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D. Garmatter: Reduced basis methods for nonlinear ill-posed inverse problems



The forward problem

Consider

∇ · (σ(x)∇u(x)) = 1, x ∈ Ω := (0, 1)2, u(x) = 0, x ∈ ∂Ω.

Assume: σ is piecewise constant σ(x) =
∑p

q=1 σqχΩq (x).

Forward operator

F :P ⊂ Rp → X ⊂ H1
0 (Ω), σ 7→ uσ, the detailed solution, solving

b(uσ, v ;σ) = f (v), for all v ∈ X , with (1a)

b(u,w ;σ) :=

∫
Ω
σ∇u · ∇w dx , f (v) := −

∫
Ω

v dx . (1b)
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Inverse problem & Landweber method

Inverse Problem

For given solution u ∈ X of (1), find corresponding parameter
σ+ ∈ P with F(σ+) = u (”a-example“).

Task: Given uδ, ‖u − uδ‖X ≤ δ, δ > 0, find approximation σδ to σ+.

Nonlinear Landweber iteration
I σδn+1 := σδn + ωF ′(σδn)∗(uδ − F(σδn))

I Terminate as ‖F(σδn)− uδ‖X ≤ τδ (discrepancy principle)

 Many-query setting
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The reduced problem & Properties

Reduced basis (RB) space: for given carefully selected snapshots
φi = F(σi), define XN := span{ΦN} = span{φ1, . . . , φN}.

Reduced forward operator

FN :P → XN , σ 7→ uσN with uσN , the reduced solution, solving

b(uσN , v ;σ) = f (v), ∀v ∈ XN .

I Certification: ‖uσ − uσN‖X ≤ ∆N(σ) := ‖vr‖X
α(σ) ,

with 〈vr , v〉X := r(v ;σ) := f (v)− b(uσN , v ;σ), ∀v ∈ X
I Offline/online decomposition: rapid computation of uσN
I Reproduction of solutions: uσ ∈ XN ⇒ uσN = uσ
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RBM and Inverse problems

G./Haasdonk/Harrach, A Reduced Basis Landweber method for
nonlinear inverse problems, 2016 Inverse Problems 32 (3) (doi).
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RBM & Landweber method - Various approaches

Naive approach
I Construct global XN approximating whole R(F) (offline-phase)
I Rapidly compute FN(σ) and substitute F(σ) for FN(σ) in the

Landweber iteration (”online-phase“)

Limitation: Only feasible for low-dimensional parameter spaces, not
feasible for imaging.

Our approach: Create problem-adapted RB-space by iterative
enrichment (inspired by Druskin & Zaslavski 2007, Zahr & Fahrhat

2015 and Lass 2014).
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Combining RBM & LW - Idea
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Combining RBM & LW - Idea
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Reduced Basis Landweber (RBL) method

Algorithm 1 RBL(σstart , τ,ΦN )

1: n := 0, σδ0 := σstart

2: while ‖F(σδn)− uδ‖X > τδ do
3: enrich RB using σδn
4: i := 1, σδi := σδn
5: repeat
6: calculate reduced Landweber update sn,i

7: σδi+1 := σδi + ωsn,i

8: i := i + 1
9: until ‖FN(σδi )− uδ‖X ≤ τδ or ∆N(σδi ) > (τ − 2)δ

10: σδn+1 := σδi
11: n := n + 1
12: end while
13: return σRBL := σδn
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Numerics - compare reconstructions

Setting: p = 900, τ = 2.5, δ = 1% and ω = 1
2 (‖F ′(σstart)‖)−1.
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Figure: σstart (top left), exact solution σ+ (top right). Reconstruction via RBL
method (bottom left) and Landweber method (bottom right).
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Numerics - time comparison

I Outer iteration: space enrichment, projection (”offline“)
I Inner iteration: one iteration of repeat loop (”online“)

Algorithm Landweber RBL
time (s) 187189 14661

# Iterations 608067
outer 20
inner 608083

time per Iteration (s) 0.308
outer 3.705
inner 0.024

# forward solves 1216134 40

‖σRBL − σLW‖P ≈ 1.118 · 10−5
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Numerics - regularization property
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Figure: Error ‖σRBL − σ+‖P over the decreasing relative noise level δ.
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Current Work
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Magnet Resonance Eletrical Impedance Tomography

Goal: Obtain high-resolution spatial images of conductivity σ of Ω

I Object Ω with electrode pairs E±1 ,
E±2 attached to it

I Apply current between electrode
pair generates magnetic flux
density B
 obtainable with MRI scanner

I Use this internal data to overcome
ill-posedness and reconstruct σ

E−1 E+
1

E−2

E+
2

Ω

Harmonic-Bz-Algorithm (Seo, Woo, et al. 2003)
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MREIT - first numerics

Setting: 3200 pixels, ≈ 50000 FEM-dofs, no noise.
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Figure: σstart (top left), σ+ (top right),
reconstruction via Bz-Algorithm (bottom
left) and RBz-Algorithm (bottom right).

I Bz Algorithm: 3.01 s
I RBz-Algorithm: 1.79 s
I Normdifference:
≈ 8.33 · 10−4
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Conclusion

I Solving inverse coefficient problem requires many PDE solves
I Reduced basis (RB) approach can speed up PDE solution
I But standard RB approach is only applicable for low

dimensional parameter spaces
I Using adaptive problem-specific RB enrichment, we can handle

high-dimensional parameter spaces, e.g. for imaging problems

 RBL method outperforms standard Landweber
(exp.: 13 times faster without loss of accuracy)

I Finalize theory and numerics for MREIT-project
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Thank you for your attention!
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Appendix
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Appendix - The dual problem

Recall σδn+1 := σδn + ωF ′(σδn)∗(uδ − F(σδn))

For σ, κ ∈ P and l ∈ X , one can show

〈κ,F ′(σ)∗ l〉P =

∫
Ω
κ∇uσ · ∇uσl dx , (2)

with uσl ∈ X the unique solution of the dual problem

b(u, v ;σ) = m(v ; l), for all v ∈ X , m(v ; l) := −
∫

Ω
l v dx .

In Algorithm 1 two RB spaces XN,1, XN,2

I enrich XN,1 via F(σδn) and XN,2 via uσ
δ
n

l with l := uδ − F(σδn)

I calculate sn,i using (2) and associated reduced solutions

D. Garmatter: Reduced basis methods for nonlinear ill-posed inverse problems


