Reduced Basis Methods for Inverse Problems

Dominik Garmatter
garmatter@math.uni-frankfurt.de
Group for Numerics of Partial Differential Equations, Goethe University Frankfurt, Germany
Joint work with Bastian Harrach
Applied Inverse Problems Conference
Hangzhou, China, May 31st, 2017.

Motivation

D. Garmatter: Reduced Basis Methods for Inverse Problems

Abstract problem formulation

- Parameter-to-solution map: $F: \sigma \in \mathcal{P} \mapsto u^{\sigma} \in X$ (elliptic PDE)
- Imaging context: \mathcal{P} very high-dimensional
- The (measured) data depends on u^{σ}

Aim: speed-up solution procedure of inverse problem.

Iterative solution of Inverse Problem

- Given initial guess σ^{0}

- Usually parameter-to-solution map F is expensive
\rightsquigarrow Reduced Basis Methods (RBM)

RBM and Inverse Problems

D. Garmatter: Reduced Basis Methods for Inverse Problems

Reduced Basis Methods (RBM): Idea

\rightsquigarrow Construction of X_{N} via carefully chosen snapshots $u^{\sigma_{i}}$

RBM: The detailed \& reduced problem

Detailed problem (e.g. fine grid FEM)

$F: \mathcal{P} \rightarrow X, \sigma \mapsto u^{\sigma}$, the detailed solution of

$$
b\left(u^{\sigma}, v ; \sigma\right)=f(v), \text { for all } v \in X
$$

Assume: $X_{N}:=\operatorname{span}\left\{u^{\sigma_{1}}, \ldots, u^{\sigma_{N}}\right\} \subset X$ is given.

Reduced problem (Galerkin projection)

For $\sigma \in \mathcal{P}$, find $u_{N}^{\sigma} \in X_{N} \subset X$, the reduced solution of

$$
b\left(u_{N}^{\sigma}, v ; \sigma\right)=f(v), \quad \forall v \in X_{N}
$$

RBM: Properties

- Reproduction of solutions: $u^{\sigma} \in X_{N} \Rightarrow u_{N}^{\sigma}=u^{\sigma}$
- Offline/Online-decomposition: rapid computation of u_{N}^{σ}

Certification - rigorous a-posteriori error estimator

$$
\begin{aligned}
& \left\|u^{\sigma}-u_{N}^{\sigma}\right\|_{x} \leq \Delta_{N}(\sigma):=\frac{\left\|v_{r}\right\|_{x}}{\alpha(\sigma)}, \text { with } \\
& \left\langle v_{r}, v\right\rangle_{x}:=r(v ; \sigma):=f(v)-b\left(u_{N}^{\sigma}, v ; \sigma\right), \forall v \in X
\end{aligned}
$$

Naive approach

- Construct global X_{N} approximating whole $\mathcal{R}(F)$ (offline-phase)
- Use u_{N}^{σ} instead of u^{σ} in the solution procedure (,,online-phase") Limitation: Only feasible for low-dimensional parameter spaces, not feasible for imaging.

> Our approach ${ }^{1}$: Create problem-adapted RB-space by iterative enrichment (inspired by Druskin \& Zaslavski 2007, Zahr \& Fahrhat 2015 and Lass 2014).

${ }^{1}$ G./Haasdonk/Harrach, A Reduced Basis Landweber method for nonlinear inverse problems, 2016 Inverse Problems 32 (3) (doi).
D. Garmatter: Reduced Basis Methods for Inverse Problems

Adaptive RBM \& IP: Idea

Adaptive RBM \& IP: Idea

Adaptive RBM \& IP: Idea

Adaptive RBM \& IP: Idea

Application: Magnetic Resonance Electrical Impedance Tomography ${ }^{2}$

${ }^{2}$ Based on Seo, Woo, et al. since 2003
D. Garmatter: Reduced Basis Methods for Inverse Problems

Motivation: Electrical Impedance Tomography (EIT)

- Setting: Imaging object $O \subset \mathbb{R}^{3}$ with electrode pairs attached
- Aim: reconstruct cross-sectional $\left(\Omega=O \cap\left\{z=z_{0}\right\} \subset \mathbb{R}^{2}\right)$ image of electrical conductivity inside Ω

In EIT

- Data: Current-Voltage measurements on boundary
- Difficulty: highly ill-posed
\rightsquigarrow low spatial resolution

MREIT: Setting

Aim: achieve higher resolution of conductivity σ.

- Object Ω with two electrode pairs $E_{j}^{ \pm}$ attached
- Place object inside MRI-Scanner
- Apply current / between electrode pair
- Generates magnetic flux density B (z-comp. measurable with MRI scanner)
\rightsquigarrow Full internal data set to overcome ill-posedness

Forward modelling

$$
\begin{equation*}
\mathcal{P} \equiv\left\{\sigma \in C^{1, \alpha}(\bar{\Omega}) \left\lvert\, \frac{1}{\lambda} \leq \sigma \leq \lambda\right., \lambda>0\right\} \tag{0,1}
\end{equation*}
$$

Forward problem ($j \in\{1,2\}$ determines active electrode pair)
For $\sigma \in \mathcal{P}$, find u_{j}^{σ} solving

$$
\begin{align*}
& \nabla \cdot\left(\sigma \nabla u_{j}^{\sigma}\right)=0 \text { in } \Omega, \quad \quad_{j}=\int_{E_{j}^{+}} \sigma \frac{\partial u_{j}^{\sigma}}{\partial \mathbf{n}} d s=-\int_{E_{j}^{-}} \sigma \frac{\partial u_{j}^{\sigma}}{\partial \mathbf{n}} d s \tag{1a}\\
& \nabla u_{j}^{\sigma} \times \mathbf{n}=0, \text { on } E_{j}^{+} \cup E_{j}^{-}, \quad \sigma \frac{\partial u_{j}^{\sigma}}{\partial \mathbf{n}}=0 \text { on } \partial \Omega \backslash \overline{\left(E_{j}^{+} \cup E_{j}^{-}\right)} \tag{1b}
\end{align*}
$$

- Unique solution of (1) up to an additive constant

Aim: Determine σ from B.

- Maxwell Equations

$$
-\sigma \nabla u_{j}^{\sigma}=\frac{1}{\mu_{0}} \nabla \times B^{j} \text { (Ampère's law) and } \quad \nabla \cdot B^{j}=0
$$

- $\nabla \times$ of Ampère's law $\rightsquigarrow \nabla u_{j}^{\sigma} \times \nabla \sigma=\frac{1}{\mu_{0}} \nabla^{2} B^{j}$
- Only B_{z}^{j} measurable and two different electrode pairs/currents

Core-relation (logarithmic version, point-wise in Ω)

$$
\nabla \ln \sigma=\frac{1}{\mu_{0}}(\sigma \mathbb{A}[\sigma])^{-1}\binom{\nabla^{2} B_{z}^{1}}{\nabla^{2} B_{z}^{2}}, \mathbb{A}[\sigma]:=\left(\begin{array}{ll}
\frac{\partial u_{1}^{\sigma}}{\partial y} & -\frac{\partial u_{1}^{\sigma}}{\partial x} \tag{CR}\\
\frac{\partial u_{2}^{\sigma}}{\partial y} & -\frac{\partial u_{2}^{\alpha}}{\partial x}
\end{array}\right)
$$

Assume: $\sigma^{+} \in \mathcal{P}$ with $\left.\sigma^{+}\right|_{\Omega \backslash \tilde{\Omega}}=\sigma_{b}, \sigma_{b}>0, \tilde{\Omega} \subset \subset \Omega, \sigma_{b}$ known

Iteration sequence (\rightsquigarrow Harmonic B_{z} Algorithm ${ }^{3}$)

For $\sigma^{0}=\sigma_{b}$ and $\nabla^{2} B_{z,+}^{j}, j \in\{1,2\}$, via (CR) using σ^{+}

- calculate $\mathcal{F}^{n+1}(\mathbf{r})=\frac{1}{\mu_{0}}\left(\sigma^{n} \mathbb{A}\left[\sigma^{n}\right]\right)^{-1}\binom{\nabla^{2} B_{z,+}^{1}}{\nabla^{2} B_{z,+}^{2}}(\mathbf{r}), \forall \mathbf{r} \in \Omega$
- define $\ln \sigma^{n+1}$ as the solution of

$$
\nabla^{2} \ln \sigma^{n+1}=\nabla \cdot \mathcal{F}^{n+1} \quad \text { in } \Omega, \quad \ln \sigma^{n+1}=\ln \sigma^{+} \quad \text { on } \partial \Omega
$$

- $\sigma^{n+1}=\exp \left(\ln \sigma^{n+1}\right) \rightsquigarrow$ ensures positivity
${ }^{3}$ Seo, Woo, et al., 2003
D. Garmatter: Reduced Basis Methods for Inverse Problems

Reduced Basis Approach

Given $X_{N, 1}, X_{N, 2} \rightsquigarrow$ for $\sigma \in \mathcal{P}$ RB-approximations $u_{N, j}^{\sigma}$ available.
Reduced Iteration: For $\sigma^{0}=\sigma_{b}, \nabla^{2} B_{z,+}^{j}$ via (CR) using σ^{+}

- calculate $\mathcal{F}_{N}^{n+1}(\mathbf{r})=\frac{1}{\mu_{0}}\left(\sigma^{n} \mathbb{A}_{N}\left[\sigma^{n}\right]\right)^{-1}\binom{\nabla^{2} B_{z,+}^{1}}{\nabla^{2} B_{z,+}^{2}}(\mathbf{r}), \forall \mathbf{r} \in \Omega$, with $\mathbb{A}_{N}\left[\sigma^{n}\right]:=\left(\begin{array}{ll}\frac{\partial u_{N, 1}^{n}}{\partial y_{y}^{n}} & -\frac{\partial u_{N, 1}^{u^{n}}}{\partial x} \\ \frac{\partial u_{N, 2}^{u^{n}}}{\partial y} & -\frac{\partial u_{N, 2}^{\sigma^{n}}}{\partial x}\end{array}\right)$
- define $\ln \sigma^{n+1}$ as the solution of

$$
\begin{aligned}
& \nabla^{2} \ln \sigma^{n+1}=\nabla \cdot \mathcal{F}_{N}^{n+1} \quad \text { in } \Omega, \quad \ln \sigma^{n+1}=\ln \sigma^{+} \quad \text { on } \partial \Omega \\
& \sigma^{n+1}=\exp \left(\ln \sigma^{n+1}\right)
\end{aligned}
$$

- $\equiv\left(\sigma_{b}, \epsilon_{0}\right):=\left\{\sigma \in \mathcal{P}|\sigma|_{\Omega \backslash \tilde{\Omega}}=\sigma_{b},\|\nabla \ln \sigma\|_{C^{0, \alpha}(\Omega)}<\epsilon_{0}\right\}$

Preliminary result ${ }^{4}$

There exists $0<\epsilon<\epsilon_{0}$, such that for each $\sigma^{+} \in \equiv\left(\sigma_{b}, \epsilon_{0}\right)$ with $\left\|\nabla \ln \sigma^{+}\right\|_{C^{0, \alpha}(\Omega)} \leq \epsilon$, and as long as

- $u_{N, j}^{\sigma^{n}} \in C^{1, \alpha}(\tilde{\tilde{\Omega}}), \tilde{\Omega} \subset \subset \tilde{\tilde{\Omega}} \subset \subset \Omega$
- $\left\|\nabla u_{N, j}^{\sigma^{n}}-\nabla u_{j}^{\sigma^{n}}\right\|_{C^{0, \alpha}(\tilde{\Omega})} \leq \epsilon^{n+1} C$
hold throughout the Reduced Iteration, the sequence $\left\{\sigma^{n}\right\}$ generated by Reduced Iteration with initial guess σ_{b} satisfies

$$
\left\|\ln \sigma^{n}-\ln \sigma^{+}\right\|_{C^{1, \alpha}(\tilde{\Omega})} \leq K_{\Omega}\left(\frac{1}{2}\right)^{n} \epsilon
$$

${ }^{4}$ based on Seo, Woo, Liu, 2010
D. Garmatter: Reduced Basis Methods for Inverse Problems

Algorithm $1 \operatorname{RBZ}\left(\sigma_{b}, \mu_{0}\right.$, tol $\left._{1}, t o l_{2}, X_{N, 1}, X_{N, 2}\right)$
1: $\sigma^{0}:=\sigma_{b}, n:=0$
2: repeat
3: enrich spaces $X_{N, 1}, X_{N, 2}$ using $u_{1}^{\sigma^{n}}, u_{2}^{\sigma^{n}}$
4: $\quad i:=1, \sigma^{i}:=\sigma^{n}$
5: repeat
6: $\quad \mathcal{F}_{N}^{i+1}(\mathbf{r}):=\frac{1}{\mu_{0}}\left(\sigma^{i} \mathbb{A}_{N}\left[\sigma^{i}\right]\right)^{-1}\binom{\nabla^{2} B_{z,+}^{1}}{\nabla^{2} B_{z,+}^{2}}(\mathbf{r}), \forall \mathbf{r} \in \Omega$
7: \quad define $\ln \sigma^{i+1}$ as solution of $\nabla^{2} \ln \sigma^{i+1}=\nabla \cdot \mathcal{F}_{N}^{i+1}$ in $\Omega, \quad \ln \sigma^{i+1}=\ln \sigma^{+}$on $\partial \Omega$
8: $\quad i:=i+1$
9: until $\left\|\sigma^{i}-\sigma^{i-1}\right\|_{\mathcal{P}} \leq$ tol $_{1}$ or $\Delta_{N, 1}\left(\sigma_{i}\right)>$ tol $_{2}$ or $\Delta_{N, 2}\left(\sigma_{i}\right)>$ tol $_{2}$
10: $n:=n+1, \sigma^{n}:=\sigma^{i}$
11: until $\left\|\sigma^{i}-\sigma^{i-1}\right\|_{\mathcal{P}} \leq t o l_{1}$
12: return $\sigma_{R B Z}:=\sigma^{n}$
D. Garmatter: Reduced Basis Methods for Inverse Problems

- $\Omega:=[-1,1] \times[-2,2]$
- $E_{1}^{ \pm}:=\{(\pm 1, y)| | y \mid<0.1\}, E_{2}^{ \pm}:=\{(x, \pm 2)| | x \mid<0.1\}$
- For $r=\sqrt{x^{2}+y^{2}}, x, y \in \Omega$

$$
\sigma^{+} \approx \sigma(r):=\left\{\begin{array}{l}
10\left(\cos (r)-\frac{\sqrt{3}}{2}\right)+2,0 \leq r \leq \pi / 6 \\
2, \text { otherwise }
\end{array} \in \mathcal{P}\right.
$$

using 40×80 rectangles (piecewise constant approximation)

- $\sigma_{b}=2, \mu_{0}=1$, tol $_{1}=10^{-5}$, tol $_{2}=\frac{1}{100}$, no noise

Figure: σ_{b} (top left), σ^{+}(top right), $\sigma_{B Z}$ (bottom left), $\sigma_{R B Z}$ (bottom right).

- BZ: 3.45 s and 16 PDE solves | RBZ: 2.21s and 6 PDE solves
- $\left\|\sigma^{+}-\sigma_{B Z}\right\|_{\mathcal{P}} \approx 0.05,\left\|\sigma_{B Z}-\sigma_{R B Z}\right\|_{\mathcal{P}} \approx 6.760 \cdot 10^{-6}$

Conclusion

Summary

- Reduced basis (RB) approaches can speed-up the solution procedure of inverse coefficient problems
- Standard RB approach not feasible in imaging context
- Adaptive RB approach for high-dimensional parameter spaces
- Presented RBZ-Algorithm for MREIT including preliminary convergence result
Future work
- Finalize convergence result and numerics

Thank you for your attention!

