2022

(33) Wallraff, J. P., Ungeheuer, F., Dombrowski, A., Oehlmann, J., and Vogel, A. L. (2022) Occurrence and in vitro toxicity of organic compounds in urban background PM2.5. Sci. Total Environ. 817, 152779, http://dx.doi.org/10.1016/j.scitotenv.2021.152779.

(32) Ma, J., Ungeheuer, F., Zheng, F., Du, W., Wang, Y., Cai, J., Zhou, Y., Yan, C., Liu, Y., Kulmala, M., Daellenbach, K. R., and Vogel, A. L. (2022) Nontarget Screening Exhibits a Seasonal Cycle of PM2.5 Organic Aerosol Composition in Beijing. Environ. Sci. Technol. 56, 7017–7028, http://dx.doi.org/10.1021/acs.est.1c06905.

(31) Karges, U., Boer, S. de, Vogel, A. L., and Püttmann, W. (2022) Implementation of initial emission mitigation measures for 1,4-dioxane in Germany: Are they taking effect? Sci. Total Environ. 806, 150701, http://dx.doi.org/10.1016/j.scitotenv.2021.150701.

2021

(30) Ungeheuer, F.; van Pinxteren, D.; Vogel, A. L. Identification and source attribution of organic compounds in ultrafine particles near Frankfurt International Airport. Atmos. Chem. Phys. 21, 3763–3775, http://dx.doi.org/10.5194/acp-21-3763-2021, 2021.

(29) Tomaz, S.; Wang, D.; Zabalegui, N.; Li, D.; Lamkaddam, H.; Bachmeier, F.; Vogel, A.; Monge, M. E.; Perrier, S.; Baltensperger, U.; et al. Structures and reactivity of peroxy radicals and dimeric products revealed by online tandem mass spectrometry. Nature communications 12, 300, http://dx.doi.org/10.1038/s41467-020-20532-2, 2021.

2020

(28) Heinritzi, M.; Dada, L.; Simon, M.; Stolzenburg, D.; Wagner, A. C.; Fischer, L.; Ahonen, L. R.; Amanatidis, S.; Baalbaki, R.; Baccarini, A.; et al. Molecular understanding of the suppression of new-particle formation by isoprene. Atmos. Chem. Phys. 20, 11809–11821, http://dx.doi.org/10.5194/acp-20-11809-2020, 2020.

(27) Wang, M.; Chen, D.; Xiao, M.; Ye, Q.; Stolzenburg, D.; Hofbauer, V.; Ye, P.; Vogel, A. L.; Mauldin, R. L.; Amorim, A.; et al. Photo-oxidation of Aromatic Hydrocarbons Produces Low-Volatility Organic Compounds. Environ. Sci. Technol. 54, 7911–7921, http://dx.doi.org/10.1021/acs.est.0c02100, 2020.

(26) Simon, M.; Dada, L.; Heinritzi, M.; Scholz, W.; Stolzenburg, D.; Fischer, L.; Wagner, A. C.; Kürten, A.; Rörup, B.; He, X.-C.; et al. Molecular understanding of new-particle formation from α-pinene between −50 and +25 °C. Atmos. Chem. Phys. 20, 9183–9207, http://dx.doi.org/10.5194/acp-20-9183-2020, 2020.

(25) Yan, C.; Nie, W.; Vogel, A. L.; Dada, L.; Lehtipalo, K.; Stolzenburg, D.; Wagner, R.; Rissanen, M. P.; Xiao, M.; Ahonen, L.; et al. Size-dependent influence of NOx on the growth rates of organic aerosol particles. Sci. Adv. 6, eaay4945, http://dx.doi.org/10.1126/sciadv.aay4945, 2020.

 (24) Qi, L.; Vogel, A. L.; Esmaeilirad, S.; Cao, L.; Zheng, J.; Jaffrezo, J.-L.; Fermo, P.; Kasper-Giebl, A.; Daellenbach, K. R.; Chen, M.; et al. A 1-year characterization of organic aerosol composition and sources using an extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF). Atmos. Chem. Phys. 20, 7875–7893, http://dx.doi.org/10.5194/acp-20-7875-2020, 2020.

2019

(23) Vogel, A. L.; Lauer, A.; Fang, L.; Arturi, K.; Bachmeier, F.; Daellenbach, K. R.; Käser, T.; Vlachou, A.; Pospisilova, V.; Baltensperger, U.; et al. A Comprehensive Nontarget Analysis for the Molecular Reconstruction of Organic Aerosol Composition from Glacier Ice Cores. Environ. Sci. Technol. 53, 12565–12575, http://dx.doi.org/10.1021/acs.est.9b03091, 2019.

(22) Ye, Q.; Wang, M.; Hofbauer, V.; Stolzenburg, D.; Chen, D.; Schervish, M.; Vogel, A.; Mauldin, R. L.; Baalbaki, R.; Brilke, S.; et al. Molecular Composition and Volatility of Nucleated Particles from α-Pinene Oxidation between -50 °C and +25 °C. Environ. Sci. Technol. 53, 12357–12365, http://dx.doi.org/10.1021/acs.est.9b03265, 2019.

(21) Daellenbach, K. R.; Kourtchev, I.; Vogel, A. L.; Bruns, E. A.; Jiang, J.; Petäjä, T.; Jaffrezo, J.-L.; Aksoyoglu, S.; Kalberer, M.; Baltensperger, U.; et al. Impact of anthropogenic and biogenic sources on the seasonal variation in the molecular composition of urban organic aerosols: a field and laboratory study using ultra-high-resolution mass spectrometry. Atmos. Chem. Phys. 19, 5973–5991, http://dx.doi.org/10.5194/acp-19-5973-2019, 2019.

(20) Hartmann, M.; Blunier, T.; Brügger, S. O.; Schmale, J.; Schwikowski, M.; Vogel, A.; Wex, H.; Stratmann, F. Variation of Ice Nucleating Particles in the European Arctic Over the Last Centuries. Geophys. Res. Lett. 46, 4007–4016, http://dx.doi.org/10.1029/2019GL082311, 2019.

2018

(19) Lehtipalo, K.; Yan, C.; Dada, L.; Bianchi, F.; Xiao, M.; Wagner, R.; Stolzenburg, D.; Ahonen, L. R.; Amorim, A.; Baccarini, A.; et al. Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors. Sci. Adv. 4, eaau5363, http://dx.doi.org/10.1126/sciadv.aau5363, 2018.

(18) Zuth, C.; Vogel, A. L.; Ockenfeld, S.; Huesmann, R.; Hoffmann, T. Ultrahigh-Resolution Mass Spectrometry in Real Time: Atmospheric Pressure Chemical Ionization Orbitrap Mass Spectrometry of Atmospheric Organic Aerosol. Anal. Chem. 90, 8816–8823, http://dx.doi.org/10.1021/acs.analchem.8b00671, 2018.

(17) Stolzenburg, D.; Fischer, L.; Vogel, A. L.; Heinritzi, M.; Schervish, M.; Simon, M.; Wagner, A. C.; Dada, L.; Ahonen, L. R.; Amorim, A.; et al. Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range. Proceed. Natl. Acad. Sci. U. S. A. 115, 9122–9127, http://dx.doi.org/10.1073/pnas.1807604115, 2018.

(16) Frege, C.; Ortega, I. K.; Rissanen, M. P.; Praplan, A. P.; Steiner, G.; Heinritzi, M.; Ahonen, L.; Amorim, A.; Bernhammer, A.-K.; Bianchi, F.; et al. Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation. Atmos. Chem. Phys. 18, 65–79, http://dx.doi.org/10.5194/acp-18-65-2018, 2018.

2017 and earlier

(15) Dias, A.; Ehrhart, S.; Vogel, A.; Williamson, C.; Almeida, J.; Kirkby, J.; Mathot, S.; Mumford, S.; Onnela, A. Temperature uniformity in the CERN CLOUD chamber. Atmos. Meas. Tech. 10, 5075–5088, http://dx.doi.org/10.5194/amt-10-5075-2017, 2017.

(14) Wagner, R.; Yan, C.; Lehtipalo, K.; Duplissy, J.; Nieminen, T.; Kangasluoma, J.; Ahonen, L. R.; Dada, L.; Kontkanen, J.; Manninen, H. E.; et al. The role of ions in new particle formation in the CLOUD chamber. Atmos. Chem. Phys. 17, 15181–15197, http://dx.doi.org/10.5194/acp-17-15181-2017, 2017.

(13) Gordon, H.; Sengupta, K.; Rap, A.; Duplissy, J.; Frege, C.; Williamson, C.; Heinritzi, M.; Simon, M.; Yan, C.; Almeida, J.; et al. Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation. Proceed. Natl. Acad. Sci. U. S. A. 113, 12053–12058, http://dx.doi.org/10.1073/pnas.1602360113, 2016.

(12) Vogel, A. L.; Schneider, J.; Mueller-Tautges, C.; Phillips, G. J.; Poehlker, M. L.; Rose, D.; Zuth, C.; Makkonen, U.; Hakola, H.; Crowley, J. N.; et al. Aerosol Chemistry Resolved by Mass Spectrometry: Linking Field Measurements of Cloud Condensation Nuclei Activity to Organic Aerosol Composition. Environ. Sci. Technol. 50, 10823–10832, http://dx.doi.org/10.1021/acs.est.6b01675, 2016.

(11) Vogel, A. L.; Schneider, J.; Mueller-Tautges, C.; Klimach, T.; Hoffmann, T. Aerosol Chemistry Resolved by Mass Spectrometry: Insights into Particle Growth after Ambient New Particle Formation. Environ. Sci. Technol. 50, 10814–10822, http://dx.doi.org/10.1021/acs.est.6b01673, 2016.

(10) Kirkby, J.; Duplissy, J.; Sengupta, K.; Frege, C.; Gordon, H.; Williamson, C.; Heinritzi, M.; Simon, M.; Yan, C.; Almeida, J.; et al. Ion-induced nucleation of pure biogenic particles. Nature 533, 521-526, http://dx.doi.org/10.1038/nature17953, 2016.

(9) Hoyle, C. R.; Fuchs, C.; Jaervinen, E.; Saathoff, H.; Dias, A.; El Haddad, I.; Gysel, M.; Coburn, S. C.; Troestl, J.; Bernhammer, A.-K.; et al. Aqueous phase oxidation of sulphur dioxide by ozone in cloud droplets. Atmos. Chem. Phys. 16, 1693–1712, http://dx.doi.org/10.5194/acp-16-1693-2016, 2016.

(8) Yatavelli, R. L. N.; Mohr, C.; Stark, H.; Day, D. A.; Thompson, S. L.; Lopez-Hilfiker, F. D.; Campuzano-Jost, P.; Palm, B. B.; Vogel, A. L.; Hoffmann, T.; et al. Estimating the contribution of organic acids to northern hemispheric continental organic aerosol. Geophys. Res. Lett. 42, 6084–6090, http://dx.doi.org/10.1002/2015GL064650, 2015.

(7) Brueggemann, M.; Vogel, A. L.; Hoffmann, T. Analysis of organic aerosols using a micro-orifice volatilization impactor coupled to an atmospheric-pressure chemical ionization mass spectrometer. Eur. J. Mass Spectrom. 20, 31–41, http://dx.doi.org/10.1255/ejms.1260, 2014.

(6) Vogel, A. L.; Aijala, M.; Corrigan, A. L.; Junninen, H.; Ehn, M.; Petaja, T.; Worsnop, D. R.; Kulmala, M.; Russell, L. M.; Williams, J.; et al. In situ submicron organic aerosol characterization at a boreal forest research station during HUMPPA-COPEC 2010 using soft and hard ionization mass spectrometry. Atmos. Chem. Phys. 13, 10933–10950, http://dx.doi.org/10.5194/acp-13-10933-2013, 2013.

(5) Corrigan, A. L.; Russell, L. M.; Takahama, S.; Aijala, M.; Ehn, M.; Junninen, H.; Rinne, J.; Petaja, T.; Kulmala, M.; Vogel, A. L.; et al. Biogenic and biomass burning organic aerosol in a boreal forest at Hyytiala, Finland, during HUMPPA-COPEC 2010. Atmos. Chem. Phys. 13, 12233–12256, http://dx.doi.org/10.5194/acp-13-12233-2013, 2013.

(4) Vogel, A. L.; Aijala, M.; Brueggemann, M.; Ehn, M.; Junninen, H.; Petaja, T.; Worsnop, D. R.; Kulmala, M.; Williams, J.; Hoffmann, T. Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MSn) for measuring organic acids in concentrated bulk aerosol - a laboratory and field study. Atmos. Meas. Tech. 6, 431–443, http://dx.doi.org/10.5194/amt-6-431-2013, 2013.

(3) Huang, R.-J.; Thorenz, U. R.; Kundel, M.; Venables, D. S.; Ceburnis, D.; Ho, K. F.; Chen, J.; Vogel, A. L.; Kuepper, F. C.; Smyth, P. P. A.; et al. The seaweeds Fucus vesiculosus and Ascophyllum nodosum are significant contributors to coastal iodine emissions. Atmos. Chem. Phys. 13, 5255–5264, http://dx.doi.org/10.5194/acp-13-5255-2013, 2013.

(2) Noelscher, A. C.; Williams, J.; Sinha, V.; Custer, T.; Song, W.; Johnson, A. M.; Axinte, R.; Bozem, H.; Fischer, H.; Pouvesle, N.; et al. Summertime total OH reactivity measurements from boreal forest during HUMPPA-COPEC 2010. Atmos. Chem. Phys. 12, 8257–8270, http://dx.doi.org/10.5194/acp-12-8257-2012, 2012.

(1) Williams, J.; Crowley, J.; Fischer, H.; Harder, H.; Martinez, M.; Petaja, T.; Rinne, J.; Back, J.; Boy, M.; Dal Maso, M.; et al. The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010): an overview of meteorological and chemical influences. Atmos. Chem. Phys. 11, 10599–10618, http://dx.doi.org/10.5194/acp-11-10599-2011, 2011.