Fortgeschrittene Optimierung und inverse Probleme:

Regularisierung inverser Probleme

Prof. Dr. Bastian von Harrach

Wintersemester 2019/20

 

Aktuelles - Inhalt und Ziele - Personen - Termine - Materialien - Literatur - Modulzuordnung

 

Aktuelles

  • Die erste Vorlesung findet am Mittwoch, 16. Oktober von 14:00 Uhr bis 16:00 Uhr im Raum 110 in der Robert-Mayer-Str. 10 statt.
  • Die erste Übung findet am Mittwoch, 23. Oktober von 16:00 Uhr bis 18:00 Uhr im Raum 110 in der Robert-Mayer-Str. 10 statt. Das erste Übungsblatt ist ein Präsenzblatt.
  • Die Übungsanmeldung wird in der ersten Vorlesung stattfinden.
  • Form und Termin der Prüfung werden in den ersten Wochen festgelegt.

 

Inhalt und Ziele

Viele Vorgänge in den Natur- und Wirtschaftwissenschaften führen auf sogenannte schlechtgestellte inverse Probleme (Wikipedia-Link). Schlechtgestelltheit bedeutet dabei, dass die gesuchte Größe nicht stetig von den vorhandenen Daten abhängt. Ein einfaches Beispiel für Schlechtgestelltheit ist die numerische Differentiation: Ist eine Funktion nur bis auf einen gewissen Mess- oder Approximationsfehler genau bekannt, so wird durch ''naives'' Ableiten der Funktion (etwa durch finite Differenzen) ein vorhandener Messfehler massiv verstärkt – bis hin zur völligen Unbrauchbarkeit des Ergebnisses.

   

Fehlerverstärkung bei numerischer Differentiation

Schlechtgestellte Probleme treten häufig als inverse Probleme zu gutgestellten Problemen auf. So ist etwa die Differentiation das inverse Problem zur gutgestellten Integration, die Messfehler typischerweise reduziert.

An schlechtgestellten Problemen führt in der Praxis oft kein Weg vorbei. Die numerische Differentiation ist z.B. für die Risikobewertung von Finanzderivaten unerlässlich. Typische Quelle schlechtgestellter Probleme sind auch die Parameteridentifikation und neuartige medizinische Tomographiemethoden.

   

Elektrische Impedanz-Tomografie: Schnittbilder der Lunge

In dieser Veranstaltung untersuchen wir, wie inverse Probleme trotz ihrer Schlechtgestelltheit vernünftig (d.h. stabil) gelöst werden können.

Die Veranstaltung richtet sich an Masterstudenten und Bachelorstudenten höheren Semesters. Die benötigten funktionalanalytischen Grundlagen werden in der Vorlesung erarbeitet.

Die Vorlesung ergänzt die Veranstaltung "Optimierung und inverse Probleme" aus dem Wintersemester 18/19, setzt diese aber nicht voraus und kann auch unabhängig davon gehört werden.

 

Personen

 

Termine

Vorlesung

  • Mittwochs, 14-16 Uhr, Robert-Mayer-Str. 10, Raum 110

Übungen

  • Mittwochs, 16-18 Uhr, Robert-Mayer-Str. 10, Raum 110 (im zweiwöchigen Rythmus beginnend am 23.10.19)

Prüfung

  • Form und Termin der Prüfung werden in den ersten Wochen festgelegt.

 

Materialien

Vorlesung

Übungsblätter

 

Literatur

  • Andreas Rieder: Keine Probleme mit inversen Problemen. Vieweg, Wiesbaden, 2003

 

Modulzuordnung