Goethe-Universität Frankfurt
Institut für Mathematik
Wintersemester 2018
21. Januar 2019

Komplexe Algebraische Geometrie
Prof. Dr. Martin Möller
Dr. David Torres-Teigell
M.Sc. Riccardo Zuffetti

Übungsblatt 11

Aufgabe 1 (3 Punkte)

Let $B \subset \mathbb{C}^{n}$ be a polydisc and let $\alpha \in \mathcal{A}^{p, q}(B)$ be a d-closed form with $p, q \geq 1$. Show that there exists a form $\gamma \in \mathcal{A}^{p-1, q-1}(B)$ such that $\partial \bar{\partial} \gamma=\alpha$.
Hint: Show first that α is also d-exact. Let $k=p+q$ and let $\beta \in \mathcal{A}_{\mathbb{C}}^{k-1}(B)$ be such that $\mathrm{d} \beta=\alpha$. Study the decomposition of β in

$$
\mathcal{A}_{\mathbb{C}}^{k-1}(B)=\bigoplus_{a+b=k-1} \mathcal{A}^{a, b}(B)
$$

Aufgabe 2 (3 Punkte)

(a) Let $\omega=\frac{i}{2 \pi} \sum \mathrm{~d} z_{i} \wedge \mathrm{~d} \bar{z}_{i}$ be the standard fundamental form on \mathbb{C}^{n}. Show that one can write $\omega=\frac{i}{2 \pi} \partial \bar{\partial} \varphi$ for a positive function φ and determine φ. The function φ is called Kähler potential.
(b) Show that $\omega=\frac{i}{2 \pi} \partial \bar{\partial} \log \left(|z|^{2}+1\right) \in \mathcal{A}^{1,1}(\mathbb{C})$ is the fundamental form of a compatible metric g that osculates to order two in any point.
Remark: this is the local shape of the Fubini-Study Kähler form of \mathbb{P}^{1}.

Aufgabe 3 (4 Punkte)

Let $(V,\langle\rangle$,$) be an euclidean vector space and let I, J, K$ be compatible almost complex structures where $K=I \circ J=-J \circ I$. The associated fundamental forms are denoted by $\omega_{I}, \omega_{J}, \omega_{K}$.
(a) Show that V becomes in a natural way a vector space over the quaternions.

Hint: recall that the quaternions are the associative algebra $\mathbb{H}=\langle 1, i, j, k\rangle \cong \mathbb{R}^{4}$, with multiplication given by:

$$
i j=-j i=k, \quad j k=-k j=i, \quad k i=-i k=j, \quad i^{2}=j^{2}=k^{2}=-1 .
$$

(b) Show that $\omega_{J}+i \cdot \omega_{K}$ with respect to I is a form of type $(2,0)$.
(c) How many natural almost complex structures do you see in this context?

Hint: let $a_{1}, a_{2}, a_{3} \in \mathbb{R}$ and consider the endomorphism $W:=a_{1} I+a_{2} J+a_{3} K: V \rightarrow V$.
When is W an almost complex structure?

Aufgabe 4 (6 Punkte)

Let X be a complex manifold of dimension n. The aim of this exercise is to make the tangent and cotangent bundles of X more explicit.
(a) Show that TX can be expressed as:

$$
\pi: \bigsqcup_{x \in X} T_{x}^{1,0} X \longrightarrow X,
$$

where $\pi(\mathbf{v}):=x$ if $\mathbf{v} \in T_{x}^{1,0} X$.
Hint: show that the cocycle description of this bundle is exactly the cocycle description of the tangent bundle. To do that, fix $\left\{\left(U_{\alpha}, \varphi_{\alpha}\right)\right\}$ a covering of local charts for X, and write $\varphi_{\alpha}=\left(z_{1}^{\alpha}, \ldots, z_{n}^{\alpha}\right)$ in local coordinates. Then consider as local trivializations the following maps:

$$
\begin{aligned}
\psi_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) & \longrightarrow U_{\alpha} \times \mathbb{C}^{n}, \\
\left.\sum_{j=1}^{n} v_{j} \cdot \frac{\partial}{\partial z_{j}^{\alpha}}\right|_{x} & \longmapsto\left(x,\left(v_{1}, \ldots, v_{n}\right)\right) .
\end{aligned}
$$

(b) Follow the same idea as in the previous point and show that $T^{*} X$ can be expressed as:

$$
\pi: \bigsqcup_{x \in X}\left(T_{x}^{*} X\right)^{1,0} \longrightarrow X
$$

where $\pi(\omega):=x$ if $\omega \in\left(T_{x}^{*} X\right)^{1,0}$.
Hint: in this case define the trivializations:

$$
\begin{aligned}
& \psi_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \longrightarrow U_{\alpha} \times \mathbb{C}^{n}, \\
& \left.\sum_{j=1}^{n} v_{j} \cdot \mathrm{~d} z_{j}^{\alpha}\right|_{x} \longmapsto\left(x,\left(v_{1}, \ldots, v_{n}\right)\right) .
\end{aligned}
$$

Abgabe Zu Beginn der Vorlesung um 10:00 am Montag, den 28. Januar.

