Goethe-Universität Frankfurt
Institut für Mathematik
Wintersemester 2018
28. Januar 2019

Komplexe Algebraische Geometrie
Prof. Dr. Martin Möller
Dr. David Torres-Teigell
M.Sc. Riccardo Zuffetti

Übungsblatt 12

Aufgabe 1 (3 Punkte)

Let $(V,\langle\rangle, I$,$) be an euclidean vector space with a compatible almost complex structure.$ Let L, Λ and H be respectively the Lefschetz operator (associated to I), its dual and the counting operator.
Show that the action of L, Λ and H defines a natural $\mathfrak{s l}(2, \mathbb{R})$-representation on $\Lambda^{*} V^{*}$, i.e. a Lie algebra homomorphism $\mathfrak{s l}(2, \mathbb{R}) \rightarrow \operatorname{End}\left(\bigwedge^{*} V^{*}\right)$.
Hint: the Lie-algebra $\mathfrak{s l}(2, \mathbb{R})$ is the three-dimensional real vector space of all 2×2-matrices of trace zero, with Lie bracket defined as $[M, N]:=M N-N M$. A basis is given by

$$
X=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad Y=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad B=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Recall that $[H, L]=2 L,[H, \Lambda]=-2 \Lambda$ and $[L, \Lambda]=H$.

Aufgabe 2 (3 Punkte)

Consider the same setting as in the previous exercise. Verify that the condition $[L, \Lambda]=H$ can be generalized to

$$
\left[L^{j}, \Lambda\right](\alpha)=j(k-n+j-1) L^{j-1}(\alpha)
$$

for all $\alpha \in \bigwedge^{k} V^{*}$, where $L^{j}=L \circ \cdots \circ L j$-times.
Hint: use induction on j.

Aufgabe 3 (10 Punkte)

The aim of this exercise is to prove the following:
Theorem. Let $(V,\langle\rangle, I$,$) be an euclidean vector space of dimension 2 n$ with a compatible almost complex structure and let L and Λ be the associated Lefschetz operators.
(a) There exists a direct sum decomposition of the form:

$$
\bigwedge^{k} V^{*}=\bigoplus_{i \geq 0} L^{i}\left(P^{k-2 i}\right)
$$

where $P^{i}:=\left\{\alpha \in \Lambda^{i} V^{*}: \Lambda \alpha=0\right\}$. Moreover, this decomposition is othogonal with respect to \langle,$\rangle . This is the so-called "Lefschetz decomposition".$
(b) If $k>n$, then $P^{k}=0$.
(c) The map $L^{n-k}: P^{k} \rightarrow \bigwedge^{2 n-k} V^{*}$ is injective for $k \leq n$.
(d) The map $L^{n-k}: \bigwedge^{k} V^{*} \rightarrow \bigwedge^{2 n-k} V^{*}$ is bijective for $k \leq n$.
(e) If $k \leq n$, then $P^{k}=\left\{\alpha \in \bigwedge^{k} V^{*} \mid L^{n-k+1} \alpha=0\right\}$.

Hint:

(a); since $\bigwedge^{*} V_{\mathbb{C}}^{*}$ is a finite-dimentional $\mathfrak{s l}(2, \mathbb{C})$-representation (see Aufgabe 1), it is a direct sum of irreducible ones (recall that a representation is irreducible if it has no proper subrepresentations).
Let $W \subset \bigwedge^{*} V_{\mathbb{C}}^{*}$ be an irreducible $\mathfrak{s l}(2, \mathbb{C})$-subrepresentation. Show that if $v \in W$ is an eigenvector of H with eigenvalue λ, then also $L v$ and Λv are eigenvectors of H, with eigenvalues $\lambda+2$ and $\lambda-2$ respectively.
Show that there exists an element $v \in W$ which is an eigenvector of H and such that $\Lambda v=0$. Show that W is generated by $v, L v, L^{2} v, \ldots$ and deduce the decomposition of $\bigwedge^{k} V^{*}$.
Using the (implicit) definition of Λ and Aufgabe 2, show that the previous decomposition is orthogonal.
(b): suppose that $\alpha \in P^{k}$ with $k>n$ and $i>0$ minimal such that $L^{i} \alpha=0$. Show (use Aufgabe 2) that $i=0$. This means that $\alpha=0$.
(c). suppose that $0 \neq \alpha \in P^{k}$ with $k \leq n$ and $i>0$ minimal with $L^{i} \alpha=0$. Show (use again Aufgabe 2) that $L^{n-k} \alpha \neq 0$.
(d); use the previous points.
(e). let $k \leq n$. Using the same idea as in (c), show that $P^{k} \subset \operatorname{Ker}\left(L^{n-k+1}\right)$. Conversely, let $\alpha \in \bigwedge^{k} V^{*}$ with $L^{n-k+1} \alpha=0$. Using the previous points, show that $L^{n-k+2} \Lambda \alpha=0$, and in particular $\Lambda \alpha=0$.

Abgabe Zu Beginn der Vorlesung um 10:00 am Montag, den 4. Februar.

