstart

2: while ‖F(σδn)− uδ‖X > τδ do
3: enrich RB ΦN using σδn
4: i := 1, σδi := σδn
5: repeat
6: calculate reduced LW update sn,i (dual problem + FN(σδi ))
7: σδi+1 := σδi + ωsn,i

8: i := i + 1
9: until ‖FN(σδi )− uδ‖X ≤ τδ or ∆N(σδi ) > (τ − 2)δ

10: σδn+1 := σδi
11: n := n + 1
12: end while
13: return σRBL := σδn
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Numerics: compare reconstructions

Setting: p = 900, τ = 2.5, δ = 1% and ω = 1
2 (‖F ′(σstart)‖)−1.
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Figure: σstart (top left), σ+ (top right), σRBL (bottom left), σLW (bottom right).
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Numerics: time comparison

I Outer iteration: space enrichment, projection (”offline“)
I Inner iteration: one iteration of repeat loop (”online“)

Algorithm Landweber RBL
time (s) 187189 14661

# Iterations 608067
outer 20
inner 608083

time per Iteration (s) 0.308
outer 3.705
inner 0.024

# forward solves 1216134 40

‖σRBL − σLW‖P ≈ 1.118 · 10−5
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Indermediate Conclusion

I Solving inverse coefficient problem requires many PDE solves
I Reduced basis (RB) approach can speed up PDE solution
I But standard RB approach is only applicable for low

dimensional parameter spaces
I Using adaptive problem-specific RB enrichment, we can handle

high-dimensional parameter spaces, e.g. for imaging problems

Question: Performance and applicability of the methodology in
modern algorithms?
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Problem II: Magnetic Resonance
Electrical Impedance Tomography1

1Based on Seo, Woo, et al. since 2003
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Motivation: Electrical Impedance Tomography (EIT)

I Setting: Imaging object O ⊂ R3 with electrode pairs attached
I Aim: reconstruct cross-sectional (Ω = O ∩ {z = z0} ⊂ R2)

image of electrical conductivity inside Ω

Ω
In EIT
I Data: Current-Voltage

measurements on boundary
I Difficulty: highly ill-posed
 low spatial resolution
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MREIT: Setting

Aim: achieve higher resolution of conductivity σ.

E−1 E+
1

E−2

E+
2

Ω

I2

I Object Ω with two electrode pairs E±j
attached

I Place object inside MRI-Scanner
I Apply current I between electrode pair
I Generates magnetic flux density B

(z-comp. measurable with MRI scanner)

 Full internal data set to overcome ill-posedness
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Forward problem

Consider (j = 1, 2 determines active electrode pair)

∇ · (σ∇uj) = 0 in Ω, Ij =

∫
E+

j

σ
∂uj

∂n
ds = −

∫
E−j

σ
∂uj

∂n
ds (2a)

∇uj × n = 0, on E+
j ∪ E−j , σ

∂uj

∂n
= 0 on ∂Ω\

(
E+

j ∪ E−j
)

(2b)

I P ≡ C1
±(Ω̄) := {σ ∈ C1(Ω̄) | 0 < σ ≤ σ ≤ σ <∞}

I Unique solution of (2) up to an additive constant
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Inverse Problem

Aim: Determine σ from B.
I Maxwell Equations

−σ∇uj =
1
µ0
∇× Bj (Ampère’s law) and ∇ · Bj = 0

I ∇× of Ampère’s law ∇uj ×∇σ = 1
µ0
∇2Bj

I Only Bj
z measurable and two different electrode pairs/currents

Core-relation (point-wise in Ω)

( ∂σ
∂x
∂σ
∂y

)
=

1
µ0

A[σ]−1
(
∇2B1

z
∇2B2

z

)
, A[σ] :=

(
∂u1
∂y −∂u1

∂x
∂u2
∂y −∂u2

∂x

)
(CR)
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Recovery of σ from ∇σ

So far: ∇σ obtainable in Ω from ∇2Bj
z via (CR). How to get σ?

I Fundamental solution: for r = (x , y), r′ = (x ′, y ′) ∈ Ω ⊂ R2

Φ(r− r′) :=
1

2π
ln |r− r′| fulfilling ∇2Φ(r− r′) = δ(r− r′)

I For σ ∈ C1(Ω) one can show

σ(r) =−
∫

Ω
∇r′Φ(r− r′) · ∇σ(r′)dr′

+

∫
∂Ω
ν(r′) · ∇r′Φ(r− r′)σ(r′)dlr′

(3)
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Harmonic Bz Algorithm2

I Idea: fixed-point iteration of (3) + (CR) for ∇σ in Ω

I Assume: σ+ ∈ P with σ+ |Ω\Ω̃= σb, σb > 0, Ω̃ ⊂ Ω, σb known

Algorithm 2 BZ(σb, µ0, tol)

1: n := 0, σ0 := σb

2: Calculate BI(r) :=
∫
∂Ω ν(r′) · ∇r′Φ(r− r′) lnσ+(r′)dlr′

3: repeat

4: GU(r) := 1
µ0
σnA[σn]−1

(
∇2B1

z,+
∇2B2

z,+

)
(r)

5: lnσn+1(r) := BI(r)−
∫

Ω∇r′Φ(r− r′) ·GU(r′)dr′

6: n := n + 1
7: until ‖ lnσn − lnσn−1‖P ≤ tol
8: return σBZ := σn

2Seo, Woo 2003
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Harmonic Bz Algorithm: convergence

Define Ξ(σb, ε0) := {σ ∈ P | σ |Ω\Ω̃= σb, ‖∇ lnσ‖C(Ω) < ε0}.

Theorem3

There exists 0 < ε < ε0, such that for each σ+ ∈ Ξ(σb, ε0)
with ‖∇ lnσ+‖C(Ω) ≤ ε the sequence {σn} generated by the Har-
monic Bz Algorithm with initial guess σb satisfies

σn ≡ σb in Ω \ Ω̃, ‖ lnσn − lnσ+‖C1(Ω̃) ≤ K
(

1
2

)n

ε,

with K := diam(Ω) + 1.

3Seo, Woo, Liu, 2010
D. Garmatter: Reduced Basis Methods for Inverse Problems



Harmonic Bz Algorithm and RBM

I Idea: Replace uσn
j (see A[σn]) in Algo. 2 by approximations uσn

j,N

I Assumptions (for all n = 0, 1, 2, . . . )
I uσn

j,N ∈ C1(Ω̃)
I ‖∇uσn

j,N −∇uσn
j ‖C(Ω̃) ≤ εn+1C, ε from Theorem and C > 0

Assumptions fulfilled⇒ Theorem is replicated

Applications
I Fineness of FEM-mesh (actual numerical convergence)
I For RB-version: how to control ‖∇uσn

j,N −∇un
j ‖C(Ω̃)?

 work in progress (proof W 1,∞ version of Theorem)
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Reduced Basis Harmonic Bz Algorithm

Algorithm 3 RBZ(σb, µ0, tol1, tol2, Ψn,1, Ψn,2)

1: n := 0, σ0 := σb

2: Calculate BI(r) :=
∫
∂Ω ν(r′) · ∇r′Φ(r− r′) lnσ+(r′)dlr′

3: repeat
4: enrich RBs Ψn,1, Ψn,2 using uσn

1 , uσn
2

5: i := 1, σi := σn

6: repeat

7: GU(r) := 1
µ0
σiAN [σi ]−1

(
∇2B1

z,+
∇2B2

z,+

)
(r)

8: lnσi+1(r) := BI(r)−
∫

Ω∇r′Φ(r− r′) ·GU(r′)dr′

9: i = i + 1
10: until ‖σi − σi−1‖P ≤ tol1or ∆N,1(σi)> tol2or ∆N,2(σi)> tol2
11: σn+1 := σi , n := n + 1
12: until ‖σi − σi−1‖P ≤ tol1
13: return σRBZ := σn
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Numerics - Setting

I Ω := [−1, 1]× [−2, 2]

I E±1 := {(±1, y) | |y | < 0.1}, E±2 := {(x ,±2) | |x | < 0.1}
I For r =

√
x2 + y2, x , y ∈ Ω

σ+ ≈ σ(r) :=

{
10
(

cos(r)−
√

3
2

)
+ 2, 0 ≤ r ≤ π/6

2, otherwise
∈ P

using 40× 80 rectangles (piecewise constant approximation)
I σb = 2, µ0 = 1, tol1 = 10−5, tol2 = 1

100 , no noise
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Numerics - Comparison
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Figure: σb (top left), σ+ (top right), σBZ (bottom left), σRBZ (bottom right).

I BZ: 3.45s and 16 PDE solves RBZ: 2.21s and 6 PDE solves
I ‖σ+ − σBZ‖P ≈ 0.05, ‖σBZ − σRBZ‖P ≈ 6.760 · 10−6
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Conclusion

I Summary:
I Standard RB approach can not be applied to speed-up inverse

problems in imaging context
I Adaptive RB approach works very well, both in academic and

complex real-world problems

I Interesting observation: type of approximation does not affect
convergence Theorem for RB-MREIT

I Future work:
I Improve theoretical and numerical results in MREIT
I Publish MREIT paper

Thank you for your attention!
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Appendix
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The dual problem

Recall σδn+1 := σδn + ωF ′(σδn)∗(uδ − F(σδn))

For σ, κ ∈ P and l ∈ X , one can show

〈κ,F ′(σ)∗ l〉P =

∫
Ω
κ∇uσ · ∇uσl dx , (4)

with uσl ∈ X the unique solution of the dual problem

b(u, v ;σ) = m(v ; l), for all v ∈ X , m(v ; l) := −
∫

Ω
l v dx .

In Algorithm 1: two RB spaces XN,1, XN,2

I enrich XN,1 via F(σδn) and XN,2 via uσ
δ
n

l with l := uδ − F(σδn)

I calculate sn,i using (4) and associated reduced solutions
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Numerics - algorithmic behaviour

Update error - ‖sn,RBL − sn,LW‖P
sn,RBL := σn+1,RBL − σn,RBL, sn,LW := σn+1,LW − σn,LW

10
0

10
1

10
2

10
3

10
4

10
5

10
−20

10
−18

10
−16

10
−14

10
−12

10
−10

Number of Iterations

 

 

|| s
RBL

 − s
LW

 ||
P

Figure: Update error ‖sn,RBL − sn,LW‖P over the course of the iteration.
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Numerics - convergence
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Figure: Error ‖σRBL − σ+‖P over the decreasing relative noise level δ.
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