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Abstract

In this paper we generalize the notion of a binary branching tree
to that of a “uniform tree”. This class contains also conditioned and
size—biased branching trees. It is shown that uniform trees fulfill the
following symmetry properties: i) The subtree, spanned by the root
and k leaves, chosen purely at random, is a uniform tree, too. ii) If
we divide a uniform tree into three pieces at a branching vertex, chosen
purely at random, then the parts are uniform, too.
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1 Introduction and main result

The shape of a binary branching tree possesses properties of symmetry,
which are hardly shared by other trees. In this paper we discuss two of such
properties. We are dealing with random binary, ordered, rooted trees. Let
us first describe this class of trees more precisely.

We consider trees T, which can be thought of as describing the whole
progeny of some individual, the founding ancestor. The individuals are
identified with the edges of the tree. Each edge e possesses a length L.,
which can be regarded as the lifetime of the individual. Among the vertices
there is the root, to which the edge of the common ancestor is attached.
Going away from the root through the tree we allow, that an edge either
splits into 2 new edges or else ends in a leaf. In other words, an individual
has 2 children or none. Here is an example with 7 individuals, 3 of them
possessing children:
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We assume that the trees are ordered, which means that among siblings
there is an older and a younger one. This allows to embed the tree into
the plane (older brothers to the left, younger brothers to the right). The
number of branching vertices is denoted by N. Then, as is easy to see,
there are N 4 1 leaves and 2N + 1 edges. In the terminology of Aldous
[2] we deal with ordered (N + 1)-trees.

These assumptions allow to label the edges with the numbers 1,2,...,
2N 4+ 1, and thus to distinguish them. We use the unique labeling, char-
acterized by the following property: e has a smaller label than ¢’ in the
following two cases

— e is an ancestor of ¢ (e belongs to the path connecting €' with the
root),

— e stems from the older child and €' from the younger child of their
most recent common ancestor (e is located left to the line connecting
e’ with the root).

The above example is labeled in this manner, known as “depth—first—search”.

We call T a binary branching tree (or a binary Galton—Watson tree),
if the following holds:

— Any individual has two children with probability p and no child with
probability ¢ =1 — p, independent of the other individuals.

— The lifetimes are identically distributed random variables with exponen-
tial distribution (expectation 1, say), independent from each other and
from the splitting mechanism.

It is well-known that in case p < 1/2 such a tree T' is finite with probability
one. In order to explore its geometric shape, we apply different procedures
to T.

P, : Spanned subtrees : Choose K leaves purely at random. Let Tx
be the tree spanned by the root and these leaves. Then Ty is again
a binary rooted tree. Its edges are built up from edges in T, whose
lengths sum up to the edge—lengths of Tk .



P, : Cut and paste : Cut T up into three trees T, T. T/ at a
branching vertex in T" chosen purely at random. 7. contains the
root of T, whereas T. and T obtain the chosen vertex as their root.
Next join T¢.,77 and T/ together to another tree 7, by attaching
the roots of T! and T! to aleaf of T., chosen purely at random.

We shall show that all these trees have the same shape as 7. In fact
we shall see that 7), is again a binary branching tree. This is not exactly
true for the other trees, however, all trees belong to a class of trees, which
slightly generalizes the concept of a branching tree. Briefly we consider such
random trees, which coincide in distribution with a binary branching tree, if
both trees are conditioned on a given length and a given number of vertices.

To define this class of “uniform trees” more precisely, we need some
notation. Let

XZ:ZLj, i<2N+1,
j=1
where L; is the length of the edge with label j. Thus 0= Xo < Xj < ...
< Xony1 = L. L iscalled thelength of T, and N thesize of T. Further
we consider the topological type [T] of T. [T] results in identifying
all those trees, which differ only in the lengths of their edges but otherwise
cannot be distinguished. [17] is determined by N and by specifying, which
of the individuals 1,...,2N 4+ 1 have children and which do not. The set
of topological types of all trees with n branching vertices is denoted by
1

Tn. It is a well-known fact that 7, contains T (2:) different elements.

Clearly T is completely determined by [T] and Xi,..., Xoni1.

Definition A finite random tree T is called a uniform tree, if it
satisfies the following conditions:

i) Conditioned on the event {N =n,L =1}, n €N, [ € Ry, [1] is
uniformly distributed on the set 7.

ii) Given theevent {N =n,L =1}, (Xq,...,Xy,) is the ordered sample
of 2n independent random variables, distributed uniformly on [0, ].

iii) Given (N,L), [1] and (Xy,...,Xon) are independent.

Thus a uniform tree T is completely determined by the distribution of
(N,L). The main parameter is the distribution of the size N. The total
length L of T is of secondary importance, it plays the role of a (random)
scaling parameter. By rescaling the edge-lengths with a common (random)
factor, it can always be achieved that Lq,...,Lany1; become ii.d. with
exponential distribution. Here are some examples of uniform trees 7T



1) Branching trees with p < 1/2: Then for [t] € 7,, n € N

P(N=nL;ell;,l;+dl],j=1,....2n+1,[T] = [1])
= pnqn—l—l exp(—(ll +...+ 12n+1))dll .. .dlzn+1 s

Thus

1 2n n _n+1 l?n -1
P(N:n,LE[l,l—l—dl]):n_l_1 Pty W@ dl

and

1 2n\ ., .
P(Nzn)=n+1(n)pq+l-

2) Branching trees, conditioned on fixed size or fixed length.

3) Size-biased branching trees : These trees emerge, if one passes over
from the probability measure P, belonging to branching trees, to
the probability measure P given by dP = EN dP. This requires
EN < oo, which is true, if p < 1/2. Thus we give new probability
weights to the trees, which favour the trees according to their number
of branching vertices. It follows

~ n 2n
P(N=n)= ——— Tyttt
( ") (n+1)EN (n)p 1

As we shall see later, this implies independence of the trees T/, T" T..
— Instead one can bias according to the number of leaves; then the
corresponding formula reads

~ 1 2n\ ., .
PIN=n) =557 (n)pq+1‘

Another possibility is to bias with respect to the length, i.e. to pass
over to dP = % dP. A simple calculation shows that then

2n + 1 2n+1
P(N=n)= —T°_
pr TW=n =gy I

P(N =n) = =n).

Thus biasing according to the edge number 2N+ 1 and to the length
L amounts to the same thing. For the appealing properties of biased
trees we refer the reader to Lyons, Pemantle, Peres [10] and Geiger [8].

g

The main result of our paper now can be summarized as follows.

Theorem 1 : If the procedures P, or P, are applied to a uniform
tree T, then all resulting trees Ty, T.,T., T/, T, are uniform, too.



This will be shown in more detail in the following sections. In section 2
we analyse procedure P; by means of an algorithm to generate uniform
trees. This kind of algorithm was introduced by Aldous [1] for a somewhat
different purpose. Compare also Aldous [2] for spanned subtrees.

In section 3 we use path representations of uniform trees, which prove
useful for procedure F,. This representation, which is inspired by the pa-
pers of Le Gall [6] and Neveu, Pitman [12], relates the trees to excursions
resp. bridges of exponential random walks. Also in different contexts ran-
dom walks have proven to be very useful for the analysis of branching trees
(compare the recent papers [4], [5], [7], [9] and the papers cited therein).

A result of similar spirit as theorem 1 is due to Neveu [11], who showed,
that the tree, resulting from erasing parts of a branching tree (with general
offspring distribution), remains a branching tree.

2 An algorithm to generate uniform trees

It is no loss of generality, if one fixes the length [ and size n of a uniform
tree. In this section we give a probabilistic construction of a uniform tree
of size n and length [, which additionally to the order assigns random
labels to the leaves. In the limit this construction is Aldous’ cut—and—paste
construction of the compact continuous random tree (see [1]). We proceed
as follows:

— Take independent random variables Uy,...,U,, Vi,...,V,, uniformly
distributed on the interval [0,{], and Si,...,5, with P(S;=1)=
P(S; =-1)=1/2.

— Let 0=Yy< Y <...<Y, <Y,41 = be the ordered sample of the
random variables max(Uy, V4), ..., max(U,, V,). If Y; = max(Uy, V}),
let Z; = min(Ug, Vi); thus Z; <Y;.

— Use the points Y; € [0,{) to divide the interval [0,]) into n 4 1
pieces, and the points Z; € [0,{) to join the pieces together to a tree.
Start with the segment [0,Y;) and make 0 the root. Grow the tree
inductively by adding [Y;,Y;41) as anew branch of length Y;1; -V,
connected to the point Z;. If S; =1, let this branch grow to the
right, otherwise to the left.

In this construction each edge gets a length. The branching vertices
correspond to Zi,...,7,, and the the leaves to Y7,...,Y,41. The final
step of the algorithm is

— Assign the label j to the leaf, coming from Y.

Altogether we end up with a tree T of size n, whose leaves are labeled
with the numbers 1,...,m+4 1. It is possible to reconstruct Yi,...,Y,, 71,



cees 2y Sty S, from the tree. Y; is the distance between the root and
the leaf with label 1. Z; is the distance between the root and the most
recent common ancestor of the leaves with labels 1 and 2. Sy is 1 or -1,
depending on which of these two leaves is left and which is right. The reader
will easily complete this procedure.

The topological type of T is determined by the order of Yi,...,Y,,
A1y Ly Since Zp < Yy, thereis 1 possibility to position Z; relatively
to Y1 <...<Y,. Given Yi,...,Y,, 71, there are 3 possible positions for
74 relatively to Y7 and 7y, since Z; < Y; < ...<Y,. More generally,
given Yi,...,Y,, Z1,...,Z;—1 there are 2j — 1 possible positions of Z;.
Altogether we can arrange Yi,...,Y,, Z1,...,Z, is 1-3-...-(2n—1)
different ways, such that Y} < ... <Y, and Z; <Y, forall j. Since
(S1,...,9,) may take 2" different values, we end up with

1.3._”.(271_1)'271:”!(271)

n

different outcomes, each corresponding to a specific topological type and
labeling of the leaves. Another way to see this is to note, that there are
nlﬁ(?) ordered trees of size n and (n 4 1)! possibilities to label the
leaves.

Next we show that each possibility occurs with the same probability.
To see this note, that for independent random variables U,V with uni-
form distribution in [0,!] (max(U,V), min(U,V)) is uniformly distributed
in {(y,2z) : 0 <z <y <!} Therefore (max(Uy,V1),...,max(U,, V),
min(Uy, V1), ..., min(U,,V,,)) is uniformly distributed in {(y1,...,Yn, 21,
coyzn) 10 <z <y, <1}, and (Y4,...,Y., Z4,...,Z,) is uniformly
distributed on the set

S(”J):{(917---7%7217---7%)30§@/1 S Syn Sl,OSZ] Sy]} .

This set is the wunion of the simplices {{ex(rys - s Cxan))
0<¢ <...<c¢g, <!}, where 7 is a permutation of 1,2,...,2n with the
property 7(1) < ...<7(n), m(n+j) < w(j). Each such 7 corresponds
to a specific order of y1,...,yn, 21,...,2,. Since these simplices all have
the same volume, our claim follows.

Finally note, that for our tree X; < ... < Xg, are obtained by order-
ing Uy,...,U,, Vi,...,V,, and thus is the ordered sample of independent,
uniformly distributed random variables. Clearly the ordered sample is inde-
pendent of the relative order of Uy,...,U,,Vi,...,V,. Altogether we can
state:

Theorem 2 : The above algorithm generates a uniform tree 7T of
size n and length [. The labeling of the leaves is independent of T and
chosen purely at random.



The theorem shows that our algorithm generates uniform trees by con-
structing subtrees, which in the end turn out to be spanned from leaves,
chosen purely at random. In fact: [0,Y7) is the subtree, spanned by the
root and the leaf with label 1, which is distributed uniformly among the
leaves of 7. Next [Y1,Y2) is joined to [0,Y7) at point Z;. The resulting
tree is the subtree, spanned by the root and the leaves with labels 1 and 2,
which again in the end are located purely at random among all leaves, and
so forth.

This observation makes it easy to analyse subtrees of a uniform tree,
spanned by the root and k random leaves. We just have to analyse the tree
Ty, resulting from Yy,..., Yy, Z1, ..., Zx_1 in our construction. It is imme-
diate, that given Yy (the length of T}), then (Y1,...,Ys—1,721,..., Zk-1)
is uniformly distributed on the set S(k — 1,Y%). Thus it is obvious, that
T} is a uniform tree, too. Nothing changes, if T or T have random size.
This proves the first half of theorem 1.

There is another way to look at our construction. Y] < ... <Y, arise by
ordering the independent random variables max(Uy, V1),..., max(U,, V,,).
It is easy to see that max(U,V)? is uniform on [0,/?]. As shown above,
(Z1,...,%,) has uniform distribution on [0,Y7] x ... x [0,Y,], given
Yi,...,Y,. In other words: Z,/Yy,...,Z,/Y, are independent random
variables with uniform distribution on [0, 1]. Therefore we may reformulate
our construction as follows:

— Let ny,...,m, beindependent random variables, uniform on [0,/?]. Let
0<Y) <...<Y, <!l bethe ordered sample of 77}/2, .. .,77711/2.
— Let (1,...,(, beindependent random variables, independent of 1y, ...,

N, with uniform distribution in [0,1], and let Z; = ¢;Y;.
— Now proceed as above (with additional random variables Si,...,5,).

This version makes it easy to describe our algorithm in the limit n — oo.
Let 1?2 = n, which means, that edges have length of order n~'/2. Then
0 < Y2 <Y}? <... converges to a standard Poisson process, as n — 00.
Therefore 0 < Y; < Y3 < ... forms in the limit an inhomogeneous Poisson
process with intensity measure dp = 2ydy. Thus it turns out, that in the
limit we end up with Aldous’ cut—and—paste construction. Clearly also the
spanned subtrees T} converge to limiting trees.



3 Path representation of trees

In order to analyse the cut—and—paste procedure P, we represent uniform
trees by random paths. This approach goes back to Le Gall’s paper [6],
where random walk excursions are used for this purpose. We shall utilize
“bridges” instead of “excursions”, as this is done by Bennies [3] and Bennies,
Kersting [4].

Now it is convenient to label the vertices with the numbers 0,1,...,
2N 4+ 1 in the following way. The N 4 1 leaves are ordered from left to
right in the tree, they get the labels 1,3,5,...,2N 4+ 1 according to this
order. The even label j is attributed to the branching vertex, which is
the most recent common ancestor of the two leaves with labels 7 —1 and
j + 1. The root gets the label 0. It is easy to see that in this way each
vertex receives exactly one label. Here is an example:

Next let D;; be the distance (the length of the connecting path) between
the vertices with labels ¢ and j. Then the tree is completely determined
by the sequence of numbers Dg 1, Dy g,..., Danon4r (in this order). This
is easy to see. Build up T from left to right as follows: Draw the segment
of the tree, connecting the root and the leaf with label 1; it has length Dg ;.
Use D;3 to find the position of the vertex with label 2 on this segment.
Now add the branch from vertex 2 to the leaf 3 to the right; it has length
Dy 3. Use D34 tolocate vertex 4 on the branch from 0 to 4, and so forth.
This construction shows that the length of the tree is given by

L=Dg1+Daz+ ...+ Dananyr -

Equally we can build up T the other way round, from right to left. Then
we end up with the alternative formula

L = Doasnt1+Daovon-1+ ...+ Doy
= Dig+Dzs+...4+ Danji2ant2,

where we use the convention Donyi12n42 = Dantip -



This can be extended to marked trees. By a marked tree (7,M) we
mean a tree T together with the label M of some specified vertex
in T. (T,M) is completely determined by the sequence (—1)¥Dj 1,
k=M,...,.M+ 2N, respectively by the numbers

Dismo—Dyo = i+1+M,0 — Divarp)

7—1
> (D
=0
M+j—1
Y. (D Degn

k=M
(with Dongoyion+2+i41 = Diig1, Dangoyio = Dio).
Note that Dj;ipo0 — Dyo takes its minimum at j = 2N 4+ 2 — M.
Therefore we can identify M from this sequence, as well as the sequence
D0717 DLQ, ey D2N72N+1 and thereby T.

It is helpful to visualize this procedure by a path, as in the picture
below. It takes the value Dj;inr0— Darp at the points t; = Dysavrgr +
oo+ Dygj—im45, J=1,...,2N 4+ 2, in between it is obtained by linear
interpolation. At fony2 = 2L it returns to zero.

to i3 14 6

Its slope is +1. Local maxima and minima correspond to leaves and
branching vertices (respectively), the global minimum refers to the root. If
M =0, then the path takes only positive values, i.e. is a positive excursion.

We want to show that for a uniform tree this path is distributed uni-
formly, too. To this end we describe the path by the quantities

Y; = Dyysr +Dyyomez+ .o+ Dyrgojom2j—1
Z; = Dyyimy2+Dyyamga+ oo+ Do, m42;5 5
s = (=M.

It is easy to reconstruct the path from these numbers: #5411 —t9; = Y;11-Y,
to; —toj1 = Z; — Z;—1 and S is the slope of the path’s leftmost line
segment (since this slope is negative, iff M labels a leaf). Our discussion
shows that (Y1,...,Yn,Z1,..., 2N, S) together with L determines (7', M)



completely. Further 0 < Y] < ... <Yy < L, 0< Z1 <...< Zny < L.
Therefore, given that N =n and L=1{, (Y1,....,YNn,Z1,...,7ZN,5) takes
values in  Si(n,l) x Si(n,l) x {1, -1}, where

Si(n, ) ={(y1,-- - yn) 1 0<y1 < ...<y, <l}.

Theorem 3 : Suppose that 7T is a uniform tree of given size n
and length [. Let M be independent of T and uniformly distributed in
{0,1,...,2n+1}. Then (Y1,...,Yn,Z1,...,Z,,S) is uniformly distributed
in Si(n,l) x Si(n,l) x {1,-1} .

Proof : As in section 1 we represent T by [T] and Xy,..., Xo,.
By assumption (M, [T], X1,..., X2,) is uniformly distributed in

A, ={0,1,....2n4 1} x T, xSi(2n,!) .

Let ¢ be the mapping from A, into Si(n,l) x Si(n,l) x {1,—1} with
o(M,[T], X1,..., Xa2n) = Y1, Y, Z1, ..., Z,,5).  This mapping is, as
shown above, injective. We shall demonstrate, that it preserves the vol-
ume. Note that Yy,...,Y,, Z1,..., 7, are obtained by adding up the edge
lengths L; = X; — X;_1, 2 = 1,...,2n+ 1. The way, this is done, is
determined by M and [T]. Thus given m and [t], ¢(m,[t],z1,...,22,)
is affin—linear in z1,...,29,, the coefficients being integer—valued. There-
fore, given m and [t], the Jacobian of ¢ is an integer. Since ¢ is
injectiv, the Jacobian cannot be zero. Furthermore A, is built up from
(2n+2)-card 7, = (2n—|—2)-# (*") simplices in R?" of volume (?"/(2n)!.
This adds up to 2{*"/(n!)2. On the other hand Si(n,{) x Si(n,l) x {1, -1}
consists of two subsets of R?” with volume [?"/(n!)?, which amounts to
2027 /(n!)?, too. Therefore the Jacobian of ¢, given m and [t], can take
the value 1 or -1 only. (This can be shown also by analyzing ¢ explicitly.)
Consequently ¢ preserves the volume, and our claim follows. O

Different variants of the theorem follow as well. For example: If M is
chosen uniformly from the leaves, i.e. from {1,3,...,2n+1}, then S = —1
and (Y1,...,Y., Z1,...,Z,) is uniformly distributed in Si(n,{) x Si(n,{).
Another instance: If M = 0, then the path is a positive excursion, which
means that Z; <Y; forall j. Now (Y1,...,Y,,Z4,...,%,) is uniform in

En, ) ={(y1, - ¥n, 21, .-, 25) € St(n, 1) x Si(n,l):z; <y;}.

We use these facts to analyse procedure F,. In the sequel we assume that
M is drawn at random from the branching vertices, in other words, M is
an even number, unequal to zero. For the corresponding path this means
that its leftmost linear segment has slope 1 and the linear segment at the
other end of the path has slope -1. Since M # 0, the minimal value of the
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path is strictly negative (as in the picture). Therefore we may divide the
path into three fragments, which we denote by Fy, Iy, F5.

'

F1 F3

At the left side there is a positive section. It ends, where the path
starts taking negative values. This is Fj;. At the right side there is a
similar positive section F3. In between it remains part Fy, which starts
with slope -1 and ends with slope 1. Now a bit of reflection shows that
F; describes the tree 7. in just the same way as 7T is described by
the whole path. Note that the vertices belonging to 7! have the labels
M, M+1,...,M+2N"+1, where N’ is the size of T!. Similarly 77 is
built up from the vertices M, M —1,...,M—2N"—1, and thus is described
by F3. These parts both are positive excursions, which reflects the fact,
that vertex M becomes the root of T! and T!. The intermediate part
Fy represents 1., more precisely the marked tree (7., M). Vertex M
turns to a leaf of T,., which corresponds to the fact, that F, starts with
slope 5. = —1.

Suppose now that T is conditioned on fixed size n and fixed length
[. Then (M,[T],X1,...,Xz,) is uniformly distributed in {2,4,...,2n} x
Tn X Si(2n,1l). Thus S =1 and in view of theorem 3 (Y1,...,Y,, Z1,...,
Zy) is uniformly distributed in Si(n,{) x Si(n,l) — E(n,l). (Positive
paths are excluded because of M # 0). Suppose further that 77 77
and T. are conditioned on fixed sizes n’,n” and n. and fixed lengths
')l and [.. The branching vertices of T/, T and 7. arise from
those of T, apart from vertex M. Therefore n' +n" +n. = n — 1,
further I + 1" + 1. = l. Now there arise additional restrictions on the
values of (Y1,...,Y., Z1,...,2,). Fy is a positive excursion of length
2!, Therefore Z; <Y, for j < n', Yy =1V and Z,4 > .
The path (Y{,....,Y,Z1,....Z2,) = (Y1,... .Y, Z1,..., Zy) belong-
ing to T/ takes values in FE(n/,l'). Similarly 77 is described by
the path (Y{,....Y/., Z{,....Z2) = (Yo — L+ 17,0, =1+ 17,
Do — LU o0 2, — 14 1") with values in F(n”,!"). Here the re-
strictions are Z,_,»n =1 =1"Y,_,» <1=1" and Z; <Y; for j>n-—n".
Finally the path, describing 7. is given by (Y°,...,Y Z7,....Z; ) =

(Zpipr = Uy D, — U Ypino = U oo Yo — ) with values in

11



Si(ng, 1) x Si(nel.), together with a negative slope S. = —1 at the
beginning.

Though these considerations are somewhat involved in detail, it is clear,
that by the indicated conditioning the property of uniformity remains un-
affected. Note that the restrictions on the Y;,7Z; of T/, T! and T. do
not interfere. Therefore we can state that (Y{,...,Y/, Z{,...,Z],) is uni-
formly distributed in E(n/,{"). This means that T’ is a uniform tree. For
T! the same conclusion holds. Furthermore (Y, ...,Y.%, Z¢, ..., Z%) is
uniform in Si(n.,l.) X Si(n., ;). Since S.= —1, this means, as shown
above, that T, is a uniform tree, too, and M is located purely at random
in the leaves of T, and independent of T.. Therefore, if we choose another
leaf from 7. purely at random and attach 7. and T/ to this leaf, then
the resulting tree 7T, coincides with 7' in distribution. This proves the

second part of theorem 1.

Example: Size—biased branching trees
The trees T!,T” T. are in general dependent. There is an interesting
exception: For a size—biased branching tree T!, T” and T. areindependent.
To show this, we carry out some calculations.

Let (7,M) be a uniform tree of fixed size n and fixed length [,
with a marked vertex M, taken at random from the branching vertices.

Then, as we have seen, (Y1,...,Y,, Z1,...,%,) is uniform in Si(n,{) x
Si(n,l) — E(n,l). It is easy to see that vol F(n,l) = # (vol Si(n, 1))

(E(n,l) represents the case M =0, Si(n,l) x Si(n,l) the cases M =
0,2,...,2n.) Therefore (Y1,...,Y,,Z1,...,7,) has the density d,; =

24l (vol Si(n,1))=2 = 2+ (?2!,)12. Thus it follows from our considerations

(recall Yyy1 =L Zypn =1— L")

P(N/ — n/7 N = n//7
Lel,U +dl,L" e [I" 1"+ dI"]|N =n,L=1)
= dpy-vol E(n', ') -vol E(n" 1"} (vol Si(n.,(.))* - dl'dl"

(n+ 1) (n))?
n(n' + 1)(n” + 1) (n'1)2(n"1)2(n.!)?

UNE N L\ ar dl
l l l [

"

with n. =n—1—n"—n", [, =1-1'"—1". An integration yields the formula

P(N/:n/7N”:n”7Nc:nc|N:n,LIl)
on+1 1 1 20\ 20"\ [ 2n. on
T oon o+ 1 a1\ n n' N, n/)

12




n 2n

Let now T be size-biased, i.e. P(N =n) is proportional to m(n )p”q
(compare the introduction). Then

n

P(N'=7/,N"=n" N.=n,)

t 1 271’ ( )n' 1 271” ( )n” 2nc ( )n
= cons —_— ¢
T\ ) PO e ) (P n, )P0

which is the independence of N’, N and N€¢ This makes independence
of T',T" and T. obvious. Further it is seen that 7! and T are ordinary
branching trees, whereas T, is a leaf-biased branching tree. O
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