Goethe-Universität Frankfurt Institut für Mathematik Wintersemester 2018 28. Januar 2019 Komplexe Algebraische Geometrie Prof. Dr. Martin Möller Dr. David Torres-Teigell M.Sc. Riccardo Zuffetti

Übungsblatt 12

Aufgabe 1 (3 Punkte)

Let $(V, \langle , \rangle, I)$ be an euclidean vector space with a compatible almost complex structure. Let L, Λ and H be respectively the Lefschetz operator (associated to I), its dual and the counting operator.

Show that the action of L, Λ and H defines a natural $\mathfrak{sl}(2, \mathbb{R})$ -representation on $\bigwedge^* V^*$, i.e. a Lie algebra homomorphism $\mathfrak{sl}(2, \mathbb{R}) \to \operatorname{End}(\bigwedge^* V^*)$.

Hint: the Lie-algebra $\mathfrak{sl}(2,\mathbb{R})$ is the three-dimensional real vector space of all 2×2 -matrices of trace zero, with Lie bracket defined as [M, N] := MN - NM. A basis is given by

$$X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \qquad Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Recall that [H, L] = 2L, $[H, \Lambda] = -2\Lambda$ and $[L, \Lambda] = H$.

Aufgabe 2 (3 Punkte)

Consider the same setting as in the previous exercise. Verify that the condition $[L, \Lambda] = H$ can be generalized to

$$[L^j, \Lambda](\alpha) = j(k - n + j - 1)L^{j-1}(\alpha)$$

for all $\alpha \in \bigwedge^k V^*$, where $L^j = L \circ \cdots \circ L$ *j*-times. **Hint:** use induction on *j*.

Aufgabe 3 (10 Punkte)

The aim of this exercise is to prove the following:

Theorem. Let $(V, \langle , \rangle, I)$ be an euclidean vector space of dimension 2n with a compatible almost complex structure and let L and Λ be the associated Lefschetz operators.

(a) There exists a direct sum decomposition of the form:

$$\bigwedge^{k} V^* = \bigoplus_{i \ge 0} L^i(P^{k-2i}).$$

where $P^i := \{ \alpha \in \bigwedge^i V^* : \Lambda \alpha = 0 \}$. Moreover, this decomposition is othogonal with respect to \langle , \rangle . This is the so-called "Lefschetz decomposition".

- (b) If k > n, then $P^k = 0$.
- (c) The map $L^{n-k}: P^k \to \bigwedge^{2n-k} V^*$ is injective for $k \leq n$.
- (d) The map $L^{n-k} : \bigwedge^k V^* \to \bigwedge^{2n-k} V^*$ is bijective for $k \leq n$.

(e) If $k \le n$, then $P^k = \{ \alpha \in \bigwedge^k V^* | L^{n-k+1}\alpha = 0 \}.$

Hint:

(a): since $\bigwedge^* V^*_{\mathbb{C}}$ is a finite-dimensional $\mathfrak{sl}(2,\mathbb{C})$ -representation (see Aufgabe 1), it is a direct sum of irreducible ones (recall that a representation is *irreducible* if it has no proper subrepresentations).

Let $W \subset \bigwedge^* V^*_{\mathbb{C}}$ be an irreducible $\mathfrak{sl}(2, \mathbb{C})$ -subrepresentation. Show that if $v \in W$ is an eigenvector of H with eigenvalue λ , then also Lv and Λv are eigenvectors of H, with eigenvalues $\lambda + 2$ and $\lambda - 2$ respectively.

Show that there exists an element $v \in W$ which is an eigenvector of H and such that $\Lambda v = 0$. Show that W is generated by v, Lv, L^2v, \ldots and deduce the decomposition of $\bigwedge^k V^*$.

Using the (implicit) definition of Λ and Aufgabe 2, show that the previous decomposition is orthogonal.

(b): suppose that $\alpha \in P^k$ with k > n and i > 0 minimal such that $L^i \alpha = 0$. Show (use Aufgabe 2) that i = 0. This means that $\alpha = 0$.

(c): suppose that $0 \neq \alpha \in P^k$ with $k \leq n$ and i > 0 minimal with $L^i \alpha = 0$. Show (use again Aufgabe 2) that $L^{n-k} \alpha \neq 0$.

(d): use the previous points.

(e): let $k \leq n$. Using the same idea as in (c), show that $P^k \subset \text{Ker}(L^{n-k+1})$. Conversely, let $\alpha \in \bigwedge^k V^*$ with $L^{n-k+1}\alpha = 0$. Using the previous points, show that $L^{n-k+2}\Lambda\alpha = 0$, and in particular $\Lambda\alpha = 0$.