

Reduced basis methods for nonlinear ill-posed inverse problems

Dominik Garmatter

garmatter@math.uni-frankfurt.de

Group for Numerics of Partial Differential Equations, Goethe University Frankfurt, Germany

Joint work with Bastian Harrach and Bernard Haasdonk

Chemnitz Symposium on Inverse Problems 2016 Chemnitz, Germany, September 22-23, 2016.

Introduction

The forward problem

Consider

$$abla \cdot (\sigma(x) \nabla u(x)) = 1, \ x \in \Omega := (0,1)^2, \ u(x) = 0, \ x \in \partial \Omega.$$

Assume: σ is piecewise constant $\rightsquigarrow \sigma(x) = \sum_{q=1}^{p} \sigma_q \chi_{\Omega_q}(x)$.

Forward operator

 $F: \mathcal{P} \subset \mathbb{R}^{p} \to X \subset H_{0}^{1}(\Omega), \ \sigma \mapsto u^{\sigma}$, the detailed solution, solving

$$b(u^{\sigma}, v; \sigma) = f(v), \text{ for all } v \in X, \text{ with}$$
(1a)
$$b(u, w; \sigma) := \int_{\Omega} \sigma \nabla u \cdot \nabla w \, dx, \quad f(v) := -\int_{\Omega} v \, dx.$$
(1b)

Inverse Problem

For given solution $u \in X$ of (1), find corresponding parameter $\sigma^+ \in \mathcal{P}$ with $F(\sigma^+) = u$ ("a-example").

Task: Given u^{δ} , $||u - u^{\delta}||_{X} \leq \delta$, $\delta > 0$, find approximation σ^{δ} to σ^{+} .

Nonlinear Landweber iteration

- $\bullet \ \sigma_{n+1}^{\delta} := \sigma_n^{\delta} + \omega F'(\sigma_n^{\delta})^* (u^{\delta} F(\sigma_n^{\delta}))$
- Terminate as $\|F(\sigma_n^{\delta}) u^{\delta}\|_X \le \tau \delta$ (discrepancy principle)

~ Many-query setting

GOETHE UNIVERSITÄT FRANKFURT AM MAIN

The reduced problem & Properties

Reduced basis (RB) space: for given *carefully* selected *snapshots* $\phi_i = F(\sigma_i)$, define $X_N := \operatorname{span}\{\Phi_N\} = \operatorname{span}\{\phi_1, \dots, \phi_N\}$.

Reduced forward operator

 $F_N: \mathcal{P} \to X_N, \sigma \mapsto u_N^{\sigma}$ with u_N^{σ} , the reduced solution, solving

$$b(u_N^{\sigma}, v; \sigma) = f(v), \quad \forall v \in X_N.$$

- ► Certification: $\|u^{\sigma} u_{N}^{\sigma}\|_{X} \leq \Delta_{N}(\sigma) := \frac{\|v_{r}\|_{X}}{\alpha(\sigma)},$ with $\langle v_{r}, v \rangle_{X} := r(v; \sigma) := f(v) - b(u_{N}^{\sigma}, v; \sigma), \forall v \in X$
- Offline/online decomposition: rapid computation of u^σ_N
- Reproduction of solutions: $u^{\sigma} \in X_N \Rightarrow u_N^{\sigma} = u^{\sigma}$

RBM and Inverse problems

G./Haasdonk/Harrach, A Reduced Basis Landweber method for nonlinear inverse problems, 2016 Inverse Problems 32 (3) (doi).

Naive approach

- Construct global X_N approximating whole $\mathcal{R}(F)$ (offline-phase)
- Rapidly compute *F_N(σ)* and substitute *F(σ)* for *F_N(σ)* in the Landweber iteration ("online-phase")

Limitation: Only feasible for low-dimensional parameter spaces, not feasible for imaging.

Our approach: Create problem-adapted RB-space by iterative enrichment (inspired by Druskin & Zaslavski 2007, Zahr & Fahrhat 2015 and Lass 2014).

Reduced Basis Landweber (RBL) method

Algorithm 1 RBL($\sigma_{start}, \tau, \Phi_N$)

1:
$$n := 0$$
, $\sigma_0^{\delta} := \sigma_{start}$
2: while $||F(\sigma_n^{\delta}) - u^{\delta}||_X > \tau \delta$ do
3: enrich RB using σ_n^{δ}
4: $i := 1$, $\sigma_i^{\delta} := \sigma_n^{\delta}$
5: repeat
6: calculate reduced Landweber update $s_{n,i}$
7: $\sigma_{i+1}^{\delta} := \sigma_i^{\delta} + \omega s_{n,i}$
8: $i := i + 1$
9: until $||F_N(\sigma_i^{\delta}) - u^{\delta}||_X \le \tau \delta$ or $\Delta_N(\sigma_i^{\delta}) > (\tau - 2)\delta$
10: $\sigma_{n+1}^{\delta} := \sigma_i^{\delta}$
11: $n := n + 1$
12: end while
13: return $\sigma_{RBL} := \sigma_n^{\delta}$

Numerics - compare reconstructions

Setting: $\rho = 900$, $\tau = 2.5$, $\delta = 1\%$ and $\omega = \frac{1}{2} (\|F'(\sigma_{start})\|)^{-1}$.

Figure: σ_{start} (top left), exact solution σ^+ (top right). Reconstruction via RBL method (bottom left) and Landweber method (bottom right).

Numerics - time comparison

- Outer iteration: space enrichment, projection ("offline")
- Inner iteration: one iteration of repeat loop ("online")

Algorithm	Landweber	RBL	
time (s)	187189	14661	
# Iterations	608067	outer	20
		inner	608083
time per Iteration (s)	0.308	outer	3.705
		inner	0.024
# forward solves	1216134	40	

 $\|\sigma_{RBL} - \sigma_{LW}\|_{\mathcal{P}} \approx 1.118 \cdot 10^{-5}$

Numerics - regularization property

Current Work

Goal: Obtain high-resolution spatial images of conductivity σ of Ω

- Object Ω with electrode pairs E[±]₁, E[±]₂ attached to it
- Apply current between electrode pair generates magnetic flux density B
 obtainable with MRI scanner
- Use this *internal* data to overcome ill-posedness and reconstruct σ

Harmonic-Bz-Algorithm (Seo, Woo, et al. 2003)

MREIT - first numerics

Setting: 3200 pixels, \approx 50000 FEM-dofs, no noise.

Figure: σ_{start} (top left), σ^+ (top right), reconstruction via Bz-Algorithm (bottom left) and RBz-Algorithm (bottom right).

D. Garmatter: Reduced basis methods for nonlinear ill-posed inverse problems

- Bz Algorithm: 3.01 s
- RBz-Algorithm: 1.79 s
- Normdifference:

 $pprox 8.33 \cdot 10^{-4}$

Conclusion

- Solving inverse coefficient problem requires many PDE solves
- Reduced basis (RB) approach can speed up PDE solution
- But standard RB approach is only applicable for low dimensional parameter spaces
- Using adaptive problem-specific RB enrichment, we can handle high-dimensional parameter spaces, e.g. for imaging problems

RBL method outperforms standard Landweber (exp.: 13 times faster without loss of accuracy)

Finalize theory and numerics for MREIT-project

Thank you for your attention!

Appendix

Appendix - The dual problem

Recall
$$\sigma_{n+1}^{\delta} := \sigma_n^{\delta} + \omega F'(\sigma_n^{\delta})^* (u^{\delta} - F(\sigma_n^{\delta}))$$

For $\sigma, \kappa \in \mathcal{P}$ and $l \in X$, one can show

$$\langle \kappa, F'(\sigma)^* I \rangle_{\mathcal{P}} = \int_{\Omega} \kappa \nabla u^{\sigma} \cdot \nabla u^{\sigma}_I \, dx,$$
 (2)

with $u_l^{\sigma} \in X$ the unique solution of the dual problem

$$b(u, v; \sigma) = m(v; l)$$
, for all $v \in X$, $m(v; l) := -\int_{\Omega}^{\infty} l v dx$.

In Algorithm 1 \rightsquigarrow two RB spaces $X_{N,1}$, $X_{N,2}$

- enrich $X_{N,1}$ via $F(\sigma_n^{\delta})$ and $X_{N,2}$ via $u_l^{\sigma_n^{\delta}}$ with $l := u^{\delta} F(\sigma_n^{\delta})$
- calculate s_{n,i} using (2) and associated reduced solutions