

Reduced Basis Methods for MREIT

Dominik Garmatter

garmatter@math.uni-frankfurt.de

Group for Numerics of Partial Differential Equations, Goethe University Frankfurt, Germany

Joint work with Bastian Harrach

IMA Conference on Inverse Problems from Theory to Application Cambridge, UK, September 21st, 2017.

Magnetic Resonance Electrical Impedance Tomography (MREIT)¹

¹Based on Seo, Woo, et al. since 2003

Motivation: Electrical Impedance Tomography (EIT)

- ▶ Setting: Imaging object $O \subset \mathbb{R}^3$ with electrode pairs attached
- Aim: reconstruct cross-sectional (Ω = O ∩ {z = z₀} ⊂ ℝ²) image of electrical conductivity inside Ω

In EIT

- Data: Current-Voltage measurements on boundary
- Difficulty: highly ill-posed
 volume low spatial resolution

Aim: achieve higher resolution of conductivity σ .

- ► Object Ω with E[±]₁, E[±]₂ attached → placed inside MRI-Scanner
- Apply current / between electrode pair
- Generates magnetic flux density B
- B_z measurable with MRI scanner (full internal data set)

Forward problem (shunt model)

$$\blacktriangleright \mathcal{P} = \{ \sigma \in \mathcal{C}^{1,\alpha}(\overline{\Omega}) \mid \sigma(x) > 0, \, x \in \overline{\Omega} \}, \, \alpha \in (0,1) \}$$

Detailed problem ($j \in \{1, 2\}$ determines active electrode pair)

For $\sigma \in \mathcal{P}$, find u_i^{σ} , the detailed solution of

$$\nabla \cdot (\sigma \nabla u_j) = 0 \text{ in } \Omega, \quad I_j = \int_{E_j^+} \sigma \frac{\partial u_j}{\partial \mathbf{n}} ds = -\int_{E_j^-} \sigma \frac{\partial u_j}{\partial \mathbf{n}} ds \quad (1a)$$
$$\nabla u_j \times \mathbf{n} = 0, \text{ on } E_j^+ \cup E_j^-, \quad \sigma \frac{\partial u_j}{\partial \mathbf{n}} = 0 \text{ on } \partial \Omega \setminus \overline{\left(E_j^+ \cup E_j^-\right)} \quad (1b)$$

Unique solution of (1) up to an additive constant

Inverse Problem

Aim: Determine σ^* from $B_{z,\star}^1$, $B_{z,\star}^2$. **Assume:** $\sigma^* \in \mathcal{P}$ with $\sigma^*|_{\Omega \setminus \tilde{\Omega}} = \sigma_b, \sigma_b > 0, \tilde{\Omega} \subset \subset \Omega, \sigma_b$ known.

Maxwell Equations

$$-\sigma
abla u_j^\sigma = rac{1}{\mu_0}
abla imes B^j$$
 (Ampère's law) and $abla \cdot B^j = 0$

•
$$abla imes$$
 of Ampère's law $\rightsquigarrow
abla u_j^\sigma imes
abla \sigma = rac{1}{\mu_0}
abla^2 B^j$

 \rightsquigarrow Relation for σ^{\star} (logarithmic version, point-wise in Ω)

$$\nabla \ln \sigma^{\star} = \frac{1}{\mu_0} (\sigma^{\star} \mathbb{A}[\sigma^{\star}])^{-1} \begin{pmatrix} \nabla^2 B_{z,\star}^1 \\ \nabla^2 B_{z,\star}^2 \end{pmatrix}, \ \mathbb{A}[\sigma^{\star}] := \begin{pmatrix} \frac{\partial u_1^{\sigma^{\star}}}{\partial y} & -\frac{\partial u_1^{\sigma^{\star}}}{\partial x} \\ \frac{\partial u_2^{\sigma^{\star}}}{\partial y} & -\frac{\partial u_2^{\sigma^{\star}}}{\partial x} \end{pmatrix}$$

Reconstruction of σ^*

Initial guess: $\sigma^0 = \sigma_b$.

²Seo, Woo 2003, et al. D. Garmatter: Reduced Basis Methods for MREIT

Approximative approach

Given: for $\sigma \in \mathcal{P}$ let $u_{i,N}^{\sigma}$ be an (unspecified) approximation to u_i^{σ} .

Approximative iteration sequence ► calculate $\mathcal{V}_N^{n+1}(\mathbf{r}) = \frac{1}{\mu_0} (\sigma^n \mathbb{A}_N[\sigma^n])^{-1} \begin{pmatrix} \nabla^2 B_{z,\star}^1 \\ \nabla^2 B_{z,\star}^2 \end{pmatrix} (\mathbf{r}), \forall \mathbf{r} \in \Omega,$ with $\mathbb{A}_{N}[\sigma^{n}] := \begin{pmatrix} \frac{\partial u_{1,N}^{\sigma^{n}}}{\partial y} & -\frac{\partial u_{1,N}^{\sigma^{n}}}{\partial x} \\ \frac{\partial u_{2,N}^{\sigma^{n}}}{\partial x} & -\frac{\partial u_{2,N}^{\sigma^{n}}}{\partial x} \end{pmatrix}$ • define $\ln \sigma^{n+1}$ as the solution of $\nabla^2 \ln \sigma^{n+1} = \nabla \cdot \mathcal{V}_{M}^{n+1} \quad \text{in } \Omega, \quad \ln \sigma^{n+1} = \ln \sigma^* \quad \text{on } \partial \Omega$ $\blacktriangleright \sigma^{n+1} = \exp(\ln \sigma^{n+1})$

Convergence

Preliminary result³

There exists an $\epsilon > 0$, such that if $\|\nabla \ln \sigma^{\star}\|_{C^{0,\alpha}(\Omega)} < \epsilon$ and the approximations $u_{i,N}^{\sigma^n}$ fulfill

$$\blacktriangleright \ u^{\sigma^n}_{j,N} \in \mathcal{C}^{1,\alpha}(\tilde{\tilde{\Omega}}), \qquad \tilde{\Omega} \subset \subset \tilde{\tilde{\Omega}} \subset \subset \Omega$$

$$\models \|\nabla u_{j,N}^{\sigma^n} - \nabla u_j^{\sigma^n}\|_{C^{0,\alpha}(\tilde{\Omega})} \le C_1 \epsilon^{n+1}$$

throughout the approximative iteration, the resulting sequence of iterates σ^n , n = 1, 2, ..., with initial guess $\sigma^0 = \sigma_b$ satisfies

$$\|\ln\sigma^n - \ln\sigma^\star\|_{C^{1,\alpha}(\tilde{\Omega})} \le C_2\left(\frac{1}{2}\right)^n\epsilon, \quad n = 1, 2, \dots$$

³Extension of Seo, Woo, Liu, 2010. Preprint available soon.

Reduced Basis Methods (RBM) and MREIT

Reduced Basis Methods (RBM): Idea

- Solution manifold $\mathcal{M} := \{ u^{\sigma} \mid \sigma \in \mathcal{P} \}$
- Construction of X_N via *carefully* chosen *snapshots* u^{σ_i}

Assume:
$$X_N := \operatorname{span}\{u^{\sigma_1}, \ldots, u^{\sigma_N}\} \subset X$$
 is given.

Reduced problem (Galerkin projection)

For $\sigma \in \mathcal{P}$, find $u_N^{\sigma} \in X_N \subset X$, the reduced solution of

$$b(u_N^{\sigma}, v; \sigma) = f(v), \quad \forall v \in X_N.$$

(one detailed/reduced problem/RB-space per j = 1, 2)

- Reproduction of solutions: $u^{\sigma} \in X_N \Rightarrow u^{\sigma}_N = u^{\sigma}$
- Offline/Online-decomposition: rapid computation of u_N^{σ}

$$\|u^{\sigma} - u_{N}^{\sigma}\|_{X} \leq \Delta_{N}(\sigma) := \frac{\|v_{r}\|_{X}}{\alpha(\sigma)}, \text{ with}$$

$$\langle v_{r}, v \rangle_{X} := r(v; \sigma) := f(v) - b(u_{N}^{\sigma}, v; \sigma), \forall v \in X$$

Naive/direct approach

- ► Construct global X_N (greedy, POD,...) approximating whole M
- Use u_N^{σ} instead of u^{σ} in the inversion scheme

Limitation: Only feasible for low-dimensional parameter spaces, not feasible for imaging.

Our approach⁴**:** Create problem-adapted RB-space by iterative enrichment (inspired by Druskin & Zaslavski 2007, Zahr & Fahrhat 2015 and Lass 2014).

⁴**G**./Haasdonk/Harrach, A Reduced Basis Landweber method for nonlinear inverse problems, 2016 Inverse Problems 32 (3) (doi).

Recall: approximative approach for MREIT

Given: RB-spaces $X_{N,1}$, $X_{N,2} \rightsquigarrow u_{i,N}^{\sigma}$ is respective RB-approximation.

GOETHE UNIVERSITÄT FRANKFURT AM MAIN

Reduced Basis Harmonic B_z Algorithm (RBZ)

Algorithm 1 RBZ(
$$\sigma_b, \mu_0, \varepsilon_1, \varepsilon_2, X_{N,1}, X_{N,2}$$
)

1:
$$\sigma^0 := \sigma_b, n := 0$$

- 2: repeat
- 3: Enrich spaces $X_{N,1}$, $X_{N,2}$ using $u_1^{\sigma^n}$, $u_2^{\sigma^n}$.

4: repeat

5:
$$\mathcal{V}_{N}^{n+1}(\mathbf{r}) := \frac{1}{\mu_{0}} (\sigma^{n} \mathbb{A}_{N}[\sigma^{n}])^{-1} \begin{pmatrix} \nabla^{2} B_{z,\star}^{1} \\ \nabla^{2} B_{z,\star}^{2} \end{pmatrix} (\mathbf{r}), \forall \mathbf{r} \in \Omega$$

6: Calculate $\ln \sigma^{n+1}$ as the solution of $\nabla^2 \ln \sigma^{n+1} = \nabla \cdot \mathcal{V}_N^{n+1}$ in Ω , $\ln \sigma^{n+1} = \ln \sigma^*$ on $\partial \Omega$ 7: $\sigma^{n+1} := \exp(\ln \sigma^{n+1})$ n := n+18: **until** $\| \ln \sigma^n - \ln \sigma^{n-1} \|_{C(\Omega)} \le \varepsilon_1$ or $\min_{j=1,2} \{\Delta_{N,j}(\sigma^n)\} > \varepsilon_2$ 9: **until** $\| \ln \sigma^n - \ln \sigma^{n-1} \|_{C(\Omega)} \le \varepsilon_1$ 10: **return** $\sigma_{RBZ} := \sigma^n$

Numerics (idealized)

Setting: 260 × 260 image, $\varepsilon_1 = 10^{-6}$, $\varepsilon_2 = 10^{-3}$, no noise.

Figure: σ_b (top left), σ^* (top right), σ_{BZ} (bottom left), σ_{RBZ} (bottom right).

► BZ: 10.10s and 28 PDE solves RBZ: 8.18s and 8 PDE solves

$$\frac{\|\sigma^* - \sigma_{BZ}\|_{C(\Omega)}}{\|\sigma_{BZ}\|_{C(\Omega)}} \approx 2 \cdot 10^{-3}, \frac{\|\sigma_{RBZ} - \sigma_{BZ}\|_{C(\Omega)}}{\|\sigma_{BZ}\|_{C(\Omega)}} \approx 4 \cdot 10^{-4}$$

Conclusion

Summary

- Inverse problem of MREIT & Harmonic B_z Algorithm as solution algorithm
- ► Any (sufficient) approximative forward solution ~→ convergence
- Reduced Basis Method (adaptive approach high-dimensional parameter space) to speed-up existing algorithm
- Novel RBZ-Algorithm, including (idealized) numerics

Future work

Finalize and publish results

Thank you for your attention!