Reduced Basis Methods for MREIT

Dominik Garmatter
garmatter@math.uni-frankfurt.de
Group for Numerics of Partial Differential Equations, Goethe University Frankfurt, Germany
Joint work with Bastian Harrach
IMA Conference on Inverse Problems from Theory to Application Cambridge, UK, September 21st, 2017.

Magnetic Resonance Electrical Impedance Tomography (MREIT) ${ }^{1}$

${ }^{1}$ Based on Seo, Woo, et al. since 2003
D. Garmatter: Reduced Basis Methods for MREIT

Motivation: Electrical Impedance Tomography (EIT)

- Setting: Imaging object $O \subset \mathbb{R}^{3}$ with electrode pairs attached
- Aim: reconstruct cross-sectional $\left(\Omega=O \cap\left\{z=z_{0}\right\} \subset \mathbb{R}^{2}\right)$ image of electrical conductivity inside Ω

In EIT

- Data: Current-Voltage measurements on boundary
- Difficulty: highly ill-posed
\rightsquigarrow low spatial resolution

Aim: achieve higher resolution of conductivity σ.

- Object Ω with $E_{1}^{ \pm}, E_{2}^{ \pm}$attached \rightsquigarrow placed inside MRI-Scanner
- Apply current / between electrode pair
- Generates magnetic flux density B
- B_{z} measurable with MRI scanner (full internal data set)

Forward problem (shunt model)

$$
\mathcal{P}=\left\{\sigma \in C^{1, \alpha}(\bar{\Omega}) \mid \sigma(x)>0, x \in \bar{\Omega}\right\}, \alpha \in(0,1)
$$

Detailed problem $(j \in\{1,2\}$ determines active electrode pair)
For $\sigma \in \mathcal{P}$, find u_{j}^{σ}, the detailed solution of

$$
\begin{align*}
& \nabla \cdot\left(\sigma \nabla u_{j}\right)=0 \text { in } \Omega, \quad I_{j}=\int_{E_{j}^{+}} \sigma \frac{\partial u_{j}}{\partial \mathbf{n}} d s=-\int_{E_{j}^{-}} \sigma \frac{\partial u_{j}}{\partial \mathbf{n}} d s \tag{1a}\\
& \nabla u_{j} \times \mathbf{n}=0, \text { on } E_{j}^{+} \cup E_{j}^{-}, \quad \sigma \frac{\partial u_{j}}{\partial \mathbf{n}}=0 \text { on } \partial \Omega \backslash \overline{\left(E_{j}^{+} \cup E_{j}^{-}\right)} \tag{1b}
\end{align*}
$$

- Unique solution of (1) up to an additive constant

Aim: Determine σ^{\star} from $B_{z, \star}^{1}, B_{z, \star}^{2}$.
Assume: $\sigma^{\star} \in \mathcal{P}$ with $\left.\sigma^{\star}\right|_{\Omega \backslash \tilde{\Omega}}=\sigma_{b}, \sigma_{b}>0, \tilde{\Omega} \subset \subset \Omega, \sigma_{b}$ known.

- Maxwell Equations

$$
-\sigma \nabla u_{j}^{\sigma}=\frac{1}{\mu_{0}} \nabla \times B^{j} \text { (Ampère's law) and } \quad \nabla \cdot B^{j}=0
$$

- $\nabla \times$ of Ampère's law $\rightsquigarrow \nabla u_{j}^{\sigma} \times \nabla \sigma=\frac{1}{\mu_{0}} \nabla^{2} B^{j}$
\rightsquigarrow Relation for σ^{\star} (logarithmic version, point-wise in Ω)

$$
\nabla \ln \sigma^{\star}=\frac{1}{\mu_{0}}\left(\sigma^{\star} \mathbb{A}\left[\sigma^{\star}\right]\right)^{-1}\binom{\nabla^{2} B_{2, \star}^{1}}{\nabla^{2} B_{z, \star}^{2}}, \mathbb{A}\left[\sigma^{\star}\right]:=\left(\begin{array}{cc}
\frac{\partial u_{1}^{\sigma^{\star}}}{\partial y^{\star}} & -\frac{\partial u_{1}^{\alpha^{\star}}}{\partial x} \\
\frac{\partial u_{2}^{\star}}{\partial y} & -\frac{\partial u_{2}^{\alpha^{\star}}}{\partial x}
\end{array}\right)
$$

Initial guess: $\sigma^{0}=\sigma_{b}$.

Iteration sequence (\rightsquigarrow Harmonic B_{z} Algorithm ${ }^{2}$)

- calculate $\mathcal{V}^{n+1}(\mathbf{r})=\frac{1}{\mu_{0}}\left(\sigma^{n} \mathbb{A}\left[\sigma^{n}\right]\right)^{-1}\binom{\nabla^{2} B_{z, \star}^{1}}{\nabla^{2} B_{z, \star}^{2}}(\mathbf{r}), \forall \mathbf{r} \in \Omega$
- define $\ln \sigma^{n+1}$ as the solution of

$$
\begin{array}{cl}
\nabla^{2} \ln \sigma^{n+1}=\nabla \cdot \mathcal{V}^{n+1} \quad \text { in } \Omega, \quad \ln \sigma^{n+1}=\ln \sigma^{\star} \quad \text { on } \partial \Omega \\
& \text { (ensures positivity) }
\end{array}
$$

${ }^{2}$ Seo, Woo 2003, et al.
D. Garmatter: Reduced Basis Methods for MREIT

Given: for $\sigma \in \mathcal{P}$ let $u_{j, N}^{\sigma}$ be an (unspecified) approximation to u_{j}^{σ}.

Approximative iteration sequence

- calculate $\mathcal{V}_{N}^{n+1}(\mathbf{r})=\frac{1}{\mu_{0}}\left(\sigma^{n} \mathbb{A}_{N}\left[\sigma^{n}\right]\right)^{-1}\binom{\nabla^{2} B_{z, \star}^{1}}{\nabla^{2} B_{z, \star}^{2}}(\mathbf{r}), \forall \mathbf{r} \in \Omega$,

$$
\text { with } \mathbb{A}_{N}\left[\sigma^{n}\right]:=\left(\begin{array}{ll}
\frac{\partial u_{1, N}^{\sigma^{n}}}{\partial y_{n}} & -\frac{\partial u_{1, N}^{\sigma^{n}}}{\partial x} \\
\frac{\partial u_{2, N}^{\sigma}}{\partial y} & -\frac{\partial u_{2, N}^{\sigma}}{\partial x}
\end{array}\right)
$$

- define $\ln \sigma^{n+1}$ as the solution of

$$
\begin{aligned}
& \quad \nabla^{2} \ln \sigma^{n+1}=\nabla \cdot \mathcal{V}_{N}^{n+1} \quad \text { in } \Omega, \quad \ln \sigma^{n+1}=\ln \sigma^{\star} \quad \text { on } \partial \Omega \\
&
\end{aligned}
$$

Preliminary result ${ }^{3}$

There exists an $\epsilon>0$, such that if $\left\|\nabla \ln \sigma^{\star}\right\|_{C^{0, \alpha}(\Omega)}<\epsilon$ and the approximations $u_{j, N}^{\sigma^{n}}$ fulfill

- $u_{j, N}^{\sigma^{n}} \in C^{1, \alpha}(\tilde{\tilde{\Omega}}), \quad \tilde{\Omega} \subset \subset \tilde{\tilde{\Omega}} \subset \subset \Omega$
- $\left\|\nabla u_{j, N}^{\sigma^{n}}-\nabla u_{j}^{\sigma^{n}}\right\|_{C^{0, \alpha}(\tilde{\Omega})} \leq C_{1} \epsilon^{n+1}$
throughout the approximative iteration, the resulting sequence of iterates $\sigma^{n}, n=1,2, \ldots$, with initial guess $\sigma^{0}=\sigma_{b}$ satisfies

$$
\left\|\ln \sigma^{n}-\ln \sigma^{\star}\right\|_{C^{1, \alpha}(\tilde{\Omega})} \leq C_{2}\left(\frac{1}{2}\right)^{n} \epsilon, \quad n=1,2, \ldots
$$

${ }^{3}$ Extension of Seo, Woo, Liu, 2010. Preprint available soon.

Reduced Basis Methods (RBM) and MREIT

D. Garmatter: Reduced Basis Methods for MREIT

Reduced Basis Methods (RBM): Idea

- Solution manifold $\mathcal{M}:=\left\{u^{\sigma} \mid \sigma \in \mathcal{P}\right\}$
- Construction of X_{N} via carefully chosen snapshots $u^{\sigma_{i}}$
D. Garmatter: Reduced Basis Methods for MREIT

Detailed problem (shunt model)

$F: \mathcal{P} \rightarrow X, \sigma \mapsto u^{\sigma}$, the detailed solution of

$$
b\left(u^{\sigma}, v ; \sigma\right)=f(v) \text { for all } v \in X \quad b, f \text { associated to (1). }
$$

Assume: $X_{N}:=\operatorname{span}\left\{u^{\sigma_{1}}, \ldots, u^{\sigma_{N}}\right\} \subset X$ is given.

Reduced problem (Galerkin projection)

For $\sigma \in \mathcal{P}$, find $u_{N}^{\sigma} \in X_{N} \subset X$, the reduced solution of

$$
b\left(u_{N}^{\sigma}, v ; \sigma\right)=f(v), \quad \forall v \in X_{N}
$$

(one detailed/reduced problem/RB-space per $j=1,2$)
D. Garmatter: Reduced Basis Methods for MREIT

- Reproduction of solutions: $u^{\sigma} \in X_{N} \Rightarrow u_{N}^{\sigma}=u^{\sigma}$
- Offline/Online-decomposition: rapid computation of u_{N}^{σ}

Certification - rigorous a-posteriori error estimator

$$
\begin{aligned}
& \left\|u^{\sigma}-u_{N}^{\sigma}\right\|_{x} \leq \Delta_{N}(\sigma):=\frac{\left\|v_{r}\right\| x}{\alpha(\sigma)}, \text { with } \\
& \left\langle v_{r}, v\right\rangle_{x}:=r(v ; \sigma):=f(v)-b\left(u_{N}^{\sigma}, v ; \sigma\right), \forall v \in X
\end{aligned}
$$

Naive/direct approach

- Construct global X_{N} (greedy, POD,...) approximating whole \mathcal{M}
- Use u_{N}^{σ} instead of u^{σ} in the inversion scheme

Limitation: Only feasible for low-dimensional parameter spaces, not feasible for imaging.

> Our approach ${ }^{4}$: Create problem-adapted RB-space by iterative enrichment (inspired by Druskin \& Zaslavski 2007, Zahr \& Fahrhat 2015 and Lass 2014).

${ }^{4}$ G./Haasdonk/Harrach, A Reduced Basis Landweber method for nonlinear inverse problems, 2016 Inverse Problems 32 (3) (doi).
D. Garmatter: Reduced Basis Methods for MREIT

Adaptive RBM \& IP: Idea

Adaptive RBM \& IP: Idea

Adaptive RBM \& IP: Idea

Adaptive RBM \& IP: Idea

Recall: approximative approach for MREIT

Given: RB-spaces $X_{N, 1}, X_{N, 2} \rightsquigarrow u_{j, N}^{\sigma}$ is respective RB-approximation.

RB iteration sequence

- calculate $\mathcal{V}_{N}^{n+1}(\mathbf{r})=\frac{1}{\mu_{0}}\left(\sigma^{n} \mathbb{A}_{N}\left[\sigma^{n}\right]\right)^{-1}\binom{\nabla^{2} B_{z, \star}^{1}}{\nabla^{2} B_{z, \star}^{2}}(\mathbf{r}), \forall \mathbf{r} \in \Omega$,

$$
\text { with } \mathbb{A}_{N}\left[\sigma^{n}\right]:=\left(\begin{array}{ll}
\frac{\partial u_{1, N}^{\sigma^{n}}}{\partial y_{n}} & -\frac{\partial u_{1, N}^{\sigma^{n}}}{\partial x} \\
\frac{\partial u_{2, N}^{\sigma}}{\partial y} & -\frac{\partial u_{2, N}^{\sigma}}{\partial x}
\end{array}\right)
$$

- define $\ln \sigma^{n+1}$ as the solution of

$$
\begin{aligned}
& \quad \nabla^{2} \ln \sigma^{n+1}=\nabla \cdot \mathcal{V}_{N}^{n+1} \quad \text { in } \Omega, \quad \ln \sigma^{n+1}=\ln \sigma^{\star} \quad \text { on } \partial \Omega \\
&
\end{aligned}
$$

Algorithm $1 \operatorname{RBZ}\left(\sigma_{b}, \mu_{0}, \varepsilon_{1}, \varepsilon_{2}, X_{N, 1}, X_{N, 2}\right)$

1: $\sigma^{0}:=\sigma_{b}, n:=0$
2: repeat
3: \quad Enrich spaces $X_{N, 1}, X_{N, 2}$ using $u_{1}^{\sigma^{n}}, u_{2}^{\sigma^{n}}$.
4: repeat
5: $\quad \mathcal{V}_{N}^{n+1}(\mathbf{r}):=\frac{1}{\mu_{0}}\left(\sigma^{n} \mathbb{A}_{N}\left[\sigma^{n}\right]\right)^{-1}\binom{\nabla^{2} B_{z, \star}^{1}}{\nabla^{2} B_{z, \star}^{2}}(\mathbf{r}), \forall \mathbf{r} \in \Omega$
6: \quad Calculate $\ln \sigma^{n+1}$ as the solution of

$$
\nabla^{2} \ln \sigma^{n+1}=\nabla \cdot \mathcal{V}_{N}^{n+1} \text { in } \Omega, \quad \ln \sigma^{n+1}=\ln \sigma^{\star} \text { on } \partial \Omega
$$

7: $\quad \sigma^{n+1}:=\exp \left(\ln \sigma^{n+1}\right) \quad n:=n+1$
8: until $\left\|\ln \sigma^{n}-\ln \sigma^{n-1}\right\|_{C(\Omega)} \leq \varepsilon_{1}$ or $\min _{j=1,2}\left\{\Delta_{N, j}\left(\sigma^{n}\right)\right\}>\varepsilon_{2}$
9: until $\left\|\ln \sigma^{n}-\ln \sigma^{n-1}\right\|_{C(\Omega)} \leq \varepsilon_{1}$
10: return $\sigma_{R B Z}:=\sigma^{n}$

Numerics (idealized)

Setting: 260×260 image, $\varepsilon_{1}=10^{-6}, \varepsilon_{2}=10^{-3}$, no noise.

Figure: σ_{b} (top left), σ^{\star} (top right), $\sigma_{B Z}$ (bottom left), $\sigma_{R B Z}$ (bottom right).

- BZ: 10.10s and 28 PDE solves | RBZ: 8.18 s and 8 PDE solves
$-\frac{\left\|\sigma^{\star}-\sigma_{B Z}\right\|_{C(\Omega)}}{\left\|\sigma_{B Z}\right\|_{C(\Omega)}} \approx 2 \cdot 10^{-3}, \frac{\left\|\sigma_{R B Z}-\sigma_{B Z}\right\|_{C(\Omega)}}{\left\|\sigma_{B Z}\right\|_{C(\Omega)}} \approx 4 \cdot 10^{-4}$
D. Garmatter: Reduced Basis Methods for MREIT

Conclusion

Summary

- Inverse problem of MREIT \& Harmonic B_{z} Algorithm as solution algorithm
- Any (sufficient) approximative forward solution \rightsquigarrow convergence
- Reduced Basis Method (adaptive approach - high-dimensional parameter space) to speed-up existing algorithm
- Novel RBZ-Algorithm, including (idealized) numerics

Future work

- Finalize and publish results

Thank you for your attention!

