Prof. Dr. Jakob Stix Martin Lüdtke

Elementarmathematik II

Sommersemester 2018

Übungsblatt 1

10. April 2018

Aufgabe 1. (3 Punkte)

Zeigen Sie die folgenden Aussagen für $n \in \mathbb{N}$:

(a)
$$4^1 \cdot 4^2 \cdot 4^3 \cdot \cdot \cdot \cdot 4^n = 2^{n(n+1)}$$

(b)
$$1^2 - 2^2 + 3^2 - 4^2 + \dots - (2n)^2 = -n(2n+1)$$

(c)
$$\sum_{k=0}^{n} (-2)^k \binom{n}{k} = (-1)^n$$

Lösungsskizze zu Aufgabe 1:

(a) Induktionsbeweis: Die Aussage $4^1 = 2^{1 \cdot 2}$ stimmt für n = 1. Gilt die Aussage für n - 1, dann folgt

$$4^{1} \cdot 4^{2} \cdot \cdot \cdot 4^{n} = 2^{(n-1)n} \cdot 4^{n} = 2^{(n-1)n+2n} = 2^{n(n+1)}.$$

Alternativer Beweis mit Gaußscher Summenformel:

$$4^{1} \cdot 4^{2} \cdot \cdot \cdot \cdot 4^{n} = 4^{1+2+\dots+n} = 4^{n(n+1)/2} = 2^{n(n+1)}$$
.

(b) Induktionsbeweis: Die Aussage $1^2 - 2^2 = -1 \cdot (2 \cdot 1 + 1)$ stimmt für n = 1. Gilt die Aussage für n - 1, dann folgt

$$1^{2} - 2^{2} + 3^{2} - 4^{2} + \dots - (2n)^{2} = -(n-1)(2(n-1)+1) + (2n-1)^{2} - (2n)^{2}$$

$$= -(n-1)(2n-1) + ((2n)^{2} - 2(2n) + 1) - (2n)^{2}$$

$$= -2n^{2} - n$$

$$= -n(2n+1).$$

(c) Beweis mit binomischem Lehrsatz:

$$\sum_{k=0}^{n} (-2)^k \binom{n}{k} = (1-2)^n = (-1)^n.$$

Alternativer Beweis durch Induktion: Für n=1 stimmt die Aussage

$$(-2)^0 \binom{1}{0} + (-2)^1 \binom{1}{1} = 1 \cdot 1 + (-2) \cdot 1 = (-1)^1.$$

Gelte die Aussage für n-1. Mit der rekursiven Formel $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$ aus dem Pascalschen Dreieck folgt

$$\sum_{k=0}^{n} (-2)^k \binom{n}{k} = \sum_{k=0}^{n} (-2)^k \binom{n-1}{k-1} + \sum_{k=0}^{n} (-2)^k \binom{n-1}{k}$$
$$= (-2) \sum_{k=0}^{n} (-2)^{k-1} \binom{n-1}{k-1} + \sum_{k=0}^{n} (-2)^k.$$

In der ersten Summe ersetzen wir $k \to k+1$, wodurch sich der Summationsbereich zu $k=-1,\ldots,n-1$ ändert. Der erste Summand liefert wegen $\binom{n-1}{-1}=0$ keinen Beitrag, somit gilt

$$\sum_{k=0}^{n} (-2)^{k-1} \binom{n-1}{k-1} = \sum_{k=0}^{n-1} (-2)^k \binom{n-1}{k} = (-1)^{n-1}$$

nach Induktionsvoraussetzung. In der zweiten Summe liefert der letzte Summand wegen $\binom{n-1}{n}=0$ keinen Beitrag, somit gilt

$$\sum_{k=0}^{n} (-2)^k \binom{n-1}{k} = \sum_{k=0}^{n-1} (-2)^k \binom{n-1}{k} = (-1)^{n-1},$$

wiederum nach Induktionsvoraussetzung. Insgesamt erhalten wir

$$\sum_{k=0}^{n} (-2)^k \binom{n}{k} = (-2) \cdot (-1)^{n-1} + (-1)^{n-1} = ((-2) + 1) \cdot (-1)^{n-1} = (-1)^n.$$

Aufgabe 2. (4 Punkte)

(a) Bestimmen Sie Polynome q(X) und r(X) in $\mathbb{R}[X]$ mit grad r(X) < 2, so dass

$$X^4 + 4X^3 - 14X^2 + X + 11 = (X^2 - 3X + 2)q(x) + r(X).$$

(b) Sei $f(X) \in \mathbb{R}[X]$ das Polynom $f(X) = X^3 - 8X^2 + 5X + 50$. Es gilt f(-2) = 0. Schreiben Sie f(X) als Produkt von Polynomen vom Grad 1.

Lösungsskizze zu Aufgabe 2:

(a) Polynomdivision:

$$X^{4} + 4X^{3} - 14X^{2} + X + 11 = (X^{2} - 3X + 2)(X^{2} + 7X + 5) + 2X + 1$$

$$-X^{4} + 3X^{3} - 2X^{2}$$

$$7X^{3} - 16X^{2} + X$$

$$-7X^{3} + 21X^{2} - 14X$$

$$5X^{2} - 13X + 11$$

$$-5X^{2} + 15X - 10$$

$$2X + 1$$

(b) Da -2 eine Nullstelle ist, ist f(X) durch X+2 teilbar. Polynomdivision:

$$X^{3} - 8X^{2} + 5X + 50 = (X+2)(X^{2} - 10X + 25)$$

$$-X^{3} - 2X^{2}$$

$$-10X^{2} + 5X$$

$$-10X^{2} + 5X$$

$$-10X^{2} + 20X$$

$$-25X + 50$$

$$-25X - 50$$

Mit der binomischen Formel gilt $X^2 - 10X + 25 = (X - 5)^2$, somit

$$f(X) = (X+2)(X-5)^2.$$

Aufgabe 3. (3 Punkte)

- (a) Bestimmen Sie alle Primzahlen p mit $p \equiv 4 \mod 6$.
- (b) Ist die 100-stellige Zahl 200...018 eine Quadratzahl?
- (c) Für welche $n \in \mathbb{N}$ ist $4^n 1$ eine Primzahl? (Hinweis: Geometrische Summenformel)

Lösungsskizze zu Aufgabe 3:

- (a) Die Bedingung $p \equiv 4 \mod 6$ bedeutet p = 6n + 4 für ein $n \in \mathbb{Z}$. Aus $p = 2 \cdot (3n + 2)$ folgt, dass p gerade ist. Die einzige gerade Primzahl ist p = 2, aber es gilt $2 \not\equiv 4 \mod 6$. Also gibt es keine Primzahl $p \equiv 4 \mod 6$.
- (b) Es gilt $200...018 = 2 \cdot 100...009$ und der zweite Faktor ist ungerade, somit ist der Exponent von 2 in der Primfaktorzerlegung gleich 1. Eine Quadratzahl hat aber die Form $(p_1^{a_1} \cdots p_r^{a_r})^2 = p_1^{2a_1} \cdots p_r^{2a_r}$, wo alle Exponenten gerade sind. Also handelt es sich nicht um eine Quadratzahl.
- (c) Mit der geometrischen Summenformel gilt $4^n 1 = (4-1) \cdot (1+4^1+4^2+\dots 4^{n-1})$, daher ist $4^n 1$ durch 3 teilbar. Wenn $p = 4^n 1$ eine Primzahl ist, muss p = 3 und somit n = 1 gelten. Also ist $4^n 1$ genau dann eine Primzahl, wenn n = 1 ist.

Aufgabe 4. (4 Punkte)

Definition: Eine Folge $(a_n)_{n\in\mathbb{N}}$ in \mathbb{R} konvergiert gegen unendlich $(\lim_{n\to\infty} a_n = \infty)$, wenn für alle $S\in\mathbb{R}$ ein $N\in\mathbb{N}$ existiert, so dass $a_n>S$ für alle $n\geq N$ gilt.

Zeigen Sie: Sind alle $a_n > 0$, so konvergiert (a_n) genau dann gegen unendlich, wenn die Folge $(1/a_n)$ eine Nullfolge ist. Zeigen Sie, dass die Aussage falsch ist, wenn man die Bedingung $a_n > 0$ durch $a_n \neq 0$ ersetzt.

Lösungsskizze zu Aufgabe 4:

Seien alle $a_n > 0$ und gelte $\lim_{n \to \infty} a_n = \infty$. Um zu zeigen, dass $(1/a_n)$ eine Nullfolge ist, sei $\varepsilon > 0$. Wir wählen $S = 1/\varepsilon$ und finden ein $N \in \mathbb{N}$, so dass $a_n > 1/\varepsilon$ für alle $n \ge N$ gilt. Dann gilt $|1/a_n| < \varepsilon$ für $n \ge N$.

Für die Umkehrung sei $(1/a_n)$ eine Nullfolge (und weiterhin alle $a_n > 0$). Sei $S \in \mathbb{R}$, gegeben, ohne Einschränkung gelte S > 0. Mit $\varepsilon = 1/S$ finden wir ein $N \in \mathbb{N}$, so dass $1/a_n < 1/S$ für $n \ge N$ gilt, was äquivalent zu $a_n > S$ ist.

Die Folge $(a_n)_{n\in\mathbb{N}}=(-1,-2,-3,\ldots)$ konvergiert nicht gegen unendlich, da $a_n\leq 0$ für alle $n\in\mathbb{N}$ gilt und somit für S=0 kein N wie oben existiert. Aber $(1/a_n)=(-1/n)$ ist eine Nullfolge.

Bonusaufgabe.

- (1) Wenn Anna neben Eva sitzt, ist Eva glücklich.
- (2) Wenn Ben glücklich ist, ist Eva unglücklich.

Anna sitzt neben Eva. Ist Ben glücklich?

Abgabe: Am kommenden Dienstag, den **17. April 2018**, bis zur Vorlesung in den Kasten im 3. Stock, Institut für Mathematik, Robert-Mayer-Straße 6-8. Downloads von Übungsblättern und Informationen zur Vorlesung unter

https://www.uni-frankfurt.de/70100088/18_SS_Elementarmathematik_II