Goethe-Universität Frankfurt
Institut für Mathematik
Wintersemester 2018
11. Februar 2019

Komplexe Algebraische Geometrie
Prof. Dr. Martin Möller
Dr. David Torres-Teigell
M.Sc. Riccardo Zuffetti

Übungsblatt 14

Aufgabe 1 (4 Punkte)

Let X be a complex torus, $\mu: X \times X \rightarrow X$ the addition map and $\pi: X \times X \rightarrow X, i=1,2$, the natural projections. Show that a $C^{\infty}-1$-form ω on X is translation-invariant if and only if $\mu^{*} \omega=p_{1}^{*} \omega+p_{2}^{*} \omega$.

Aufgabe 2 (6 Punkte)

Let Γ be a free abelian group of finite rank. A Hodge-structure of weight 1 on Γ is a decomposition $\Gamma \otimes \mathbb{C}=H^{0,1} \oplus H^{1,0}$, where $H^{0,1}$ and $H^{1,0}$ are complex subvector spaces of $\Gamma \otimes \mathbb{C}$ with $H^{1,0}=H^{0,1}$. Show that giving a Hodge structure of weight 1 on Γ is equivalent to giving a complex structure on the real torus $(\Gamma \otimes \mathbb{C}) / \Gamma$, i.e. an isomorphism of real tori $(\Gamma \otimes \mathbb{R}) / \Gamma \rightarrow X$, where X is a complex torus.

Aufgabe 3 (2 Punkte)

Let $f: X \rightarrow Y$ be a holomorphic map between complex manifolds, where $n:=\operatorname{dim}(X)$ and $m:=\operatorname{dim}(Y)$. Let (U, φ) and (V, ψ) be local charts for X and Y respectively, such that $f(U) \subseteq V$.
Define $F=\left(F_{1}, \ldots, F_{m}\right):=\psi \circ f \circ \varphi^{-1}$. If f has rank k on U, i.e. the complex matrix $\left(\partial F_{m} / \partial z_{k}\right)_{m, k}$ has constant rank k in any point in $\varphi(U)$, then for every $x \in U$ there exist local charts $\left(U^{\prime}, \varphi^{\prime}\right)$ and $\left(V^{\prime}, \psi^{\prime}\right)$ of X and Y respectively such that $x \in U^{\prime} \subseteq U, \varphi\left(U^{\prime}\right) \subseteq V^{\prime}$, $\varphi(x)=0, \psi(x)=0$ and:

$$
F^{\prime}:=\psi^{\prime} \circ f \circ \varphi^{\prime-1}:\left(z_{1}, \ldots, z_{n}\right) \longmapsto\left(z_{1}, \ldots, z_{k}, 0, \ldots, 0\right) .
$$

(a) Use the previous result to prove the following:

Let f be as above, with $n>m$. Suppose that $y \in f(X)$ is such that the rank of f is maximal (i.e. $k=m$) on $f^{-1}(y)$. Then $f^{-1}(y)$ is a submanifold of X with dimension $n-m$.
(b) Show that

$$
Z_{t}:=\left\{z=\left(z_{0}: \cdots: z_{n}\right) \in \mathbb{P}^{n} \mid z_{0}^{t}+\cdots+z_{n}^{t}=0\right\}
$$

is a compact submanifold of \mathbb{P}^{n} for all $t \in \mathbb{N}_{>0}$. This is called Fermat hypersurface.

Aufgabe 4 (3 Punkte)

Let G be the complex Lie group

$$
G:=\left\{\left(\begin{array}{ccc}
1 & z_{1} & z_{2} \\
0 & 1 & z_{3} \\
0 & 0 & 1
\end{array}\right) \in G L(3, \mathbb{C})\right\},
$$

biholomorphic, as a manifold, to \mathbb{C}^{3}. The group G (and every subgroup of it) acts on G by multiplication in $G L(3, \mathbb{C})$. Consider the group $\Gamma:=G \cap G L(3, \mathbb{Z}+i \mathbb{Z})$. Then $\left(w_{1}, w_{2}, w_{3}\right) \in \Gamma$ acts on G by

$$
\left(z_{1}, z_{2}, z_{3}\right) \longmapsto\left(z_{1}+w_{1}, z_{2}+w_{1} z_{3}+w_{2}, z_{3}+w_{3}\right) .
$$

(a) Show that the quotient $X:=G / \Gamma$ is a complex manifold of dimension three. This is called Iwasawa manifold.
(b) Show that the Iwasawa manifold is parallelizable.

Aufgabe 5 (4 Punkte)

Let E, F be two vector bundle on a complex manifold X, of rank e and f respectively. Let $\Phi: E \rightarrow F$ be a homomorphism of vector bundles such that $\operatorname{rank}\left(\Phi_{x}\right)=r(\leq e, f)$ for every $x \in X$.
(a) Show that exist a cover $X=\bigcup_{i} V_{i}$ of X and local trivializations $\left(V_{i}, \psi_{i}\right)$ and $\left(V_{i}, \psi_{i}^{\prime}\right)$ of E and F such that

$$
\begin{aligned}
\psi_{i}^{\prime} \circ \Phi \circ \psi_{i}^{-1}: V_{i} \times \mathbb{C}^{e} & \rightarrow V_{i} \times \mathbb{C}^{f} \\
\left(x,\left(v_{1}, \ldots, v_{e}\right)\right) & \mapsto\left(x,\left(v_{1}, \ldots, v_{r}, 0, \ldots, 0\right)\right) .
\end{aligned}
$$

(b) Use this result to describe the cocycles of the vector bundles $\operatorname{ker}(\Phi)$ and $\operatorname{coker}(\Phi)$.

Aufgabe 6 (2 Punkte)

Show that $\mathcal{O}(-1) \backslash s\left(\mathbb{P}^{n}\right)$ is naturally identified with $\mathbb{C}^{n+1} \backslash\{0\}$, where $s: \mathbb{P}^{n} \rightarrow \mathcal{O}(-1)$ is the zero-section. Use this to construct a submersion $S^{2 n+1} \rightarrow \mathbb{P}^{n}$ with fiber S^{1} (for $n=1$ this yields the so called Hopf fibration $S^{3} \rightarrow S^{2}$).

