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Motivation
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Abstract problem formulation

Parameter σ PDE-solution uσ Data

Inverse Problem

F

I Parameter-to-solution map: F : σ ∈ P 7→ uσ ∈ X (elliptic PDE)
I Imaging context: P very high-dimensional
I The (measured) data depends on uσ

Aim: speed-up solution procedure of inverse problem.
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Iterative solution of Inverse Problem

I Given initial guess σ0

σn uσ
n

σn+1

Termination criterion
Deny

n := n+1
Accept

σ+ := σn+1

F

I Usually parameter-to-solution map F is expensive

 Reduced Basis Methods (RBM)
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RBM and Inverse Problems
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Reduced Basis Methods (RBM): Idea

XN

R(F)

uσ1

uσ2

X

uσ
uσN

 Construction of XN via carefully chosen snapshots uσi
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RBM: The detailed & reduced problem

Detailed problem (e.g. fine grid FEM)

F : P → X , σ 7→ uσ, the detailed solution of

b(uσ, v ;σ) = f (v), for all v ∈ X .

Assume: XN := span{uσ1 , . . . , uσN} ⊂ X is given.

Reduced problem (Galerkin projection)

For σ ∈ P , find uσN ∈ XN ⊂ X , the reduced solution of

b(uσN , v ;σ) = f (v), ∀v ∈ XN .
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RBM: Properties

I Reproduction of solutions: uσ ∈ XN ⇒ uσN = uσ

I Offline/Online-decomposition: rapid computation of uσN

Certification - rigorous a-posteriori error estimator

‖uσ − uσN‖X ≤ ∆N(σ) :=
‖vr‖X

α(σ)
, with

〈vr , v〉X := r(v ;σ) := f (v)− b(uσN , v ;σ),∀v ∈ X
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RBM & Inverse Problems: Various approaches

Naive approach
I Construct global XN approximating whole R(F) (offline-phase)
I Use uσN instead of uσ in the solution procedure (”online-phase“)

Limitation: Only feasible for low-dimensional parameter spaces, not
feasible for imaging.

Our approach1: Create problem-adapted RB-space by iterative
enrichment (inspired by Druskin & Zaslavski 2007, Zahr & Fahrhat

2015 and Lass 2014).

1G./Haasdonk/Harrach, A Reduced Basis Landweber method for nonlinear
inverse problems, 2016 Inverse Problems 32 (3) (doi).
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Adaptive RBM & IP: Idea

P

F

R(F)

X
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Adaptive RBM & IP: Idea

uσ
0

uσ
+

P

σ0

σ+

F

R(F)

X
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Adaptive RBM & IP: Idea

uσ
0

uσ
+

P

σ0

σ+

Iterates F

R(F)

X
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Adaptive RBM & IP: Idea
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Adaptive RBM & IP: Idea
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Adaptive RBM & IP: Idea
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Adaptive RBM & IP: Idea
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Application: Magnetic Resonance
Electrical Impedance Tomography2

2Based on Seo, Woo, et al. since 2003
D. Garmatter: Reduced Basis Methods for Inverse Problems



Motivation: Electrical Impedance Tomography (EIT)

I Setting: Imaging object O ⊂ R3 with electrode pairs attached
I Aim: reconstruct cross-sectional (Ω = O ∩ {z = z0} ⊂ R2)

image of electrical conductivity inside Ω

Ω
In EIT
I Data: Current-Voltage

measurements on boundary
I Difficulty: highly ill-posed
 low spatial resolution
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MREIT: Setting

Aim: achieve higher resolution of conductivity σ.

E−1 E+
1

E−2

E+
2

Ω

I2

I Object Ω with two electrode pairs E±j
attached

I Place object inside MRI-Scanner
I Apply current I between electrode pair
I Generates magnetic flux density B

(z-comp. measurable with MRI scanner)

 Full internal data set to overcome ill-posedness
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Forward modelling

I P ≡ {σ ∈ C1,α(Ω̄) | 1
λ ≤ σ ≤ λ, λ > 0} α ∈ (0, 1)

Forward problem (j ∈ {1, 2} determines active electrode pair)

For σ ∈ P , find uσj solving

∇ · (σ∇uσj ) = 0 in Ω, Ij =

∫
E+

j

σ
∂uσj
∂n

ds = −
∫

E−
j

σ
∂uσj
∂n

ds (1a)

∇uσj × n = 0, on E+
j ∪ E−j , σ

∂uσj
∂n

= 0 on ∂Ω\
(

E+
j ∪ E−j

)
(1b)

I Unique solution of (1) up to an additive constant
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Inverse Problem

Aim: Determine σ from B.
I Maxwell Equations

−σ∇uσj =
1
µ0
∇× Bj (Ampère’s law) and ∇ · Bj = 0

I ∇× of Ampère’s law ∇uσj ×∇σ = 1
µ0
∇2Bj

I Only Bj
z measurable and two different electrode pairs/currents

Core-relation (logarithmic version, point-wise in Ω)

∇ lnσ =
1
µ0

(σA[σ])−1
(
∇2B1

z
∇2B2

z

)
, A[σ] :=

(
∂uσ1
∂y −∂uσ1

∂x
∂uσ2
∂y −∂uσ2

∂x

)
(CR)
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Recovery of σ

Assume: σ+∈ P with σ+|Ω\Ω̃= σb, σb > 0, Ω̃ ⊂⊂ Ω, σb known

Iteration sequence ( Harmonic Bz Algorithm3)

For σ0 = σb and ∇2Bj
z,+, j ∈ {1, 2}, via (CR) using σ+

I calculate Fn+1(r) = 1
µ0

(σnA[σn])−1

(
∇2B1

z,+
∇2B2

z,+

)
(r), ∀r ∈ Ω

I define lnσn+1 as the solution of

∇2 lnσn+1 = ∇ · Fn+1 in Ω, lnσn+1 = lnσ+ on ∂Ω

I σn+1 = exp(lnσn+1) ensures positivity

3Seo, Woo, et al., 2003
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Reduced Basis Approach

Given XN,1, XN,2  for σ ∈ P RB-approximations uσN,j available.

Reduced Iteration: For σ0 = σb, ∇2Bj
z,+ via (CR) using σ+

I calculate Fn+1
N (r) = 1

µ0
(σnAN [σn])−1

(
∇2B1

z,+
∇2B2

z,+

)
(r), ∀r ∈ Ω,

with AN [σn] :=

 ∂uσ
n

N,1
∂y −∂uσ

n
N,1
∂x

∂uσ
n

N,2
∂y −∂uσ

n
N,2
∂x


I define lnσn+1 as the solution of

∇2 lnσn+1 = ∇ · Fn+1
N in Ω, lnσn+1 = lnσ+ on ∂Ω

I σn+1 = exp(lnσn+1)
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Reduced iteration: convergence

I Ξ(σb, ε0) := {σ ∈ P | σ |Ω\Ω̃= σb, ‖∇ lnσ‖C0,α(Ω) < ε0}

Preliminary result4

There exists 0 < ε < ε0, such that for each σ+ ∈ Ξ(σb, ε0) with
‖∇ lnσ+‖C0,α(Ω) ≤ ε, and as long as

I uσ
n

N,j ∈ C1,α( ˜̃Ω), Ω̃ ⊂⊂ ˜̃Ω ⊂⊂ Ω

I ‖∇uσ
n

N,j −∇uσ
n

j ‖C0,α(Ω̃) ≤ ε
n+1C

hold throughout the Reduced Iteration, the sequence {σn}
generated by Reduced Iteration with initial guess σb satisfies

‖ lnσn − lnσ+‖C1,α(Ω̃) ≤ KΩ

(
1
2

)n

ε.

4based on Seo, Woo, Liu, 2010
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Reduced Basis Harmonic Bz Algorithm (RBZ)

Algorithm 1 RBZ(σb, µ0, tol1, tol2, XN,1, XN,2)

1: σ0 := σb, n := 0
2: repeat
3: enrich spaces XN,1, XN,2 using uσ

n

1 , uσ
n

2
4: i := 1, σi := σn

5: repeat

6: F i+1
N (r) := 1

µ0
(σiAN [σi ])−1

(
∇2B1

z,+
∇2B2

z,+

)
(r), ∀r ∈ Ω

7: define lnσi+1 as solution of
∇2 lnσi+1 = ∇ · F i+1

N in Ω, lnσi+1 = lnσ+ on ∂Ω
8: i := i + 1
9: until ‖σi − σi−1‖P ≤ tol1or ∆N,1(σi)> tol2or ∆N,2(σi)> tol2

10: n := n + 1, σn := σi

11: until ‖σi − σi−1‖P ≤ tol1
12: return σRBZ := σn
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Numerics - Setting

I Ω := [−1, 1]× [−2, 2]

I E±1 := {(±1, y) | |y | < 0.1}, E±2 := {(x ,±2) | |x | < 0.1}
I For r =

√
x2 + y2, x , y ∈ Ω

σ+ ≈ σ(r) :=

{
10
(

cos(r)−
√

3
2

)
+ 2, 0 ≤ r ≤ π/6

2, otherwise
∈ P

using 40× 80 rectangles (piecewise constant approximation)
I σb = 2, µ0 = 1, tol1 = 10−5, tol2 = 1

100 , no noise
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Numerics - Comparison
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Figure: σb (top left), σ+ (top right), σBZ (bottom left), σRBZ (bottom right).

I BZ: 3.45s and 16 PDE solves RBZ: 2.21s and 6 PDE solves
I ‖σ+ − σBZ‖P ≈ 0.05, ‖σBZ − σRBZ‖P ≈ 6.760 · 10−6
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Conclusion

Summary
I Reduced basis (RB) approaches can speed-up the solution

procedure of inverse coefficient problems
I Standard RB approach not feasible in imaging context
I Adaptive RB approach for high-dimensional parameter spaces
I Presented RBZ-Algorithm for MREIT including preliminary

convergence result

Future work
I Finalize convergence result and numerics

Thank you for your attention!
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