

Reduced Basis Methods for Inverse Problems

Dominik Garmatter

garmatter@math.uni-frankfurt.de

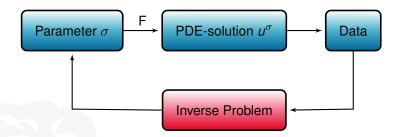
Group for Numerics of Partial Differential Equations, Goethe University Frankfurt, Germany

Joint work with Bastian Harrach

Applied Inverse Problems Conference Hangzhou, China, May 31st, 2017.

Motivation

Abstract problem formulation

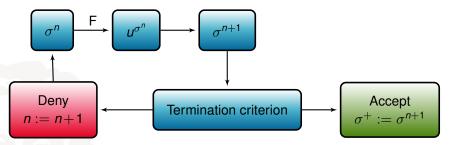


- ▶ Parameter-to-solution map: $F : \sigma \in \mathcal{P} \mapsto u^{\sigma} \in X$ (elliptic PDE)
- Imaging context: P very high-dimensional
- The (measured) data depends on u^{σ}

Aim: speed-up solution procedure of inverse problem.

Iterative solution of Inverse Problem

• Given initial guess σ^0

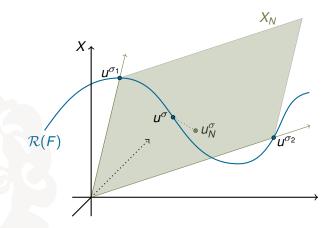


Usually parameter-to-solution map F is expensive

→ Reduced Basis Methods (RBM)

RBM and Inverse Problems

Reduced Basis Methods (RBM): Idea



 \rightsquigarrow Construction of X_N via *carefully* chosen *snapshots* u^{σ_i}

 $F: \mathcal{P} \to X, \, \sigma \mapsto u^{\sigma}$, the detailed solution of

 $b(u^{\sigma}, v; \sigma) = f(v)$, for all $v \in X$.

Assume: $X_N := \operatorname{span}\{u^{\sigma_1}, \ldots, u^{\sigma_N}\} \subset X$ is given.

Reduced problem (Galerkin projection)

For $\sigma \in \mathcal{P}$, find $u_N^{\sigma} \in X_N \subset X$, the reduced solution of

$$b(u_N^{\sigma}, v; \sigma) = f(v), \quad \forall v \in X_N.$$

RBM: Properties

- Reproduction of solutions: $u^{\sigma} \in X_N \Rightarrow u^{\sigma}_N = u^{\sigma}$
- Offline/Online-decomposition: rapid computation of u_N^{σ}

$$\|\boldsymbol{u}^{\sigma} - \boldsymbol{u}_{N}^{\sigma}\|_{X} \leq \Delta_{N}(\sigma) := \frac{\|\boldsymbol{v}_{r}\|_{X}}{\alpha(\sigma)}, \text{ with}$$
$$\langle \boldsymbol{v}_{r}, \boldsymbol{v} \rangle_{X} := r(\boldsymbol{v}; \sigma) := f(\boldsymbol{v}) - b(\boldsymbol{u}_{N}^{\sigma}, \boldsymbol{v}; \sigma), \forall \boldsymbol{v} \in X$$

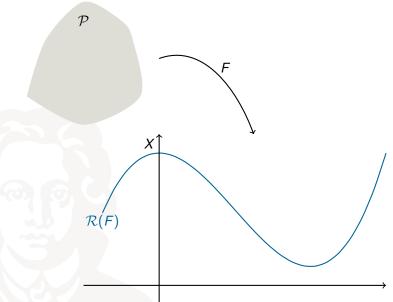
Naive approach

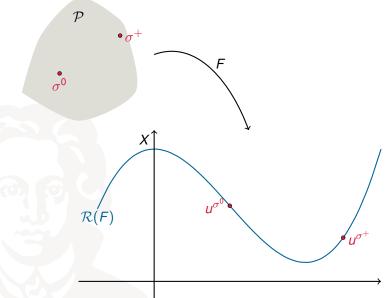
- Construct global X_N approximating whole $\mathcal{R}(F)$ (offline-phase)
- Use u_N^{σ} instead of u^{σ} in the solution procedure ("online-phase")

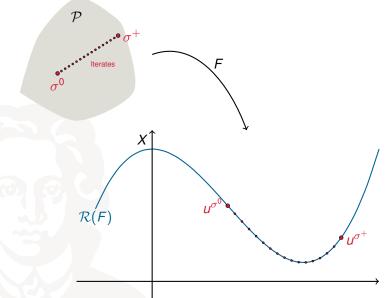
Limitation: Only feasible for low-dimensional parameter spaces, not feasible for imaging.

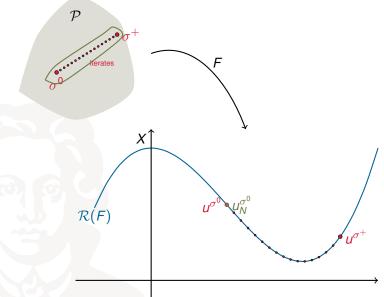
Our approach¹: Create problem-adapted RB-space by iterative enrichment (inspired by Druskin & Zaslavski 2007, Zahr & Fahrhat 2015 and Lass 2014).

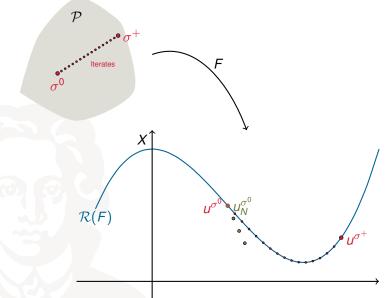
¹**G**./Haasdonk/Harrach, A Reduced Basis Landweber method for nonlinear inverse problems, 2016 Inverse Problems 32 (3) (doi).

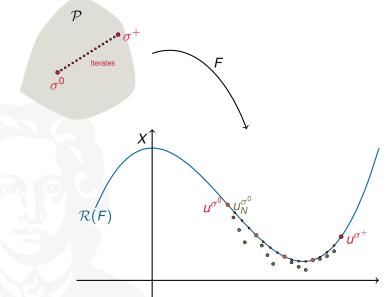


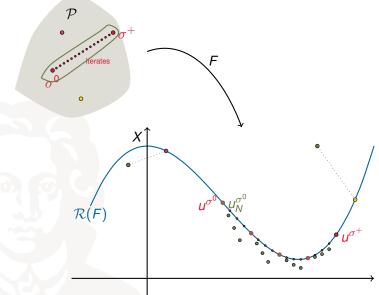










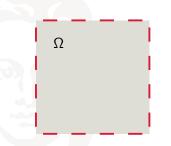


Application: Magnetic Resonance Electrical Impedance Tomography²

²Based on Seo, Woo, et al. since 2003

Motivation: Electrical Impedance Tomography (EIT)

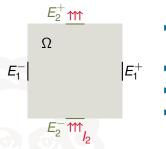
- ▶ Setting: Imaging object $O \subset \mathbb{R}^3$ with electrode pairs attached
- Aim: reconstruct cross-sectional (Ω = O ∩ {z = z₀} ⊂ ℝ²) image of electrical conductivity inside Ω



In EIT

- Data: Current-Voltage measurements on boundary
- Difficulty: highly ill-posed
 volume low spatial resolution

Aim: achieve higher resolution of conductivity σ .



MREIT: Setting

- ► Object Ω with two electrode pairs E[±]_j attached
- Place object inside MRI-Scanner
- Apply current / between electrode pair
- Generates magnetic flux density B (z-comp. measurable with MRI scanner)

→ Full internal data set to overcome ill-posedness

Forward modelling

$$\blacktriangleright \mathcal{P} \equiv \{ \sigma \in \mathcal{C}^{1,\alpha}(\bar{\Omega}) \mid \frac{1}{\lambda} \le \sigma \le \lambda, \, \lambda > \mathbf{0} \} \qquad \qquad \alpha \in (\mathbf{0},\mathbf{1})$$

Forward problem ($j \in \{1, 2\}$ determines active electrode pair) For $\sigma \in \mathcal{P}$, find u_j^{σ} solving $\nabla \cdot (\sigma \nabla u_j^{\sigma}) = 0$ in Ω , $I_j = \int_{E_j^+} \sigma \frac{\partial u_j^{\sigma}}{\partial \mathbf{n}} ds = -\int_{E_j^-} \sigma \frac{\partial u_j^{\sigma}}{\partial \mathbf{n}} ds$ (1a) $\nabla u_j^{\sigma} \times \mathbf{n} = 0$, on $E_j^+ \cup E_j^-$, $\sigma \frac{\partial u_j^{\sigma}}{\partial \mathbf{n}} = 0$ on $\partial \Omega \setminus \overline{(E_j^+ \cup E_j^-)}$ (1b)

Unique solution of (1) up to an additive constant

Inverse Problem

Aim: Determine σ from *B*.

Maxwell Equations

$$-\sigma
abla u_j^\sigma = rac{1}{\mu_0}
abla imes B^j$$
 (Ampère's law) and $abla \cdot B^j = 0$

• $\nabla \times$ of Ampère's law $\rightsquigarrow \nabla u_j^{\sigma} \times \nabla \sigma = \frac{1}{\mu_0} \nabla^2 B^j$

• Only B_z^j measurable and two different electrode pairs/currents

Core-relation (logarithmic version, point-wise in Ω)

$$\nabla \ln \sigma = \frac{1}{\mu_0} (\sigma \mathbb{A}[\sigma])^{-1} \begin{pmatrix} \nabla^2 B_z^1 \\ \nabla^2 B_z^2 \end{pmatrix}, \ \mathbb{A}[\sigma] := \begin{pmatrix} \frac{\partial u_1^\sigma}{\partial y} & -\frac{\partial u_1^\sigma}{\partial x} \\ \frac{\partial u_2^\sigma}{\partial y} & -\frac{\partial u_2^\sigma}{\partial x} \end{pmatrix}$$
(CR)

GOETHE UNIVERSITÄT

Recovery of σ

Assume:
$$\sigma^+ \in \mathcal{P}$$
 with $\sigma^+|_{\Omega \setminus \tilde{\Omega}} = \sigma_b, \sigma_b > 0, \tilde{\Omega} \subset \subset \Omega, \sigma_b$ known

Iteration sequence (\rightsquigarrow Harmonic B_z Algorithm³) For $\sigma^0 = \sigma_b$ and $\nabla^2 B_{z,+}^j$, $j \in \{1,2\}$, via (CR) using σ^+ • calculate $\mathcal{F}^{n+1}(\mathbf{r}) = \frac{1}{\mu_0} (\sigma^n \mathbb{A}[\sigma^n])^{-1} \begin{pmatrix} \nabla^2 B_{z,+}^1 \\ \nabla^2 B_{z,+}^2 \end{pmatrix}$ (\mathbf{r}), $\forall \mathbf{r} \in \Omega$ • define $\ln \sigma^{n+1}$ as the solution of $\nabla^2 \ln \sigma^{n+1} = \nabla \cdot \mathcal{F}^{n+1}$ in Ω , $\ln \sigma^{n+1} = \ln \sigma^+$ on $\partial \Omega$

• $\sigma^{n+1} = \exp(\ln \sigma^{n+1}) \rightsquigarrow$ ensures positivity

³Seo, Woo, et al., 2003 D. Garmatter: Reduced Basis Methods for Inverse Problems

Reduced Basis Approach

Given $X_{N,1}$, $X_{N,2} \rightsquigarrow$ for $\sigma \in \mathcal{P}$ RB-approximations $u_{N,j}^{\sigma}$ available.

Reduced Iteration: For $\sigma^{0} = \sigma_{b}$, $\nabla^{2}B_{z,+}^{j}$ via (**CR**) using σ^{+} • calculate $\mathcal{F}_{N}^{n+1}(\mathbf{r}) = \frac{1}{\mu_{0}}(\sigma^{n}\mathbb{A}_{N}[\sigma^{n}])^{-1}\begin{pmatrix}\nabla^{2}B_{z,+}^{1}\\\nabla^{2}B_{z,+}^{2}\end{pmatrix}(\mathbf{r}), \forall \mathbf{r} \in \Omega,$ with $\mathbb{A}_{N}[\sigma^{n}] := \begin{pmatrix}\frac{\partial u_{N,1}^{\sigma^{n}}}{\partial y} & -\frac{\partial u_{N,2}^{\sigma^{n}}}{\partial x}\\\frac{\partial u_{N,2}^{\sigma^{n}}}{\partial y} & -\frac{\partial u_{N,2}^{\sigma^{n}}}{\partial x}\end{pmatrix}$ • define $\ln \sigma^{n+1}$ as the solution of

$$\nabla^2 \ln \sigma^{n+1} = \nabla \cdot \mathcal{F}_N^{n+1} \quad \text{in } \Omega, \quad \ln \sigma^{n+1} = \ln \sigma^+ \quad \text{on } \partial \Omega$$
$$\sigma^{n+1} = \exp(\ln \sigma^{n+1})$$

GOETHE UNIVERSITÄT FRANKFURT AM MAIN

Reduced iteration: convergence

$$\blacktriangleright \ \Xi(\sigma_b, \epsilon_0) := \{ \sigma \in \mathcal{P} \mid \sigma \mid_{\Omega \setminus \tilde{\Omega}} = \sigma_b, \ \|\nabla \ln \sigma\|_{\mathcal{C}^{0,\alpha}(\Omega)} < \epsilon_0 \}$$

Preliminary result⁴

There exists $0 < \epsilon < \epsilon_0$, such that for each $\sigma^+ \in \Xi(\sigma_b, \epsilon_0)$ with $\|\nabla \ln \sigma^+\|_{C^{0,\alpha}(\Omega)} \le \epsilon$, and as long as

•
$$u_{N,j}^{\sigma^n} \in \mathcal{C}^{1,lpha}(\tilde{\tilde{\Omega}}), \, \tilde{\Omega} \subset \subset \tilde{\tilde{\Omega}} \subset \subset \Omega$$

$$\|\nabla u_{N,j}^{\sigma^n} - \nabla u_j^{\sigma^n}\|_{C^{0,\alpha}(\tilde{\Omega})} \le \epsilon^{n+1}C$$

hold throughout the Reduced Iteration, the sequence $\{\sigma^n\}$ generated by Reduced Iteration with initial guess σ_b satisfies

$$\|\ln \sigma^n - \ln \sigma^+\|_{\mathcal{C}^{1,\alpha}(\tilde{\Omega})} \leq K_{\Omega}\left(\frac{1}{2}\right)^n \epsilon.$$

⁴based on Seo, Woo, Liu, 2010

Reduced Basis Harmonic B_z Algorithm (RBZ)

Algorithm 1 RBZ(
$$\sigma_b, \mu_0, tol_1, tol_2, X_{N,1}, X_{N,2}$$
)

1:
$$\sigma^0 := \sigma_b, n := 0$$

2: repeat

3: enrich spaces $X_{N,1}$, $X_{N,2}$ using $u_1^{\sigma^n}$, $u_2^{\sigma^n}$

4:
$$i := 1, \sigma^i := \sigma^n$$

5: repeat

6:
$$\mathcal{F}_{N}^{i+1}(\mathbf{r}) := \frac{1}{\mu_{0}} (\sigma^{i} \mathbb{A}_{N}[\sigma^{i}])^{-1} \begin{pmatrix} \nabla^{2} B_{z,+}^{1} \\ \nabla^{2} B_{z,+}^{2} \end{pmatrix} (\mathbf{r}), \forall \mathbf{r} \in \Omega$$

7: define
$$\ln \sigma^{i+1}$$
 as solution of
 $\nabla^2 \ln \sigma^{i+1} = \nabla \cdot \mathcal{F}_N^{i+1}$ in Ω , $\ln \sigma^{i+1} = \ln \sigma^+$ on $\partial \Omega$
8: $i := i + 1$

9: **until**
$$\|\sigma^i - \sigma^{i-1}\|_{\mathcal{P}} \leq tol_1 \text{ or } \Delta_{N,1}(\sigma_i) > tol_2 \text{ or } \Delta_{N,2}(\sigma_i) > tol_2$$

10: $n := n + 1, \sigma^n := \sigma^i$

11: **until**
$$\|\sigma^i - \sigma^{i-1}\|_{\mathcal{P}} \leq tol_1$$

12: **return**
$$\sigma_{RBZ} := \sigma^n$$

Numerics - Setting

•
$$\Omega := [-1, 1] \times [-2, 2]$$

• $E_1^{\pm} := \{(\pm 1, y) \mid |y| < 0.1\}, E_2^{\pm} := \{(x, \pm 2) \mid |x| < 0.1\}$
• For $r = \sqrt{x^2 + y^2}, x, y \in \Omega$

$$\sigma^+ pprox \sigma(r) := egin{cases} 10\left(\cos(r) - rac{\sqrt{3}}{2}
ight) + 2, \ 0 \leq r \leq \pi/6 \ 2, \ ext{otherwise} \end{cases} \in \mathcal{P}$$

using 40 × 80 rectangles (piecewise constant approximation) • $\sigma_b = 2, \mu_0 = 1, tol_1 = 10^{-5}, tol_2 = \frac{1}{100}$, no noise

Numerics - Comparison

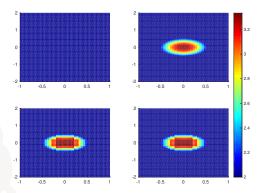


Figure: σ_b (top left), σ^+ (top right), σ_{BZ} (bottom left), σ_{RBZ} (bottom right).

► BZ: 3.45s and 16 PDE solves RBZ: 2.21s and 6 PDE solves ► $\|\sigma^+ - \sigma_{BZ}\|_{\mathcal{P}} \approx 0.05$, $\|\sigma_{BZ} - \sigma_{RBZ}\|_{\mathcal{P}} \approx 6.760 \cdot 10^{-6}$

Conclusion

Summary

- Reduced basis (RB) approaches can speed-up the solution procedure of inverse coefficient problems
- Standard RB approach not feasible in imaging context
- Adaptive RB approach for high-dimensional parameter spaces
- Presented RBZ-Algorithm for MREIT including preliminary convergence result

Future work

Finalize convergence result and numerics

Thank you for your attention!