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Abstract

Studying large discrete systems is of central interest in, non-exclusively, discrete mathematics, com-
puter sciences and statistical physics. The study of phase transitions, e.g. points in the evolution of a
large random system in which the behaviour of the system changes drastically, became of interest in the
classical field of random graphs, the theory of spin glasses as well as in the analysis of algorithms [78,
82, 121].

It turns out that ideas from the statistical physics’ point of view on spin glass systems can be used to
study inherently combinatorial problems in discrete mathematics and theoretical computer sciences
(for instance, satisfiability) or to analyse phase transitions occurring in inference problems (like the
group testing problem) [68, 135, 168]. A mathematical flaw of this approach is that the physical methods
only render mathematical conjectures as they are not known to be rigorous.

In this thesis, we will discuss the results of six contributions. For instance, we will explore how the
theory of diluted mean-field models for spin glasses helps studying random constraint satisfaction prob-
lems through the example of the random 2−SAT problem. We will derive a formula for the number of
satisfying assignments that a random 2−SAT formula typically possesses [2].

Furthermore, we will discuss how ideas from spin glass models (more precisely, from their planted
versions) can be used to facilitate inference in the group testing problem. We will answer all major
open questions with respect to non-adaptive group testing if the number of infected individuals scales
sublinearly in the population size and draw a complete picture of phase transitions with respect to the
complexity and solubility of this inference problem [41, 46].

Subsequently, we study the group testing problem under sparsity constrains and obtain a (not fully
understood) phase diagram in which only small regions stay unexplored [88].

In all those cases, we will discover that important results can be achieved if one combines the rich
theory of the statistical physics’ approach towards spin glasses and inherent combinatorial properties
of the underlying random graph.

Furthermore, based on partial results of Coja-Oghlan, Perkins and Skubch [42] and Coja-Oghlan et
al. [49], we introduce a consistent limit theory for discrete probability measures akin to the graph limit
theory [31, 32, 128] in [47]. This limit theory involves the extensive study of a special variant of the
cut-distance and we obtain a continuous version of a very simple algorithm, the pinning operation,
which allows to decompose the phase space of an underlying system into parts such that a probability
measure, restricted to this decomposition, is close to a product measure under the cut-distance. We will
see that this pinning lemma can be used to rigorise predictions, at least in some special cases, based on
the physical idea of a Bethe state decomposition when applied to the Boltzmann distribution.

Finally, we study sufficient conditions for the existence of perfect matchings, Hamilton cycles and
bounded degree trees in randomly perturbed graph models if the underlying deterministic graph is
sparse [93].
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1. Introduction

Large discrete systems play a central role in discrete mathematics, theoretical computer sciences, stat-
istical physics as well as in statistics. Analysing such systems became of major interest in the last dec-
ades. Prominent examples are the study of phase transitions on classical random graphs, the modelling
and analysis of spin glasses, creating and analysing limit theories of discrete structures (like the graph
limit theory) as well as the asymptotic analysis of algorithms. While this list is far from being complete,
researchers from different fields realised that the interdisciplinary application of certain methods can
be used very profitably [135, 168].

This thesis gives examples in which methods inspired by the statistical physics analysis’ of large spin
glass systems are used to provide rigorous mathematical understanding of statistical inference problems
as well as a classical random constraint satisfaction problem. The richness provided by this approach is
due to combining ideas from physics like message passing with combinatorial arguments and interpret-
ations. Different combinatorial insights will be used to study large perturbed graphs, thus deterministic
graphs where a bit of randomness is added.

Finally, a rigorous mathematical approach to certain physics’ intuitions is carried out by analysing a
particular form of the cut-distance for discrete probability measures. We will create a theory of limiting
objects comparable to the well known and rich theory of graph limits [31, 32, 128] and formalise the
intuition of basic statistical physics’ concepts like pure states. This limiting theory will provide an eleg-
ant algorithmic regularity lemma for probability measures which can be translated into an algorithmic
version of the weak regularity lemma for graphs [84].

1.1. Message passing and a statistical physics’ approach

In this section, we will briefly introduce some of the most basic concepts of statistical physics that will be
used to describe mathematical problems in an elegant and uniform way. We will, as [135], describe stat-
istical physics as a part of probability theory, and will only sometimes give a meaningful interpretation
of the concepts in nature.

1.1.1. Physical systems and important quantities

Let Ω be a finite set and n be the size of a physical system. Then we say that this system contains n
particles and callΩn the configuration space. Thus, a configuration σ ∈Ωn assigns each particle i a spin
σi ∈ Ω. Furthermore, for k ≥ 1, we define the Hamiltonian (or energy) of a configuration σ ∈ Ωn as a
function

H(σ) =− ∑
i1,...,ik

Ji1,...,ik (σi1 , . . . ,σik ). (1.1.1)

In the special case k = 1, the system is called a non-interacting system as the different particles do not
interact. Conversely, if k ≥ 2, the system is called k−body interacting.

The real numbers Ji1,...,ik express the interactions of the particles. This setup is quite general and al-
lows for a lot of modifications, i.e., for each choice of Ω,k and H a different system is described. Some
systems of this family of systems are well known physical models, for example for magnetism or for
glasses. Depending on the choice of the interaction between its particles, a model is called ferromag-
netic, anti-ferromagnetic or a spin glass. Intuitively, a ferromagnetic system prefers the interaction of
particles with the same spin while an anti-ferromagnetic system prefers the opposite. Finally, in a spin
glass, we find ferromagnetic as well as anti-ferromagnetic interactions.

Some prominent models that fit into this generic setup are the Potts model [16] or the Edwards-
Anderson model [69]. The former is frequently used to study phase transitions – we will come to phase
transitions later – or to model systems with (easy) nearest neighbour interactions while the latter is a
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widely accepted mathematical model for magnetism [135]. Both models are defined on the d-dimensional
grid L = (V ,E) as an underlying graph structure. The configuration space of the Potts model is ΩPotts ={
1,2, ..., q

}
and it is a 2−body interacting system with Hamiltonian

HPotts(σ) =− ∑
i j∈E

J1
{
σi =σ j

}
. (1.1.2)

Therefore, if two neighboured particles have the same spin under a configuration σ, the correspondent
summand vanishes. Clearly, for J > 0, this system is ferromagnetic and for J < 0 it is anti-ferromagnetic.
On the other hand, the Edwards-Anderson model has only two spins (negative and positive), thusΩEA =
{−1,+1}. Furthermore, as it is a model for magnetism, it adds the possibility of the appearance of some
external magnetic field of strength B > 0. Moreover, its Hamiltonian allows for different interactions
between two neighboured spins, depending on where they are placed inside the system, therefore

HEA(σ) =− ∑
i j∈E

Ji jσiσ j −B
∑
i∈V

σi . (1.1.3)

Again, depending on the choice of Ji j being positive or negative for all edges i j , the model is ferro-
magnetic or anti-ferromagnetic, and when allowing different signs, it is a spin glass model. In such
cases, where the interaction between particles can be written as in (1.1.3), the interactions Ji j are called
coupling constants. The most prominent variant of the Edwards-Anderson model is the spin glass case
in which the coupling constants are chosen from a symmetric probability distribution, for instance as
standard Gaussians. In contrast, if we set Ji j > 0 for all coupling constants, we get the ferromagnetic
Ising model on the grid as a special case [100]. Analogously, setting all coupling constants to a negative
value renders the anti-ferromagnetic Ising model.

Now, to capture the idea behind a spin glass, an important physical observation is that any system
strives for being in a state of minimal energy. In the anti-ferromagnetic or ferromagnetic Ising model
it is quite easy to construct the configuration σ minimising H(σ). But in the spin glass situation of the
general Edwards-Anderson model it happens that a particle receives contradicting constraints from its
neighbours. If this happens, we call the system frustrated at this particle. It is computationally hard to
find a configuration that minimises the energy of the system [22]. On the other hand, there are many
configurations with comparable low energy that almost minimise the system’s energy – those states
are called metastable [167]. Besides being mathematically challenging, spin glasses are a very good
model for many real world materials, e.g. window glass or polymers or even granular media. Recent
models like spin glasses for these materials assume that certain atoms and molecules occur randomly
at random positions, thus the single particles behave either anti-ferromagnetically or ferromagnetically
or are frustrated. The emerging theory of spin glasses allows to analyse those materials although they are
random when seen microscopically, because on a macroscopic scale, they show describable properties
[167].

1.1.1.1. Mean field and diluted mean field models

The interactions in the Potts model as well as the Edwards-Anderson model are defined on the grid.
Therefore, those models have direct physical interpretations. The Edwards-Anderson model, for in-
stance, is a realistic mathematical model for magnetism [135]. Unfortunately, the interactions facilit-
ating this geometric constraints are challenging to analyse mathematically. One approach of simpli-
fication are so-called mean-field models. A well known example is the Sherrington-Kirkpatrick model
(SK-model) [158] in which all particles x1 . . . xn of a system interact with each other. More precisely, with
Ω= {−1,1}, and (J i j )i , j=1...n being standard Gaussians, its Hamiltonian reads

HSK(σ) =− 1p
n

n∑
i , j=1

J i jσiσ j . (1.1.4)
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An important feature of the SK-model (as well as of general mean-field models) is the fact that the (dis-
tribution) of the Hamiltonian is invariant under the permutation of the coordinates, thus the geometric
constraints of similar models on the grid (like the Edwards-Anderson model) vanish in the mean-field
theory. The way mean-field models are defined, they neglect local and long-range structure, thus they
are not able to describe all physically necessary properties of a system properly [157]. On the other hand,
the models are somewhat easy, thus studying mean-field models is physically as well as mathematically
more accessible than analysing their corresponding grid-models. For instance, the physical predictions
of the properties of the SK-model [143] were proven rigorously by Talagrand [162].

Diluted mean-field models try to overcome the weakness of mean-field models while staying access-
ible to mathematical analyses. We introduce the diluted version of the SK-model by Viana and Bray
[166]. Let Ω = {−1,1} and k ∼ Po(αn) be a Poisson random variable. Given k , let

{
i k , j k

}
k=1...k be uni-

form samples from {1, . . . ,n} and choose {J k }k=1...k from a symmetric distribution. All those random
variables are supposed to be mutually independent. Then, the Hamiltonian of the Viana-Bray model
reads

HVB(σ) =−
k∑

k=1
J kσi kσ j k

. (1.1.5)

Thus, the Viana-Bray interactions are defined on a sparse random graph where each particle interacts
with a Poisson number of other particles. Therefore, the long-range structure of a grid-model is clearly
missing, but in contrast to the mean-field approach, the random graph looks locally a bit more like a
grid, i. e., a very important feature is the finite connectivity on the random graph [134]. It turns out that
analysing appropriately chosen diluted mean-field models may yield exact solutions of spin glass like
models [144]. Thus, diluted mean field models carry important features of realistic models but are still
mathematically approachable.

Furthermore, it turns out that very important problems in theoretical computer sciences, like random
satisfiability and other random constraint satisfaction problems, can by expressed in the framework of
diluted mean field models [140]. We will introduce random constraint satisfaction problems in Sec-
tion 1.1.2.

After this short excursion to some prominent examples of particle systems, we formalise the intuition
behind finding a configuration of minimal energy within a large system. We may think of any physical
system with a Hamiltonian defined as in (1.1.1), but we will focus on diluted mean-field models.

1.1.1.2. Boltzmann distributions and ground states

If a system is observed showing a configuration of minimal energy, we will call this state a ground state.
We denote byΩn

0 ⊂Ωn the set of configurations of minimal energy. Let us define a probability measure
on the configuration space. Intuitively, a suitable probability measure should output the probability of
observing a certain configuration, preferring those configurations of low energy.

Therefore, let β> 0 be the inverse temperature of the system. Having fixed an energy function H and
an inverse temperature β, we define the Boltzmann distribution as a probability distribution onΩn as

µβ(σ) = exp
(−βH(σ)

)
Zβ

, where Zβ =
∑
σ∈Ωn

exp
(−βH(σ)

)
. (1.1.6)

In (1.1.6), the normalising constant Zβ is known as the partition function of the system and we will see
in due course that the partition function itself carries a lot of information about the system. Clearly, the
lower the Hamiltonian H(σ), the more probable is σ under µβ. This effect decreases with β being small
(the temperature of the system is large) and increases with β being large (the system’s energy is small).
More precisely, with β→ 0 (high-temperature limit), the Boltzmann distribution becomes the uniform
distribution on Ωn . On the other hand, in the low-temperature limit, the Boltzmann distribution cor-
responds to the uniform distribution on the ground states, thus on the configurations minimising the
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system’s energy. Formally,

lim
β→0

µβ(σ) = 1

|Ωn | , and lim
β→∞

µβ(σ) = 1
{
σ ∈Ωn

0

}∣∣Ωn
0

∣∣ . (1.1.7)

As statistical physics’ main intention is to study the macroscopic behaviour of very large systems con-
sisting of single particles and their interactions, various properties of a statistical system are studied in
the thermodynamical limit (n → ∞) [135]. Such a physical system can be described by various ther-
modynamic quantities. In the following, we will introduce the most important ones for our purposes.
As already mentioned, Zβ is the partition function of the system. We denote by φn,β = ln(Zβ) the free

entropy and by φβ = limn→∞
ln(Zβ)

n the free entropy density. For any β > 0, φβ is convex, therefore it is
continuous in every point in which it exists. We call the non-analytic points of φβ phase transitions.
Of course, non-analytical points are interesting mathematical objects, but physically speaking, those
phase transition points indicate qualitative changes in the physical system [135].

In particular, those phase transitions corresponding to the so-called replica symmetry breaking are of
deeper interest and will be studied later.

1.1.2. Phase transitions in special systems: Random Constraint Satisfaction

In the very general setup of a physical system with a given energy function (1.1.1), it is possible to de-
scribe constraint satisfaction problems (CSPs) which are prominently studied in computer sciences and
mathematics. One of the most important constraint satisfaction problem is the k−SAT problem.

1.1.2.1. k−SAT and factor graphs

A k−SAT formulaΦ is a conjunction of m clauses

Φ=Φ1 ∧ . . .∧Φm

such that each clause is a disjunction of exactly k literals out of n variables x1 . . . xn . One of the most
intriguing questions is, obviously, whether there is a mapping σ : {x1, . . . , xn} → {−1,+1}n that assigns
the Boolean values TRUE (+1) and FALSE (-1) to each variable such that each clause (and therefore the
formula Φ) is satisfied. Without loss of generality, we suppose that a variable appears only once in a
clause (i.e., x and ¬x do never belong to one clause). Let us describe a k−SAT formula as a factor graph.

A factor graph G = (V ∪F,E) is a bipartite graph with vertex classes V (variable nodes) and F (factor
nodes) and edges E [81]. Sometimes, it is convenient to call the factor nodes constraints. We follow
Mézard and Montanari [135] for construction of a factor graph GΦ corresponding to a k−SAT formula
Φ. Define

V = {x1, . . . , xn} and F = {
aΦ1 , . . . , aΦm

}
.

Furthermore, we introduce two different types of edges E = E+∪E− such that xi aΦj ∈ E+ if and only if

xi appears in Φ j and xi aΦj ∈ E− if and only if ¬xi appears in Φ j . The resulting factor graph has a fixed
degree of k at each factor node while the variable node degree is not fixed in general.

While deciding whether a given k−SAT formula is satisfiable is known to be N P hard for k ≥ 3 [109],
it is easily possible to describe the problem as a physical system. Similarly as Kirkpatrick et al. [111], we
interpret the n variables as particles of a system and assign each particle a spin from Ω = {−1,+1}. A
specific assignment is expressed by a configuration σ ∈Ωn . The Hamiltonian turns out to be

Hk−S AT (σ) = ∑
aΦj ∈F

1
{

aΦj is not satisfied under σ
}
= ∑

aΦj ∈F

1

 ∑
xi aΦj ∈E+

σi −
∑

xi aΦj ∈E−
σi = 0

 .

Therefore, Hk−S AT (σ) equals the number of unsatisfied clauses of Φ under σ. Let us now take the low-
temperature limit and observe that the resulting Boltzmann distributionµ∞ = limβ→∞µβ is the uniform
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x1 x2 x3 x4 x5

a1 a2 a3 a4

Figure 1.1.: The factor graph GΦ corresponding to the 3−SAT formulaΦ : (x1∨x2∨x3)∧ (¬x2∨x3∨x4)∧
(¬x1 ∨¬x3 ∨¬x5)∧ (x2 ∨¬x3 ∨x5). The n = 5 variable nodes are represented as circles while
the m = 4 factor nodes are drawn as rectangles. The edge color represents the sign of the
literal xi in clause a j . Thus, si j =−1 if edge xi a j is red and si j = 1 otherwise. At each factor

node a j we have a local functionΨa j : {−1,+1}|∂a j | → {−1,+1} such that we haveΨa j (σ∂a j ) =
1

{
maxxi∈∂a j

{
σi si j = 1

}}
for an assignment σ ∈ {−1,+1}5.

distribution on all configurations that satisfy the most clauses ofΦ. Now letσ∼µ∞ be a random sample,
then the formula Φ is satisfiable if and only if Hk−S AT (σ) = 0. The N P hardness of k−SAT for k ≥ 3 im-
mediately confirms the fact that it is in general computationally hard to find configurations of minimal
energy in a physical system. We observe that

µ∞(σ) = lim
β→∞

∏
aΦj ∈F

exp
(
−β1

{
aΦj is not satisfied under σ

})
Z (Φ)

. (1.1.8)

The possibility to write the Boltzmann distribution in a factorised form as in (1.1.8) yields a few insights
that directly generalise to other constraint satisfaction problems.

• Each factor of (1.1.8) corresponds to a factor node in the factor graph GΦ, therefore, the factor
graph perfectly describes the factorisation of the Boltzmann distribution into local constraints.

• For each β > 0 a non-satisfied clause gives a penalty of exp(−β) to the probability of observing
a certain configuration. Given that Φ is satisfiable, in the low-temperature limit (or sometimes
called at zero temperature), the Boltzmann distribution is supported on the satisfying assign-
ments.

• Therefore, given that a formula is satisfiable, the partition function of the Boltzmann distribu-
tion in the low-temperature limit of the k-SAT problem (Z0(Φ) = ∣∣Ωn

0

∣∣) just equals the number of
satisfying assignments and is an object of major interest in solving CSPs.

1.1.2.2. Random CSPs

In the general context of CSPs random constraint satisfaction problems gained a lot of attention [156].
Let us briefly sketch, what random means in this context. As we already discussed, a CSP can be ex-
pressed by a factor graph. Thus, given n variables and m factors (where the number of factors might
be random itself), we randomly connect variable nodes and factor nodes. Depending on the problem
itself, we can have arbitrary distributions of degree sequences for both, factor nodes as well as variable
nodes. Given specific degree sequences, a random factor graph is chosen uniformly at random among
all possible factor graphs satisfying the degree sequences.

Let us explain this very general description as before with the example of a random k-SAT formula.
Given n variables and m clauses, initialise a factor graph on n variable nodes x1, . . . , xn and m factor
nodes a1, . . . , am . Each factor node has degree k and variable xi has a random degree d i ∼ Po(mk/n).
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Given the event that
∑n

i=1 d i = mk, select one (simple) graph with the given degree sequences uniformly
at random.

In this setting, a very natural question arises: Is a formula obtained by this process satisfiable? Obvi-
ously, such questions can only be answered with high probability, thus with a probability tending to 1
with n →∞. This question has been studied for a long time and various tools of statistical physics have
been applied to this problem [37, 111] that led to a (non-rigorously proven) prediction for a critical ratio
αs = ms/n, such that in the thermodynamic limit, each random k −S AT formula with a smaller clause-
to-variable ratio than αs is satisfiable with high probability, whilst each formula with a larger ratio is
not satisfiable with high probability. Such a phenomenon is called a phase transition and will be further
discussed in a moment. This conjecture attained a lot of attention within the mathematical community
and a lot of important steps towards proving this conjecture were done [4, 51, 54, 91] until Ding, Sly and
Sun [64] managed to prove the existence of the phase transition for large enough k at

αs = 2k ln2− 1+ ln2

2
+O(2−k ).

The existence of such a satisfiability threshold is not limited to the random k-SAT but is a genuine phe-
nomenon of random constraint satisfaction problems [136]. The satisfiability threshold, however, is not
the only interesting threshold regarding random CSPs. Indeed, let S be the solution space of a random
constraint satisfaction problem (we may think about S being the set of all configurations satisfying a
random k-SAT formula). We say that a pair of solutions is connected if its Hamming distance equals 1
and call a subset of Ωn consisting of connected solutions a cluster. It turns out that the geometry of S

has a highly complicated structure, but fortunately, the so-called 1-Replica Symmetry Breaking (1-RSB)
Ansatz from statistical physics draws a non-rigorously proven but fine grained picture. We will discuss
this Ansatz in a moment. It conjectures that, with growing clause-to-variable ratio α, the solution space
S undergoes four phase transitions (see Figure 1.2). While being a non-rigorous tool, the existence of
the predicted phase transitions could be already proven rigorously for some models [161]. We letα start
at 0 and let it increase continuously, then we observe four critical valuesαu ≤αclus ≤αcond ≤αs at which
S changes dramatically [121, 138, 169, 170].

1. For α < αu , there is exactly one cluster of solutions. Therefore, this phase is called the unique
phase.

2. Once α exceeds αu , the system is in the extremal phase. (Very) few and exponentially small
clusters of satisfying configurations appear besides one cluster containing almost all solutions.

3. At the clustering threshold αclus, the set of solutions shatters into exponentially many exponen-
tially small clusters. Withing this phase, the size and and number of clusters reduces further with
α increasing.

4. Subsequently, when α passes the condensation threshold, the solutions condense into a bounded
number of clusters.

5. Finally, at the satisfiability threshold αs , S becomes empty.

While an intuitive explanation what a phase transition is was already given, until now, we lacked a
formal definition. We distinguish between strict and coarse phase transitions in random discrete sys-
tems. Let P be a property, and α be a parametrisation of the system. For instance, P could be the
property that a random k-SAT formula is unsatisfiable and α is the clause-to-variable ratio. Then the
system (the random factor graph) G undergoes a strict phase transition at a threshold α∗ if for any ε> 0
we have

P
(
G ∈P |α≤ (1−ε)α∗)= o(1) and P

(
G ∈P |α≥ (1+ε)α∗)= 1−o(1).

Similarly, a coarse phase transition occurs if

P
(
G ∈P |α= o(α∗)

)= o(1) and P
(
G ∈P |α=ω(α∗)

)= 1−o(1).



Introduction 12

Figure 1.2.: Overview over the geometry of the solution space in random constraint satisfaction prob-
lems undergoing four important phase transitions obtained by the physics’ 1-RSB Ansatz.
The graphic is modified after [138, 169, 170].

(Clearly, the definition above requires P to become more probable for increasing α, it can analogously
be defined for a property whose probability increases with decreasing α.)

Due to Friedgut and Bourgain [82] it is very well understood that non-uniform strict phase trans-
itions exist in random structures if we look at monotonously increasing or decreasing properties. For
example, the property for a random k−SAT formula to be unsatisfiable is clearly of this kind, as adding
more clauses only increases the probability to be unsatisfiable. Of course, Friedgut and Bourgain’s res-
ult only tells us that there are phase transitions, but it cannot tell us, where they are. For many graph
properties regarding the random graph G (n, p)1 the exact position of the phase transitions is known
[103]. For random constraint satisfaction problems, things are much more unexplored, even if recently
the satisfiability thresholds could be pinned down rigorously for many random CSPs [25, 43, 55, 64].
The large temporal gap between the beginnings of studying random CSPs and the discovery of the exact
satisfiability thresholds might be due to the reason that a simple first-moment calculation overestim-
ates the number of satisfying assignments in many random CSPs dramatically, thus E [Z (Φ)] À Z (Φ)
w.h.p. [55]. In the statistical physics’ interpretation, this is due to the existence of the condensed phase
in which the solution space is dominated by few large clusters. Therefore, the expected number of solu-
tions is blown up by solutions that do not occur in typical formulas frequently and therefore, obviously,
the first moment method that calculates the critical value αav g such that E [Z (Φ)] = 0, fails.

Dealing with such effects is non-trivial, but the physics’ 1-RSB Ansatz is a very promising (non-rigorous)
approach towards understanding the condensed phase.

1.1.2.3. Phase transitions in physical systems and replica symmetry

Let us start with explaining major concepts of this Ansatz using a fairly easy model. The Curie-Weiss
model [71] is a simple model for ferromagnetism. LetΩ= {−1,1} and define the corresponding Hamilto-
nian as

HCW (σ) =− 1

n

∑
i 6= j∈[n]

σiσ j −B
n∑

i=1
σi . (1.1.9)

We directly observe by above’s discussion that the Curie-Weiss model is a prime example of a mean-field
model as all pairs of variables interact with each other. Again, B is the strength of an external magnetic
field and the first sum in (1.1.9) reduces the energy of such configurations that do not exhibit many dif-
ferent spins. Following Mézard and Montanari [135], we are going to compute the partition function of
the Curie-Weiss model non-rigorously, but each step can in principle be turned into a rigorous argu-
ment. We emphasise that all formulas (and their derivations) can be found in [135]. First, we need a

1We define the binomial random graph as Gilbert [90], thus every edge is present independently of the rest with probability
p.
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simple global property of a given configuration σ: the magnetisation. Let

m(σ) = 1

n

n∑
i=1

σi

be the magnetisation of σ, then the Hamiltonian (1.1.9) can be written as

HCW (σ) = n

(
1

2
− 1

2
m(σ)2 −Bm(σ)

)
, (1.1.10)

thus can be expressed in terms of the magnetisation. Therefore, in the partition function, we can cluster
the summands by their magnetisation m ∈M = {−1+2`/n : `= 0. . .n} and find [135, Eq. (2.75)]

ZCW (β,B) = exp
(−nβ/2

) ∑
m∈M

(
n

n(1+m)/2)

)
exp

(
nβ

2
m2 +nβBm

)
. (1.1.11)

Using the standard asympotical behaviour of the binomial coefficient
( n
αn

)∼ exp(nH(α)) where H(α) is
the entropy of a Be(α) variable and the definition

φm(β,B) =−β
2

(1−m2)+βBm +H

(
1+m

2

)
,

(1.1.11) can be simplified to [135, Eq. (2.77)]

ZCW (β,B) ∼
∫ 1

−1
exp

(
nφm(β,B)

)
dm. (1.1.12)

Here and subsequently, we use ∼ for asymptotic equality. Then the Laplace method applied to (1.1.12)
yields [135, Eq. (2.79)]

1

n
ln

(
ZCW (β,B)

)∼−β max
m∈[−1,1]

φm(β,B). (1.1.13)

The maximum turns out to be achieved away from the boundary and is dependent on the inverse tem-
perature β as well as the external magnetic field B . Let us, for the moment, suppose that there is no
external magnetic field, thus B = 0. Then for 0 ≤ β ≤ 1, φm(β,0) is concave and takes its unique max-
imum at m = 0. Therefore, for n → ∞, if we sample a configuration from the underlying Boltzmann
distribution µCW defined as in (1.1.6), we do not know the exact configuration, but in almost all cases,
its magnetisation will turn out to be 0, as all other configurations have exponentially smaller probab-
ility mass under µCW . In other words, almost all created instances of the system will exhibit the same
property - thus we find a high degree of symmetry between different instances.

If now, on the other hand, β exceeds the critical value of 1, φm(β,0) is symmetric with respect to the
y-axis and exhibits two global maxima m∗(β) > 0 and −m∗(β) < 0 whose peaks become larger with
increasing β. Therefore, if we sample sufficiently often from the Boltzmann distribution, half of the
configurations will have magnetisation m∗(β) and the other half will show a magnetisation of −m∗(β).
In this sense, the symmetry is broken.

Therefore, in the thermodynamic limit, the space of all configurations of minimal energy Ωn
0 can be

decomposed into two pure statesΩn
0 =Ωn+∪Ωn− where

Ωn
+ = {

σ ∈Ωn
0 : m(σ) = m∗(β)

}
and Ωn

− = {
σ ∈Ωn

0 : m(σ) =−m∗(β)
}

.

In the setting of Figure 1.2, this corresponds to a condensed phase, where the configurations of one
cluster have significantly more particles of spin −1 than the configurations in the second cluster.

This observation corresponds intuitively to a fairly important feature of condensation: the marginal
probabilities of the single particles under the Boltzmann distribution are dependent. Indeed, if σ is a
random element ofΩn

0 and we get the information that particle x1 has spin σ1 =−1, it is more likely for
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σ to be an element ofΩn− and therefore, in expectation, the other particles prefer spin −1 as well.
Let us at this point shortly discuss the so-called replica symmetry and replica symmetry breaking. Two

replicas can be just seen as identically distributed instances of the same system. If such replicas are
symmetric, the following effect takes place. Suppose we sample σ,σ′ from the Boltzmann distribution
of a physical system and calculate the overlap of σ and σ′ which is, for the Curie-Weiss model, defined
as 〈

σ,σ′〉= n−1
n∑

i=1
σiσ

′
i .

Now, if the system is replica symmetric, we suppose that the overlap between two randomly sampled
configurations is concentrated around exactly one value. If this is not the case, we say that replica sym-
metry breaking is present. The last formulation has to be read very cautiously because its definition is
actually a bit more complicated. We say that a system is still replica symmetric if the pure states are
related by global symmetries [131, 135]. The latter is clearly the case in the Curie-Weiss model asΩn− can
be turned intoΩn+ (and vice versa) by flipping the spin of each particle.

Overall, we learned the intuition behind replica symmetry and replica symmetry breaking as well as
that we defined pure states. In the following, we will formalise this intuition a bit.

1.1.2.4. Pure state decomposition, replica symmetry and the cut-distance

Let us suppose that we analyse the solution space and the Boltzmann distribution of a random con-
straint satisfaction problem (or a diluted mean-field model). Thus, the underlying graph corresponding
to the interactions of the n particles is a sparse random graph. The physics’ prediction suggests that
the Boltzmann distribution has a fairly comfortable property before condensation (thus, in the replica
symmetric phase): there are no long-range correlations present. More specifically, suppose we know
the prevalence for a specific spin of the i−th particle xi . If particle x j is far away (in the sparse random
graph) from xi , then we do not gain any information about the spin of x j from this knowledge. Formally,
given a probability measure µ onΩn , we denote by µi the marginal of µ on spin i . More generally, for a
set I ⊂ [n], µI is the marginal probability on the particles in I . Then, we say that µ is ε-symmetric if

Ei , j

[∥∥∥µ{i , j } −µi ⊗µ j

∥∥∥
TV

]
≤ ε.

Thus, ε-symmetry formalises the intuition that far-apart particles do not influence each other.
Now, after the condensation threshold, such long-range correlations start to appear. Even if the graph

still looks locally tree-like, like every sparse random graph, the knowledge about a spin of a far-away
particle might influence the probability of observing a specific spin on another particle. Recall that in
the condensed phase of a random constrained satisfaction problem, the solution space is predicted to
consist of clusters of solutions. Knowing the spin of a single particle might contain information on which
of those clusters the configuration at hand lies in and therefore, this information pushes the probabil-
ity to observe a certain spin on a different particle. But, if 1−RSB is present, it is predicted that within
one of those clusters, those long-range correlations disappear. More precisely, if Ξ1, . . . ,Ξ` is the parti-
tion into clusters of Ωn in the condensation phase and the physicist’s prediction of 1−RSB takes place,
the Boltzmann distribution conditioned on one of these pure states, is symmetric. Formally, if µ is the
Boltzmann distribution, we have for all 1 ≤ k ≤ `

Ei , j

[∥∥∥µ{i , j }[·|Ξk ]−µi [·|Ξk ]⊗µ j [·|Ξk ]
∥∥∥

TV

]
= o(1).

We stress at this point that we only described the so-called 1−RSB Ansatz. In physics’ literature, the rep-
lica symmetry breaking might be of different orders. Intuitively, the clusters of solutions described here
might themselves decompose into clusters of solutions (2−RSB) iteratively (until ∞−RSB) before the
pure states (and thus absence of long-range correlations) appear. If the higher order RSB is interpreted
via the overlap distribution as previously 1-RSB, we find that k−RSB corresponds to the concentration of
the overlap onto k +1 values up to symmetry. Of course, this perfectly fits into the picture drawn before
with clusters of clusters of clusters... Indeed, suppose that 2−RSB is present and suppose we have big
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clusters C j and contained small clusters C j k . If we draw two configurations from different big clusters
C j and C j ′ (independent of the small clusters), we observe a certain overlap value concentrated around
q0 (this are two configurations which are very far apart). If, on the other hand, we sample configurations
within the same small cluster Ci j , the overlap will be concentrated around q1 and finally, if the configur-
ations come from the same big cluster but from different small clusters, we find an overlap concentrated
around a third value q2.

Thus, the geometrical interpretation directly shows that the overlap distribution facilitates a kind of
ultra-metricity. What is an ultra-metric? We say that a metric d is an ultra-metric if the triangle in-
equality holds in a stronger version, e.g. d(a,b) ≤ max{d(a,c),d(b,c)}. This analytical property has one
advantage if compared to the geometric interpretation of clusters of clusters of... Indeed, in the case of
∞−RSB, the single clusters would not be well separated but the analytical property of ultra-metricity
still holds and describes the relevant behaviour [135, Section 8.2.2]. The interested reader can find a
detailed discussion of (approximate) ultra-metricity and the replica symmetry breaking in an article of
Jagannath [101].

Let us leave the interpretation of replica symmetry breaking for the moment, we will come back to it in
a moment. Mathematically spoken, there is a decomposition of the Boltzmann distribution which kind
of resembles this pure state decomposition. It comes along with a very simple algorithm: the pinning
operation [49]. Extending and analysing results in context of the pure-state decomposition is part of one
contribution of this thesis (c.f. Section 2.3). To be more precise, for an arbitrary probability measure on
Ωn , we can express the property of being o(1)-symmetric in terms of being close to a specific measure
under a carefully chosen metric - the cut-distance. For two probability measures η,ν on a finite set Ξ,
let Γ(η,ν) denote the set of all couplings γ of η and ν, thus γ is a probability measure on Ξ×Ξ with
marginals η and ν. Further, let Sn denote the set of permutations φ : [n] → [n]. Then, the cut-distance
is defined as

∆�
(
µ,ν

)= inf
γ∈Γ(µ,ν),
φ∈Sn

sup
S⊂Ωn×Ωn ,

X⊂[n],
ω∈Ω

∣∣∣∣∣∣∣
∑

(σ,τ)∈S,
x∈X

γ(σ,τ)
(
1 {σx =ω}−1

{
τφ(x) =ω

})∣∣∣∣∣∣∣ . (1.1.14)

The definition (1.1.14) can be interpreted as a kind of a two-player game. The first player chooses a
coupling and a permutation of the particles under which µ and η look as much alike as possible. Now,
given the choices γ and φ, the second player tries to find a subset of coordinates and configurations, on
which the two measures differ as much as possible. We stress that the cut-distance is indeed a very weak
metric [49]. But it suffices to gather the idea of ε−symmetry. Let µ be a probability measure on Ωn and
define

µ̄(σ) =
n∏

i=1
µi (σi ) (1.1.15)

as the product measure on the marginals of µ. Clearly, µ̄ is a probability measure on Ωn as well and if
µ is a Boltzmann distribution such that the spins on all particles are completely independent, we have
µ≡ µ̄. Thus, if most pairs of particles do not influence each other, we would expect thatµ and µ̄ are close
to each other under a certain distance. The cut-distance turns out to exactly express this connection. As
proven by Coja-Oghlan and Perkins [53, Proposition 2.5], we have

∆�
(
µ, µ̄

)≤ ε3 =⇒ Ei , j

[∥∥∥µ{i , j } −µi ⊗µ j

∥∥∥
TV

]
≤O(ε)

and
Ei , j

[∥∥∥µ{i , j } −µi ⊗µ j

∥∥∥
TV

]
≤ ε3 =⇒∆�

(
µ, µ̄

)≤O(ε).

Thus, the cut-distance is a perfectly suiting mathematical tool to formalise the idea of pure states and
the absence of long range correlations. Furthermore, as already mentioned, the cut-distance can be
used to find a decomposition of any configuration spaceΩn for a large enough system (n ≥ n0 ∈N) into
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finitely many parts E1, . . . ,E` such that any probability measure conditioned on a specific part µ[· | E j ]
is close to the product of its marginals under the cut-distance, hence ∆�

(
µ[· | E j ], µ̄[· | E j ]

) ≤ ε (for any
ε> 0). This result is a type of a regularity lemma and will be discussed in more detail in Section 1.3.1.

The cautious reader might ask how this finite decomposition fits into the predictions of replica theory.
Indeed, the physics’ prediction is that the phase space decomposes into infinitely many pure states (if
n → ∞) if some kind of replica symmetry breaking is present [131] while the pinning operation – and
regularity lemmas which will be discussed later – yield a finite decomposition. But the pinning operation
(as well as the regularity lemmas) only guarantee the existence of states E1, . . . ,E` with above’s property
such that µ(E1∪ . . .∪E`) ≥ 1−ε for any small but constant ε> 0. Therefore, there can be infinitely many
clusters which carry very little probability mass under the Boltzmann distribution.

After having described how the solution space of random constraint satisfaction problems (respect-
ively, diluted mean field models) might look like, we will study a very specific random constraint satis-
faction problem in more detail which plays the leading role in one of this thesis’s contributions.

1.1.3. The random 2-SAT problem

While we already introduced the k−SAT problem for arbitrary k, we will focus on the very special case
k = 2. This setup plays a very specific role, as it is the only k-SAT problem in which deciding whether
a given formula is satisfiable and, if so, finding a satisfying assignment is computationally easy [120].
For the random 2−SAT problem, the satisfiability threshold is well known since the early 1990’s by inde-
pendent works of Chvatal and Reed [40] and Goerdt [91], which both link the problem to the well studied
percolation phase transition in a random directed graph. Subsequently, Bollobás et al. [30] managed to
analyse the scaling window of the satisfiability threshold in more detail which turns out to correspond
to the scaling window of the giant component in the binomial random graph [29].

Even if the satisfiability threshold itself is well understood, things were completely different for a ques-
tion that seems quite innocuous at first. If a random 2−SAT formula is satisfiable w.h.p., how many sat-
isfying assignments exist? Indeed, this question was posed prominently by Fernandez de la Vega [78]
and it actually turns out that counting the number of satisfying assignments is computationally hard,
this counting problem lies in #P [165].

Describing and analysing the partition function of a random 2−SAT formula would answer this ques-
tion as the partition function exactly counts the number of satisfying assignments, at least, if the formula
is satisfiable in the first place. Luckily, there is a non-rigorous heuristics from statistical physics which
leads to a precise prediction of how this partition function looks like. One of this thesis’s contribution
verifies this prediction rigorously as will be seen in Section 2.2. Intuitively, the non-rigorous physics’
approach calculates the marginals of the Boltzmann distribution, thus for each variable node x they get
the probability that x is assigned the value 0 or 1 under a randomly chosen satisfying assignment Φ.
Now, it is possible to connect Z (Φ) with those marginal probabilities through an operator called Bethe
functional. We will subsequently describe how to (non-rigorously) calculate marginals of the Boltzmann
distribution in Section 1.1.4 and how to link them to the partition function in Section 1.1.5. We start by
finding the marginal probabilities of the Boltzmann distribution. In physics’ literature, specific message
passing algorithms are conjectured to be able to do so.

1.1.4. Getting the marginals through message passing

The key idea behind message passing algorithms is the following. Given a factor graph G , an algorithm
computes messages for each edge of G such that in each round of the algorithm, a set of messages is
sent on every edge of the graph in parallel. Those messages can be sent from the variables to the factors
and vice versa. A computationally intriguing advantage of message passing algorithms is that all mes-
sages are computed through local functions at the vertices of G . Probably the most prominent message
passing algorithm is Belief Propagation BP. It was discovered under various names in different fields
of research, for instance, in statistical physics it is known as the Bethe-Peierls approximation [27], while
coding theorists developed the sum-product algorithm [122]. The terminology Belief Propagation which
we will use subsequently, has its origins in the research towards artificial-intelligence [145].
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1.1.4.1. Belief Propagation

Let G = (V ∪F,E) be a given factor graph. BP is used to estimate the marginal distribution for each
variable, for instance, if G represents a k−SAT formula, this corresponds to the probability of a specific
variable being set to 1 under a random satisfying assignment. While its first occurrence can be traced
back to the 1930’s in statistical physics [27], it was Pearl [145] who proved that BP correctly calculates
the marginals if G is a tree. Furthermore, it is a widespread conjecture that BP performs well if the graph
is at least locally tree-like and there are almost no long-range correlations as discussed in Section 1.1.2.4
[146]. Probably due to its performance as well as being an efficient algorithm, BP finds its applications
in artificial intelligence and information theory. Empirically it was shown that BP can be used in vari-
ous applications including ldpc-codes and turbo-codes in coding theory, free energy approximation in
statistical physics and satisfiability in theoretical computer science [38].

Let us now introduce the messages sent by BP formally. In order to do so, we require a few definitions.
LetΩ be a finite set (the set of spins as before) and G = (V ∪F,E) a factor graph. Denote by x1, . . . , xn ∈V
the n variables and by a1, . . . , am ∈ F the m factors of G . Furthermore, let σ ∈Ωn be a configuration that
assigns each variable a specific spin from Ω. Further, for I = {i1, . . . , ik } ⊂ [n], we set σI = (σi1 , . . . ,σik ) ∈
Ωk and denote byΩI the subspace ofΩn given by the coordinates of I . Moreover, for a vertex v ∈V ∪F ,
we denote by ∂G v ⊂ V ∪F the set of neighbours of v in G . If the context clarifies what the underlying
graph structure is, we write ∂v for the sake of brevity. Finally, we use ∝ to express equality up to a
normalisation constant and write f (n) ∼ g (n) if f (n)/g (n) → 1 for n →∞.

Before stating the BP messages, let us revisit the definition of a factor graph. As already introduced,
one merit of a factor graph is that the Hamiltonian of the corresponding physical system factorises such
that the Boltzmann distribution can be written as

µ(σ) ∝
m∏

i=1
ψai (σ∂ai ). (1.1.16)

Here,ψa1 , . . . ,ψam , are the local contributions of the single factor nodes to the system’s energy. Of course,
given a factor graph G = (V ∪F,E ,Ψ) with weight functionsΨ= {

ψa1 , . . . ,ψam

}
, we can associate a corres-

ponding Hamiltonian such that the system’s energy is calculated via (1.1.16). It turns out that sometimes
it is more convenient to use the factor graph notation and talk about weight functions instead of refer-
ring to the physical interpretations.

We are now in position to state the BP messages on such a factor graph G = (V ∪F,E ,Ψ). For y ∈Ω, a
variable x ∈V and a test a ∈ F they read

ν(t+1)
x→a (y) ∝ ∏

b∈∂x\a
ν(t )

b→x (y) and ν(t )
a→x (y) ∝ ∑

σ∂a\x

ψa(σ∂a)
∏

x ′∈∂a\x
ν(t )

x ′→a(y). (1.1.17)

More precisely, the set
{
ν(t )

x→a

}
x∈V ,a∈F

is called the set of variable-to-factor messages at time t while the

factor-to-variable messages are
{
ν(t )

a→x

}
x∈V ,a∈F

. Clearly, each message itself is a probability distribution

on Ω. Intuitively speaking, ν(t )
x→a represents the marginal distribution of spins on variable x in a model

that does not contain factor a and analogously, ν(t )
a→x is the marginal distribution of x in a model where

all factors in which x is contained except of a have been deleted.
Observing those messages, various natural questions arise. Probably the most intriguing are the fol-

lowing.

• Do these messages converge to a fixed-point?

• If so, is the fixed-point unique?

• If these messages indeed converge to a unique fixed-point, how are those messages related to the
marginals of the Boltzmann distribution?

These questions can be answered rigorously for tree-factor graphs, thus for graphs G that do not contain
cycles. Furthermore, it is conjectured that similar results hold for locally tree-like graphs if the solution



Introduction 18

space exhibits certain properties. This conjecture was proven rigorously in some special cases [121,
50]. We will discuss those questions in Section 1.1.5. BP is designed to be applied to any distribution
that can be written like (1.1.16), but in many CSPs, the weight functions have a very specific form, as
the Hamiltonian just counts the number of unsatisfied constraints (clauses, in above’s terminology on
satsifiability). Therefore,

ψa(σ∂a) = 1−1 {a is satisfied under σ} . (1.1.18)

In this special case, the messages (1.1.17) simplify remarkably, i.e., if the set of messages at time zero is
initialised with values in {0,1}, then this condition still holds after an arbitrary number of updates [135,
Proposition 14.5]. The resulting update rules are known as Warning Propagation WP [75].

1.1.4.2. Warning Propagation

The semantic interpretation of those integer-valued BP messages is the reason why WP holds its name.
More precisely, for a spin y ∈Ω, a variable x and a factor a, we have

νx→a(y) = 1 ↔ according to all factors b ∈ ∂x \ a variable x

should not have spin y under a satisfying assignment.

νx→a(y) = 0 ↔ according to all factors b ∈ ∂x \ a variable x (1.1.19)

may take spin y under a satisfying assignment.

Thus, the variable-to-factor messages {νx→a} warn a factor node a if a variable can probably not be used
to satisfy a taking certain values. WP itself is a broadly used algorithm in random CSPs and it is known
that it finds all direct implications of a partial assignment of the variables, based on the local structure
[135]. Furthermore, it is known to find satisfying assignments of different satisfiability problems under
mild conditions, for instance, it can be used to solve certain instances of random 3-SAT [75].

Let us suppose for the moment that BP or WP are exact on a given problem. We will now discuss what
we actually understand by being exact.

1.1.5. Boltzmann marginals and the partition function

Let, as above,
{
ν(t )

x→a

}
and

{
ν(t )

a→x

}
be the BP messages at time t . Then we define the BP estimation of

the marginals at time t as

ν(t )
x (y) ∝ ∏

a∈∂x
ν(t )

a→x (y). (1.1.20)

Hence, ν(t )
x is the product measure over all incoming messages at variable x. If µ is the corresponding

Boltzmann distribution, we have that ν(t )
x is an estimation for µx . If we say that BP is exact (for instance,

on factor graphs that are acyclic), then it is rigorously proven that

ν(t )
x =µx

if t is large enough. This, of course, already implies that the BP messages converge to a fixed-point. We
call the set of fixed-point messages

{
ν∗x→a

}
and

{
ν∗a→x

}
respectively.

Now, let us discuss, how this helps understanding the partition function of the underlying system.
Given a factor graph G = (V ∪F,E ,Ψ) and a set of messages ν= ({νx→a} , {νa→x }), we define the Bethe free
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entropy as follows. Recall that those messages are probability distributions onΩ and define

Ξa(ν) = ln

( ∑
σ∂a∈Ω∂a

ψa(σ∂a)
∏

x∈∂a
νx→a

)
, Ξx (ν) = ln

( ∑
ω∈Ω

∏
b∈∂x

νb→x

)
,

Ξx,a = ln

( ∑
ω∈Ω

νx→a(ω)νa→x (ω).

)
(1.1.21)

Thus (Ξa)a∈F and (Ξx )x∈V describe the entropy on the factor nodes and on the variables respectively,
while Ξx,a measures their interaction. If we put in the set of fixed-point messages ν∗, we get the Bethe
free entropyΦ as

Φ= ∑
a∈F

Ξa(ν∗)+ ∑
x∈V

Ξx (ν∗)− ∑
ax∈E

Ξx,a(ν∗). (1.1.22)

If BP is exact on a model, then we find

ln Z =Φ. (1.1.23)

Thus, (1.1.23) gives a recipe, how to calculate the partition function of a physical system, for instance, a
random constraint satisfaction problem, by using an easy to implement efficient algorithm. Due to the
N P -hardness of calculating ln Z in general, as discussed earlier, this can of course only be true for very
specific instances of random CSPs (if we suppose P 6= N P ).

Indeed, it turns out that the Bethe approximation by Belief Propagation, which we will call the pro-
cedure above, yields the correct value of the partition function sometimes [50, 52, 145] and sometimes
it does not [126]. The latter is assumed to happen, if the system’s solution space had undergone a phase
transition at which replica symmetry breaking occurred. A statistical physics’ approach suggests to run
BP on a modified problem in this case.

1.1.5.1. The (1-RSB) Cavity Method

Before going deeper into the 1-RSB cavity approach, we shortly stress that the method itself is a highly
non-rigorous technique. Furthermore, this presentation’s focus is solely to draw an intuitive idea behind
the 1-RSB cavity method and not to carry out technical details.

Intuitively, BP depends on a central assumption, namely, whenever we delete a factor node, the spins
on the affected variables become roughly independent. This assumption is clearly violated when the
factor graph either contains short cycles, or whenever long-range correlations appear [135]. As (sparse)
random factor graphs which we deal with in this thesis (or: diluted mean-field models) look locally tree-
like, the failure of BP needs to be due to the appearance of such long-range correlations. In the replica
symmetric phase, those are supposed to be negligible, thus we study systems in a phase in which replica
symmetry is broken.

We recall that in the presence of 1-RSB, the configuration space Ωn is supposed to decompose into
pure states (c.f. Section 1.1.2.4). Let us take a different look on those pure states. Recall that BP is
known to render the correct marginals of the Boltzmann distribution on some replica symmetric factor
graphs and recall that given G = (V ∪F,E ,Ψ), we can write the Boltzmann distribution as

µ(σ) ∝ ∏
a∈F

ψa(σ∂a).

Let U ⊂ V be a subset of the variables, then we define G [U ] = (U ∪F [U ],E [U ],Ψ) as the induced factor
graph on U as follows. It contains

• all variables of U ,

• all factor nodes a ∈ F such that ∂a ⊂U ,

• all edges a, x with a ∈ F [U ], x ∈U ,
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• all half-edges x, a with a 6∈ F [U ] but x ∈U .

The half-edges play an important role. Let us denote the set of those half-edges by H (U ). Suppose
that BP renders the correct marginals, then the messages {νa→x }(x,a)∈H (U ) on the half-edges can be
seen as boundary conditions which represent the influence of the factors and variables outside of U . We
will call such a set U coming with G [U ] a cavity. Observe that some variables in U miss factor nodes
(constraints) compared to their distribution in G . If the system is replica symmetric, we would suppose
that we can express the Boltzmann marginal on U – at least approximately – by the weight functions at
the factor nodes inside of U and the boundary condition, thus

µU (σU ) ∝ ∏
a∈F [U ]

ψa(σ∂a)
∏

ax∈H (U )
νa→x (σx )+εn . (1.1.24)

Led by this intuition, we call a probability measure µ on Ωn a Bethe measure or Bethe state if in the
thermodynamic limit, n →∞, there is a set of messages {νa→x } such thatµ satisfies (1.1.24) for almost all
finite subsets U [135, Definition 19.1]. We highlight that there has to be one set of BP messages satisfying
(1.1.24) for (almost) all finite subsets of variables and in fact it turns out that messages satisfying the
equation for almost all U are actually very close to valid Belief Propagation messages (1.1.17). To be
a bit more precise, an almost-solution of the BP equations is a set of messages that satisfy almost all
BP equations up to a vanishing error term of o(1).

What does this imply? Any set of messages satisfying (1.1.24) for almost all U , thus a Bethe measure,
corresponds to an almost-solution of the Belief Propagation messages. It is far from true that the con-
verse is correct as well [135, Example 19.2] in every situation, but a core assumption of the 1-RSB cavity
method is that this is indeed correct in the problem at hand. Suppose we have a set of almost-solutions
of the BP equations

{
νi = (νi

x→a ,νi
a→x )

}
i=1...`, then we can associate with each of those (almost) fixed-

points a corresponding Bethe measure µi (1.1.24) as well as the corresponding Bethe free entropyΦi via
(1.1.22). We call a Bethe measure extremal if it does not exhibit long-range correlations. We denote the
set of all extremal Bethe measures out of

{
µi

}
i=1...` as

{
µ̃i

}
i=1... ˜̀ corresponding to BP messages

{
ν̃i

}
i=1... ˜̀

Now, there are three basic assumptions on a model that make the 1-RSB method work heuristically. To
this end, let Σ :R→R+ be a function, which is called complexity function in physics’ language.

1. For any interval [φ,φ′], the number of almost-solutions with Bethe free entropy Φi ∈ [nφ,nφ′]
equals exp(nΣ∗+o(n)) where Σ∗ = supσ∗∈[φ,φ′]

{
Σ(φ∗)

}
. Thus, roughly speaking, the number of

almost-solutions with Bethe free entropy of approximately nφ is given by exp
(
nΣ(φ)

)
.

2. The Boltzmann distribution can be expressed as a convex combination of extremal Bethe meas-
ures

µ(σ) =
˜̀∑

i=1
ωi µ̃

i (σ)

with weights ωi = exp(Φi )/Z such that Z =∑`
i=1 exp(Φi ).

3. The number of extremal Bethe measures ˜̀ equals, up to the leading order, the number of almost-
solutions to the BP equations, thus the number of extremal Bethe measures with Bethe free en-
tropy ∼ nφ equals approximately exp

(
nΣ(φ)

)
.

Now suppose that the three assumptions are satisfied. Then we build a new physical system (an auxiliary
model) from the original system we started with. More precisely, we interpret the BP messages as
variables of the auxiliary model and the corresponding Bethe measures become the configurations. To
this end, let ζ be the set of the extremal Bethe measures and letΛ be a probability measure on ζ defined
as follows. Let κ be the inverse temperature, sometimes called Parisi 1-RSB parameter, of the auxiliary
model. Then we define

Λ(µ̃i ) =ωi (κ) = exp(κΦi )

Z (κ)
. (1.1.25)
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At a first glance, (1.1.25) strongly resembles the definition of the Boltzmann distribution (1.1.6) and
indeed, as it turns out, this resemblance has a deeper meaning. But first observe that for κ = 1, the
auxiliary model equals the original system. Nevertheless, studying Z (κ) for general κ turns out to be
the key for calculating Σ, which ultimately allows understanding the original model. Without going too
much into detail, we will shortly describe how to translate a physical model with an underlying sparse
random factor graph which undergoes 1-RSB, into an auxiliary model which can then, itself, be solved
using Belief Propagation. We stress at this point that the Boltzmann distribution (1.1.25) of the auxiliary
model is a probability distribution on probability distributions, thus a difficult object to analyse.

Let us assume that we start with a problem described by the factor graph G = (V ∪ F,E ,Ψ). Then,
following Mézard and Montanari [135, Section 19.2.1], we create an auxiliary model in three straight-
forward steps. Suppose that {νx→a} and {νa→x } are the BP messages on G . We highlight that we leave
out technical details (for instance, we suppose implicitly that those messages were discrete measures)
as we are only interested in sketching the main idea of the 1-RSB cavity method. RecallΞa ,Ξx ,Ξax from
(1.1.21). Then, we proceed as follows in the construction of the factor graph G = (V ∪F ,E ,Ψ) represent-
ing the auxiliary model.

1. For ax ∈ E , we create a variable node x a representing (νx→a ,νa→x ) and a factor node connected
to this variable with weight functionΨxa = exp(−κΞxa(ν)).

2. For any factor a ∈ F , we introduce a factor node a in the auxiliary model and connect it to all
variable nodes x a with x ∈ ∂a in the original model. The corresponding weight function reads

Ψa = ∏
x∈∂a

1

{
νa→x ∝ ∑

σ∂a∈Ω∂a

Ψa(σ∂a)
∏

x ′∈∂a\x
νx ′→a

}
exp

(
−κΞa

({
νy→a

}
y∈∂a

))
.

(Here, we write Ξa

({
νy→a

}
y∈∂a

)
instead of Ξa(ν) in order to highlight the local dependencies.)

The purpose of the weight function is two-fold. First, it makes sure that the correct BP equations
are observed and second, it weighs the contribution by a factor of exp(κΞa).

3. Each variable x ∈ V produces a factor node x ∈ F in the auxiliary model. This factor connects to
all variables x a if a ∈ ∂x in the original model. The corresponding weight function is defined as

Ψx = ∏
a∈∂x

1

{
νx→a ∝ ∏

b∈∂x\a
νb→x

}
exp

(
κΞx

(
{νb→x }b∈∂x

))
.

Again, this weight function guarantees observing the valid BP messages as well as it weighs the
factor node’s contribution.

Now it is possible to run BP on this auxiliary model. If the physics’ intuition is correct, this auxiliary
model is replica symmetric and BP yields a valid estimate of lnZ (κ) via the Bethe free entropy. Recall
that we have by definition

Z (κ) =
˜̀∑

i=1
exp(κΦi ) .

Leaving out technical details and justifications, we obtain

Z (κ) ∼
∫

exp
(
n

(
xφ+Σ(φ)

))
dφ.

Then, if Z (κ) ∼ exp
(
n f (κ)

)
for some function f , we find Σ through a Legendre transformation [135,

Section 19.2] as

f (κ) = xκ+Σ(φ) such that
∂Σ

φ
=−κ.

In summary, if a model shows 1-RSB, Belief Propagation will not render the correct estimate for the
partition function, i.e. it will have various (almost) fixed-points. In this case, the physics’ intuition
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proposes to create a statistical auxiliary model with the almost-solutions being variables and analysing
the partition function of the auxiliary model by BP yielding to a (hopefully) unique fixed-point.

To put this section into context, we recall the already discussed phase diagram of random CSPs. Sup-
pose that the Boltzmann distribution was concentrated on finitely many pure states (which is called
static 1-RSB). Then the solution space has undergone the condensation phase transition. In the case
that the Boltzmann distribution is not concentrated on a small amount of pure states but there are ex-
ponentially many pure states each with exponentially small probability mass (dynamical 1-RSB), the
solution space finds itself in the clustering phase. We furthermore stress that one basic assumption of
the 1-RSB Ansatz is that the Boltzmann distribution can be written as a convex combination of extremal
Bethe measures, thus probability distributions which lack long-range correlations and which describe
the local behaviour of the Boltzmann distribution based only on a finite neighbourhood with a bound-
ary condition given by (almost)-solutions to the BP messages. This strongly resembles the finding of
a partition of the configuration space Ωn into clusters E1, . . . ,E` such that the Boltzmann distribution
conditioned on those clusters is ε−extremal (c.f. Section 1.1.2.4). And indeed, the cut-distance formal-
ism turned out to be a key tool in verifying the results predicted by the cavity method in some special
problems [21, 48, 49].

Until now, we studied sparse random CSPs from a specific point of view which ultimately results in
calculating the number of satisfying assignments. Thus, given a degree distribution of the factor nodes
(deg(a1), . . . ,deg(am)) and a degree distribution of the variable nodes (deg(x1), . . . ,deg(xn)) (which might
be obtained by a distribution of choice), we first draw the set of weight functionsΨ1, . . . ,Ψm from a dis-
tribution (which might, in principle, turn out to be deterministic choices like in the random k−SAT
problem). Then, given the degree sequences as well as the weight functions, a factor graph is drawn
uniformly at random from all factor graphs on those degree distributions. We can now ask the ques-
tion, whether this random CSP is satisfiable w.h.p., or determine the number of solutions or study the
geometry of the solution space. There is yet another interesting model closely related, which will be
discussed in the next section.

1.2. Statistical Inference

The task of statistical inference can be modelled by the so-called teacher-student scheme quite intuit-
ively. The scheme itself was introduced by Gardner and Derrida [87] in the context of studying the per-
ceptron, a fairly easy binary classifier. In this section, we follow an introduction into statistical inference
based on the study of physical systems by Zdeborová and Krzakala [168].

1.2.1. A statistical physics’ approach

1.2.1.1. The teacher-student scheme

As a first step, the teacher generates some ground-truthσ from an arbitrary probability distribution µT P

- this is the teacher’s prior. Now he generates some observable data σ̂ fromσ by a statistical model. This
model is characterised by a distribution µT M (σ̂ |σ), which expresses the likelihood of observing σ̂ given
that the ground-truth was σ - this likelihood distribution is the teacher’s model. And finally, the teacher
conveys the data σ̂ and some information about µT P as well as µT M to the student.

The student’s ultimate goal is to infer as much information as possible about σ from the given data
and the (probably limited) information about the teacher’s prior as well as the teacher’s model. If the
teacher gives the full information about the prior as well as the model to the student, we call this setting
Bayes optimal. Let us focus on statistical inference problems which exhibit quite convenient properties.
More precisely, we suppose the following. LetΩ be a finite set and sample the ground-truthσ ∈Ωn from
µT P . Furthermore, suppose that σ̂ is an m-dimensional vector with entries in a finite set χ and that the
following assumptions hold.
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• The prior distribution factorises, thus

µT P (σ) =
n∏

i=1
µT P

i (σi ).

• The single observable data points σ̂1, . . .σ̂m are independently generated based on a subset of
variables ∂σ̂1, . . . ,∂σ̂m , hence

µT M (σ̂ |σ) =
m∏

j=1
µ∂σ̂ j (σ̂ j | ∂σ̂ j ).

Let us now view the whole scenario through the student’s eyes. As the student might not have full access
to the teacher’s prior as well as the model’s statistics, we suppose that the known prior is described by a
distribution ν onΩn and the information about data generation is modelled by a distribution ν̃ on χm .
If ν and ν̃ satisfy above’s assumptions, the student can employ Bayes’ theorem and write the posterior
distribution as

ν(σ | σ̂) ∝
n∏

i=1
νi (σi )

m∏
j=1

ν̃∂σ̂ j (σ̂ j | ∂σ̂ j ). (1.2.1)

Now, the best the student can do in order to inferσ from σ̂, ν and ν̃, is to sample a configuration σ̃ from
ν(σ | σ̂). If σ̃ = σ, we say that the student succeeded in inferring the ground-truth completely. If we
are in the convenient situation of Bayes optimality, thus the student gets the full information about the
teacher’s prior and the data generation, we can observe the following. Denote by τ,τ′,τ′′ three inde-
pendent uniform samples from ν(· | σ̂). Furthermore, let f : Ωn ×Ωn → R be some arbitrary function,
then we have [168, Eq. (15)]

E
[

f (τ′,τ′′)
]= E[

f (τ,σ)
]

.

Thus, at least with respect to the expectation, there is no difference between the ground-truth σ and
uniform samples from the posterior distribution. This result in the Bayes optimal setting is called the
Nishimori property and from now on, we will tacitly assume to satisfy this Nishimori property, thus being
in the Bayes optimal setting. Next, we express the problem of inference in the spin glass language from
the previous sections.

1.2.1.2. Planted models

Probably the first connection between statistical inference problems and statistical physics was ob-
served by Jaynes [104] while the expression of statistical inference problems in terms of spin glass lan-
guage was strongly influenced by pioneering work of Kirkpatrick, Gelatt and Vecchi [110] on simulated
annealing. We first observe that (1.2.1) can be written as [168, Eq. (25)]

ν(σ | σ̂) ∝ exp

(
n∑

i=1
ln(νi (σi ))+

m∑
j=1

ln
(
ν̃∂σ̂ j

(
σ̂ j | ∂σ̂ j

)))
. (1.2.2)

Now, we introduce an inverse temperature β, such that β= 1 recovers the original posterior distribution

and introduce ln(νi (σi )) as an external magnetic field at particle i while ln
(
ν̃∂σ̂ j

(
σ̂ j | ∂σ̂ j

))
expresses

the interaction between particles. Thus, as given through (1.1.1), we find a Hamiltonian H(σ,σ̂) such
that (1.2.2) becomes

ν(σ | σ̂) = exp
(−βH(σ,σ̂)

)
Z (σ̂)

(1.2.3)

with Z (σ̂) being the partition function of the described physical system. Such a physical system is called
a planted model. Let us elaborate on this shortly. While the particle interactions Ji1,...,ik (σi1 , . . . ,σik )



Introduction 24

in (1.1.1) can be any function on k spins, spin glasses exhibit positive as well as negative interactions
between particles. One possibility to generate such glasses is to choose the interactions randomly from
a (often symmetric) probability distribution, like in the case of Gaussian spin glass models [23]. In con-
trast, the planted model is a very special system, as the interactions between particles are random but
mutually correlated as they are all generated given the ground-truth σ. This is why we call this ground-
truth σ the planted configuration. Following [168], we will introduce a short example on random linear
equations that shows why this correlations of the particle interactions can influence the system’s beha-
viour drastically. Suppose that y ∈ {0,1}m is a random vector and A is a random m ×n matrix over F2.
If m > n, the random system of linear equations Ax = y has no solution x with high probability [18].
But if we sample a uniform binary vector x , calculated y as Ax , then the system of linear equations will
always feature at least one solution, namely x . In our setting, x corresponds to the planted ground-truth
while the teacher shows the student A and y (and the information that x and A are independently and
uniformly chosen). Now the student’s inference task is to infer x from (A, y).

The principle of planting did not only appear in statistical physics. For instance, it has been used to
prove a hardness result on the planted clique problem [74, 105] or within proofs on the geometry of the
solution space of random CSPs [1]. Probably one of the most studied planted models is the stochastic
block model which is a widely used model for community detection on networks [62, 85, 95]. To describe
it in the framework at hand, given n individuals V = {x1 . . . xn}, a teacher generates q communities,
thus a coloring σ ∈ [q]n assigning each individual a community. Now, a random graph G = (V ,E) is
generated as follows. Each edge xi x j is present with probability p1 if σi = σ j and with probability p2

if σi 6= σ j . Clearly, if p1 = p2, this is just a binomial random graph containing no information about
the communities. If p1 À p2, it is more likely to observe edges within one community and if p2 À p1,
most edges are expected between different communities. Of course, there are various generalisations to
this problem. Nevertheless, the student’s task is, given (G , p1, p2, q) to infer a q−coloring σ̃ that has the
highest possible overlap with σ.

As one can conclude, planted models are a fairly common used technique in statistical inference.
Studying the corresponding physical system whose Boltzmann distribution equals the posterior distri-
bution obtained by the student might bring together powerful tools from different fields of research.
For the sake of convenience and as this thesis’s contributions on statistical inference require this setup,
we tacitly assume that the Boltzmann distribution of the planted model can be expressed by a sparse
random factor graph, such that it has the form (1.1.16). As we previously studied different phase trans-
itions, mostly corresponding to the geometry of the solution space of such random CSPs, it is not very
surprising that there are important phase transitions in statistical inference problems as well.

1.2.1.3. Phase transitions in statistical inference

Suppose being in the Bayes optimal setting, thus, the student’s guess ν is exactly the teacher’s prior and
the student’s model knowledge ν̃ equals the teacher’s model generating distribution. Furthermore, sup-
pose that we observe the underlying physical system in the thermodynamic limit (n →∞). Moreover,
let σ ∈Ωn for some finite set Ω. In principle, the following discussion can be extended to more general
ground-truth domains. For two configurations σ,τ ∈ Ωn , we denote the overlap 〈σ,τ〉 as the number
of coordinates in which σ and τ coincide. Let q0 denote the expected overlap between a uniformly at
random chosen τ from ν and σ, formally

q0 = Eτ∼ν〈τ,σ〉.

Given data σ̂ as well as ν and ν̃, the student’s task might be evaluated with respect to two levels of
reconstruction.

• Is the student able to guess σ̃ such that 〈σ̃,σ〉 > q0? (weak reconstruction)

• Is the student able to infer σ? (strong reconstruction)

With the statistical inference tasks being part of this thesis, we are only interested in the strong recon-
struction scenario. Now, this question can be answered under two different sets of restrictions.
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• Reconstruction is information-theoretically possible, if the student can inferσ from (σ̂, ν, ν̃) given
unlimited computational power.

• Reconstruction is algorithmically possible, if there is a polynomial-time algorithm A that outputs
σ on input (σ̂, ν, ν̃).

Clearly, the planted model undergoes phase transitions with respect to this questions. We suppose that
the planted model comes as a factor graph G with n variables and m factor nodes and that the student
has access to this graph. With a slight misuse of notation, we suppose that the student gains knowledge
about ν̃ as well, if she has access to the factor graph. Furthermore, on each factor node a we find a
weight function ψa such that ψa(∂a) = σ̂a . As before, let α = m/n be the factor-to-variable ratio. In
this case, the more factors there are (as α getting large), the more measurements of the ground-truth
are available for gathering information and thus, the easier the task seems to become. We denote by
αinf the information-theoretic threshold and by αalg the algorithmic threshold. Then we have the fol-
lowing, assuming tacitly that all thresholds might be either strict or coarse phase transitions as already
discussed.

• For α<αinf, there is no algorithm (efficient or not) that is able to infer σ from (G ,σ̂,ν).

• For αinf <α<αalg, there is no efficient algorithm that is able to infer σ from (G ,σ̂,ν).

• If α>αalg, there is a polynomial-time algorithm A that outputs σ on input (G ,σ̂,ν).

Ifα∗ is some threshold, we will subsequently refer to negative results (forα<α∗ inference is not possible)
as converse statements and to positive results (forα>α∗ inference is possible) as achievability statements
respectively. When mentioning algorithmic achievability, a natural question arises: which class of al-
gorithms is supposed to perform well on inference problems? We make use of the observation that the
Boltzmann distribution of the planted model can be tackled by the message passing algorithms of Sec-
tion 1.1.4. While Belief Propagation is indeed an efficient algorithm in a complexity theoretical way, in
each iteration at each factor a, we need to compute roughly deg(a) messages. If the underlying graph is
not too sparse, this might not be feasible computationally on large instances. Suppose we have weight
functions that are not too sensitive to single messages’ contributions. Then a family of algorithms called
approximate message passing algorithms is supposed to perform well.

1.2.1.4. Approximate Message Passing AMP

Let us first discuss what a sensitive weight function is. A prime example would be the weight functions
occurring in the random k−SAT problem where a single message can turn the evaluation from nearly
zero to almost 1. On the other hand, a weight function that, for instance, counts the adjacent variables
with spin 1, would be very insensitive – at least if the factor node degree is large. Thus, suppose the
latter is the case and suppose further that the average degree of a factor k = ω(1) is large. Instead of
calculating k different messages (depending on which variable is removed) at each factor as in Belief
Propagation, one could compute one message where no variable is removed and send it to all neigh-
bours. Donoho, Maleki and Montanari [66] introduced a family of message passing algorithms which is,
intuitively speaking, an approximate version of Belief Propagation.

More precisely, let G = (V ∪F,E) be a factor graph representing a statistical inference problem on n
variables and m factors with α= m/n. For a vector τ ∈Rk we write 〈τ〉 = k−1 ∑k

i=1τi for the average over
all entries of τ. Denote by

{
ηt :Rn →Rn

}
t≥1 a family of coordinate-wise applied (non-linear) threshold

functions and let A ∈ Rm×n be the (normalised) adjacency matrix of the factor graph, thus normalise
the columns to `2 norm 1. Then, approximate message passing starts with an initial guess σ(0) of the
ground-truth σ and computes iteratively

σ(t+1) = ηt
(

AT z(t ) +σ(t )) and z(t ) = σ̂− Aσ(t ) +α−1z(t−1) 〈η′t (
AT z(t−1) +σ(t−1))〉 . (1.2.4)

Let us only briefly sketch the meaning of the single parts of (1.2.4), a complete introduction and a formal
justification of those equations is provided by [66, 129].
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• σ(t ) is the current estimate for the ground-truth σ.

• z(t ) can be interpreted as a current residual.

• The threshold function η pushes σ(t ) towards the sparsest solution. In its absence, the algorithm
would converge to a solution of σ̂= Aσ of least `2 norm.

• α−1z(t−1)
〈
η′

(
AT z(t−1) +σ(t−1)

)〉
is derived from the Belief Propagation update rules on the corres-

ponding factor graph. It improves the convergence towards sparse solutions even further.

While AMP is clearly fast to run and easy to implement, it also achieves the best algorithmic perform-
ance presently known in some of the most prominent inference problems like compressed sensing [67]
or the pooled data problem [70].

After this excursion into the statistical physics’ foundations of statistical inference, we will introduce
the group testing problem in the next section. Group testing is a prime example of a statistical inference
problem and is the protagonist of multiple contributions of this thesis.

1.2.2. Group Testing

In the group testing problem, one is given n individuals x1, . . . , xn out of which a small number k is
infected. We may employ a testing procedure that allows to pool various individuals into one group test
that renders a positive result if and only if at least one infected individual is contained in the test. Given
probes of those n individuals and the prevalence k/n, the ultimate goal is to find a testing strategy (we
will refer to this as a pooling scheme) that is able to infer the infection status of each individual with the
minimum number of tests possible. Group testing itself found its first appearance in literature in the
early 1940’s when Dorfman [68] proposed the following, fairly simple, inference algorithm.

(D1) Assign a group of Γ individuals to a test, such that each individual gets tested once.

(D2) If a test renders a negative result, all of the contained individuals are uninfected. If a test renders
a positive result, test all individuals individually.

Supposing that the prevalence is k/n and each individual is infected independently of all other indi-
viduals, it is straightforward to calculate the expected number of tests m required in this testing scheme
as

E [m] = n

Γ
+n

(
1−

(
1− k

n

)Γ)
.

Given an estimation of the prevalence (this is the teacher’s prior), it is possible to optimise the test size
Γ in order to minimise the expected number of tests.

Even if the Dorfman scheme is, as we will see, a suboptimal design, it finds its applications in various
medical applications which might be due to the very simple inference algorithm and the fact that it
recovers the infection status of each individual correctly (supposing that each test outputs the correct
result) [130].

Since its first appearance, group testing gained a lot of attention in various installments. In the first
decades, the focus was lying on combinatorial group testing, where one aims to construct a pooling
scheme that successfully recovers every possible ground-truth from the teacher’s prior distribution. This
problem was studied intensively, amongst others, by D’yachkov et al. [58], Erdős and Rényi [73], Fischer,
Klasner and Wegener [80], Hwang [98] and Ungar [164]. But in the early 2000’s, the focus changed to so-
called probabilistic test-designs in which inference is only required with high probability with respect to
the random choice of the ground-truth. Some of the most influential contributions are due to Aldridge,
Baldassini and Johnson [8], Aldridge, Johnson and Scarlett [9], Damaschke [59], Gandikota et al. [86],
Johnson, Aldridge and Scarlett [108], Mezard and Toninelli [132], Mézard, Tarzia and Toninelli [133] and
Scarlett and Cevher [154]. Let us describe more systematically which kind of group testing problems
exist in literature. The exact problem description may vary with respect to ...

• ... the teacher’s prior σ ∈ {0,1}n :
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– σ can be a uniformly sampled configuration out of all configurations with exactly k non-zero
entries (hypergeometric group testing model),

– Alternatively,σmight be a binomial random vector, such that each entry equals 1 independ-
ently of all other entries with probability k/n (i.i.d. group testing model).

– Finally, each individual xi might be (independent of the other individuals) infected with
probability pi such that pi and p j do not need to be equal necessarily. This choice of the
teacher’s prior is called group testing with priors.

• ... the number of subsequent rounds a test-design may contain:

– In the non-adaptive group testing problem all tests need to be conducted in parallel, thus
one cannot use information gained in previous stages.

– The adaptive group testing problem allows to design subsequent stages of tests based on the
outcome of previous stages.

• ... the level of required certainty:

– In combinatorial group testing, a testing scheme needs to output the correct infection status
of all individuals on any ground-truth σ.

– On the other hand, in probabilistic group testing, it suffices to recoverσwith high probability
(with respect to the randomly generated ground-truth).

• ... the type of recovery:

– If we demand exact recovery, each individual has to be assigned the correct infection status.

– Otherwise, if we can tolerate a small number of falsely classified individuals, we call this
criterion partial recovery.

• ... the correctness of each test:

– In noiseless group testing, each test outputs the correct result.

– Noisy group testing instances are characterised by a random flip of each test-result. This
noise might be uniformly at random (binary symmetric channel), dependent of the tests’
correct result (e.g. Z−channel and reverse Z−channel) or correlated with the number of
infected and uninfected individuals in the test (diluted noise models).

– In threshold group testing, a test-result is negative if the number of contained infected indi-
viduals is below a given threshold t1 and positive if it exceeds a second threshold t2 ≥ t1. In
the range (t1, t2), the test-result might be randomly chosen.

• ... the constraints on individuals-per-test and tests-per-individual:

– In the unrestricted group testing problem each individual might take place in an arbitrary
number of tests. Furthermore, each test might contain between one and all individuals. For
the sake of brevity, we will refer to the unrestricted group testing problem as the group testing
problem.

– In ∆−divisible sparsity constrained group testing, each individual might take place in a max-
imum of ∆ tests.

– Analogously, in the Γ−sparse group testing problem, each tests may contain at most Γ indi-
viduals.

• ... the prevalence of infected individuals:

– If the number of infected individuals k satisfies k =Θ(1), thus is independent of the number
of individuals n, we call the setting the ultra-sparse regime.

– If, on the other hand, k ∼ nθ(θ ∈ (0,1)), the regime is called sublinear.
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– Finally, if we suppose k =αn for some constant α ∈ (0,1), the setting is denoted as the linear
regime.

In this thesis’s contributions, we will analyse phase transitions in noiseless probabilistic hypergeomet-
ric group testing instances with a focus on non-adaptive group testing. Nevertheless, some contribu-
tions contain results on adaptive group testing as well. We will discuss this thesis’s results in detail in Sec-
tion 2.1. Let us briefly express a non-adaptive group testing instance in terms of the statistical physics’
framework. A pooling scheme for such an instance can be represented as a factor graph G = (V ∪F,E).
We denote with V = {x1, . . . , xn} the n individuals and the m tests are given by F = {a1, . . . , am}. Further-
more, an edge xi a j exists if and only if individual xi takes part in test a j . As we are in the setting of
inference, suppose that the ground-truthσ ∈ {0,1}n assigns each individual its infection status. Further-
more, let σ̂ ∈ {0,1}m denote the sequence of test-results, hence

σ̂a = max
x∈∂a

σx .

This completely describes the planted model introduced via (1.2.3), as we, as usual in group testing,
suppose that we have complete knowledge about the model’s generation and the teacher’s prior (Bayes
optimal setting). A visualisation can be found in Figure 1.3. In the following, we will use a slightly
different notation as in the previous sections on phase transitions. While we previously denoted by α
the factor-to-variable ratio and analysed the system’s behaviour with respect to the size of α, it is usual
in the group testing community to express phase transitions in terms of the required number of tests
m = m(n,k) in the large-system limit n →∞. Of course, those statements can directly be translated into
a statement about the factor-to-variable ratio.

x1 x2 x3 x4 x5 x6 x7

0 1 1 0 1

Figure 1.3.: The factor graph representation G = (V ∪F,E) of a group testing instance with n = 7 indi-
viduals out of which k = 2 are infected on m = 5 tests. Blue individuals are uninfected while
red individuals are infected. Furthermore, a test renders a positive result if and only if at least
one infected individual is contained.

Clearly, if the problem was to be studied for finite n, the different levels of prevalence would not be well
defined. It is, for instance, not possible to distinguish in a population of n = 103 individuals whether the
occurrence of k = 20 infected individuals should be described as k = 20,k ≈ n0.43 or as k = 0.02n, thus
results obtained in the large-system limit need to be verified empirically for small n if they should be
applied in real laboratories.

Next, we will shortly describe known results and open problems ahead of this thesis’s contributions.
As this overview is with respect to noiseless probabilistic group testing, we refer the interested reader to
the detailed overview article of Aldridge, Johnson and Scarlett [10] for an overview over the state of the
play in different models.

1.2.2.1. Prior results on noiseless probabilistic hypergeometric group testing

We will tacitly assume throughout this section that all results are meant to be read with respect to ex-
act recovery if not stated differently. Let us start this section by a folklore counting argument which is
a good indication for how many tests we need to use to have a chance of exact recovery. Namely, in-
dependent of the choice of the pooling scheme (adaptive or non-adaptive), by making m tests, we can
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generate 2m different sequences of test-results. Clearly, this number needs to exceed the number of
possible ground-truth values

(n
k

)
, therefore, if minf is the minimum number of tests necessary to solve

the problem information-theoretically, we find

2minf ≥
(

n

k

)
⇔ minf&

n lnn − (n −k) ln(n −k)−k lnk

ln2
. (1.2.5)

Therefore, with H(α) denoting the entropy of Be(α) and α,θ ∈ (0,1), the counting bound (1.2.5) yields

minf&

{
H(α)
ln2 n, k =αn

1−θ
ln2 k lnn, k ∼ nθ.

Thus, if the prevalence is constant, we require linearly many group tests but if the spread of the disease
scales sublinearly in the population size, we can do much better. The counting bound (1.2.5) gives a
lower bound on the number of tests required in any testing scheme with respect to a hypergeomet-
ric problem setup, thus it applies for adaptive pooling schemes as well as for non-adaptive pooling
schemes. Clearly, it should be easier to come along with minf tests adaptively rather than non-adaptively.
Indeed, it turns out that this intuition is mostly correct.

Adaptive group testing Pretty soon after group testing found its way into mathematical literature,
there were some negative results on group testing. More precisely, Ungar [164] proved that under the

i.i.d. prior there is a phase transition at prevalence p = 3−p5
2 ≈ 0.38. More precisely, there is no test

design succeeding at inference of σ on less than n tests if the problem’s prevalence is larger and on
the other hand, if the prevalence becomes smaller, there is a test design achieving inference on at most
n − 1 tests. In the hypergeometric group testing problem, it is conversely conjectured that this phase
transition (of course with n replaced by n −1) occurs at a prevalence of 1/3 [80, 97] but until now it was
only proven that for prevalence p > log−1.5(3) ≈ 0.369 performing n −1 individual tests is optimal [149].
Clearly, this number of required tests is far from the counting bound. Assuming there are αn infected
individuals, Hwang [98] provides a generalised binary splitting algorithm which was later improved by
Allemann [13] such that inference of σ is possible with

mHwang ∼ minf +αn and, respectively mAllemann ∼ minf +0.255αn (1.2.6)

tests.
We stress that in the linear regime it turns out that mAllemann exceeds n at roughly α= 1/3, underlying

the conjecture of Hu, Hwang and Wang [97] and that in the sublinear regime, we find

mHwang ∼ mAllemann ∼ minf,

as the deviations are of lower order.
Unfortunately, the binary splitting approach comes with a practical flaw - in order to guarantee suc-

cessful inference, one requires Ω(lnn) rounds of adaptive tests. A natural question is if there might be
algorithms succeeding at inference of σ with a bounded number of testing rounds. We underline that,
with a slight misuse of wording, we tacitly assume that an algorithm is always efficient, thus runs in
polynomial time, whenever we do not explicitly state differently. Up to the best of our knowledge there
is no algorithm known which succeeds on an arbitrary group testing instance in less thanΩ(lnn) rounds
on mAllemann tests. The situation becomes much more convenient if the problem gets sparser.

More precisely, suppose we have a vanishing prevalence, thus k ∼ nθ for some θ ∈ (0,1). The bin-
ary splitting algorithm by Allemann clearly performs asymptotically optimal in this sublinear regime,
as already discussed. But now, there are well known efficient algorithms achieving the same asymp-
totic performance in much less rounds, the probably best known algorithms are due to Damaschke
and Muhammad [60] whose algorithm achieves inference in not more than 4 rounds and Scarlett [153]
whose algorithm needs only two rounds in the described setting with no more than (1+o(1))minf tests,
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improving on the 2-stage algorithm of Mezard and Toninelli [132] requiring (1+o(1))minf
ln2 tests.

Therefore, the adaptive group testing problem is, up to the exact phase transition point in hyper-
geometric linear group testing, well understood. Things turn out to be completely different for non-
adaptive group testing.

Non-adaptive group testing Let us again start with discussing known results for a constant preval-
ence k = αn. It turns out that this case is, from a mathematical viewpoint, completely uninteresting.
Due to Bay, Price and Scarlett [24] it is known that recovery of the ground-truth is impossible with fewer
than (1− ε)n tests for any ε,α ∈ (0,1). The authors built up on work by Aldridge [7] who established
a coarse phase transition, thus proved that recovery under the given circumstances fails with positive
probability.

Therefore, we let our focus be the sublinear regime in which we suppose throughout that the preval-
ence is given by k/n = n−(1−θ) for some density parameter θ. Thus, if θ becomes larger, the prevalence
gets higher and the group testing problem is said to become denser.

We will first introduce two specific non-adaptive pooling schemes. Given the teacher’s prior in the
hypergeometric model, we might construct a random graph, thus the teacher’s model, as follows.

• Bernoulli testing: Each individual takes place in any test with probability p independently.

• Random (almost) regular testing: Each individual chooses ∆ tests uniformly at random without
(or with, respectively) replacement.

It turns out that both model choices have some similarities but that the first is inferior to the second. We
will verify this fact in Section 2.1, which is basically due to high fluctuations of the individual degree. In-
deed, the information-theoretically optimal designs require each test to be positive with probability 1/2
implying that ∆=Θ(lnn), or p =Θ(

k−1
)

respectively. The choice that any test needs to be positive with
probability 1/2 is, intuitively speaking, due to the fact that this choice maximises the system’s entropy,
thus the gain on information per test is maximised.

While there was no universal converse statement sharpening minf known prior to this thesis’s contri-
butions, there are several algorithmic and information-theoretical achievability as well converse state-
ments on those two random models. We will discuss the most influential ones. Regarding Bernoulli
testing, it were Scarlett and Cevher [152] who proved that it is information-theoretically possible to in-
fer the ground-truth with (1+o(1))minf tests if the group testing instance is fairly sparse, thus θ ≤ 1/3.
This result was strengthened by Aldridge [11] who pinned down the information-theoretic strict phase
transition of the Bernoulli group testing design at

mBernoulli =
1

cBer ln2
k ln

n

k
where cBer = max

ν>0
min

{
(1−θ)νexp(−ν)

θ ln2
,

H
(
exp(−ν)

)
ln2

}
k ln

n

k
(1.2.7)

which is strictly worse than (1.2.5) for all θ > 1/3. Subsequently, Aldridge, Johnson and Scarlett [9]
provided an information-theoretical converse statement (though, no achievability result) in the random
regular model. More precisely, inference of σ fails with positive probability, if the test-design contains
less than

mrand−reg = max

{
θ

(1−θ) ln2 2
,

1

ln2

}
k ln

n

k
(1.2.8)

tests. A short calculation verifies that mrand−reg < mBernoulli for θ ∈ (1
3 ,1

)
and mrand−reg = minf for θ ≤

ln2
1+ln2 ≈ 0.409 but nevertheless, mrand−reg > minf for larger θ. Thus, the random regular model might
outperform the Bernoulli testing but it is clearly far from the counting bound for a high prevalence.
Such an information-theoretic gap might be due to the model itself or it might be the case that non-
adaptive pooling schemes cannot perform at minf. We will discuss in Section 2.1 that the latter is the
case and actually mrand−reg is a universal information-theoretic converse, independent of the pooling
scheme, for any non-adaptive design. We will see furthermore that the converse statement (1.2.8) of [9]
actually marks an information-theoretic phase transition point.
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At this point, we make a very short excursion into the setting of partial recovery. The already men-
tioned paper of Scarlett and Cevher [152] actually proves that minf is an important threshold for partial
recovery models. More precisely, the simple Bernoulli test design suffices to recover all but γk indi-
viduals correctly with minf tests. On the negative side, no test-design can come along with less than
(1−γ)minf tests when trying to recover all but γk individuals correctly.

Let us come back to the problem of exact recovery. While we already discovered the state of the play
prior to this thesis’s contributions with respect to information-theoretic aspects, we will now introduce
three of the most prominent non-adaptive group testing algorithms and state known results about their
performances. In detail, we will introduce the COMP algorithm as well as the DD algorithm and its greedy
extension called SCOMP.

The two probably most basic algorithms are COMP and DD and their descriptions can be found in
Algorithms 1 – 2.

Input: Pooling scheme G = (V ∪F,E), test-results σ̂ ∈ {0,1}m

Output: Estimate σ̃ of σ
1 Mark all individuals occurring in a negative test as uninfected.
2 Declare all other individuals as infected.

Algorithm 1: The COMP algorithm as first introduced by Chan et al. [39].

Input: Pooling scheme G = (V ∪F,E), test-results σ̂ ∈ {0,1}m

Output: Estimate σ̃ of σ
1 Mark all individuals occurring in a negative test as uninfected and remove them and the

corresponding negative test from the graph.
2 Mark an individual as infected if it appears as the only individual in a positive test in this reduced

graph.
3 Declare all other individuals as uninfected.

Algorithm 2: DD algorithm as defined by Aldridge, Baldassini and Johnson [8].

While COMP cannot produce any false negatives, thus σ̃COMP
i = 0 ⇒ σi = 0, DD guarantees that all

declared infected individuals are indeed infected, hence σ̃DD
i = 1 ⇒σi = 1. Nevertheless, it might happen

that the estimate σ̃ does not even explain the test-results σ̂. In this context, we say that an individual
x ∈ ∂a explains test a under σ̃ if σ̂a = 1 and σ̃x = 1. Conversely, a positive test is called explained by
σ̃ if there is at least one individual x ∈ ∂a which explains a. With COMP or DD it might furthermore
happen that σ̃ contains less than k infected individuals (if DD was applied). In terms of inference,
we observe that the estimates of COMP and DD do not necessarily belong to the solution space of the
underlying random CSP. If we look a bit closer into the DD-algorithm, we find that the first two steps
do not misclassify any individual. We furthermore observe that the estimate was correct if after the first
step of DD, there is no individual left that does not belong to at least one (positive) test of degree one. We
will formalise this observation in Section 2.1. Suppose that this does not hold and thus, after the second
step of DD, we are left with some unexplained tests. As the prevalence is small, it might be a natural idea
to declare greedily those individuals as infected that explain the most unexplained tests. This is exactly
what the SCOMP-algorithm does.

Positive news about SCOMP is clearly that it produces an estimate σ̃ which explains the test-results
σ̂. The flaw is, of course, that it might produce false positive as well as false negative predictions. Nev-
ertheless, it was conjectured based on simulations that SCOMP performs better than DD does [8], thus
requires less tests to succeed at inference of σ. We will see in Section 2.1 that this conjecture turned out
to be actually false.

Algorithms 1 – 3 can be applied to any arbitrary (non-adaptive) pooling scheme. Nevertheless, they
were studied on the Bernoulli model [8] as well as the random regular model [108]. As it turns out that
those algorithms require less tests on the random regular model in order to inferσwith high probability,
we focus on those results from [108]. More precisely, the authors prove a strict phase transition of the
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Input: Pooling scheme G = (V ∪F,E), test-results σ̂ ∈ {0,1}m

Output: Estimate σ̃ of σ
1 Mark all individuals occurring in a negative test as uninfected and remove them and the

corresponding negative test from the graph.
2 Mark all individuals that are the sole individual in a test in this reduced graph as infected.
3 while there is an unexplained test a do
4 Take the individual of highest degree, breaking ties arbitrarily, and declare it as infected.
5 Remove all adjacent tests from the graph.

6 Declare all left individuals (now, isolated in the reduced graph) as uninfected.

Algorithm 3: The SCOMP algorithm by Aldridge, Baldassini and Johnson [8] can be seen as a greedy
extension of DD.

COMP-algorithm on the random regular model at mCOMP as well as an achievability result for DD at mDD
where

mCOMP = 1

(1−θ) ln2 2
k ln

n

k
and mDD ≤ max

{
θ

(1−θ) ln2 2
,

1

ln2

}
k ln

n

k
. (1.2.9)

Clearly, if DD achieves inference at mDD, so does SCOMP as it performs the two first steps of DD. Compar-
ing the performance of the DD algorithm on the random regular model with its information-theoretic
converse (1.2.8), we find that DD is an optimal inference algorithm on the random regular model for
θ ≥ 1/2 while there remains a gap for smaller θ. This might have been due to a weakness in the achievab-
ility proof of DD, a weakness in the information-theoretic converse or because DD does not perform best
possible in this regime. As we will see in Section 2.1, the latter is the case.

Let us, at this point, briefly discuss the DD algorithm itself. While it was first stated in its comfort-
able and easy to digest version in [8], it turns out that the estimate σ̃ of σ coincides with the estimate
computed by the well known Warning Propagation algorithm. Such message passing algorithms were
already applied by Mézard, Tarzia and Toninelli [133] to the group testing problem. Indeed it turns out
that the estimates of DD and WP coincide. If an individual x is part of a negative test, WP sends the
warning to x that it may not take value 1, thus we just need to analyse the messages at positives test. If
now there is a positive test a of size Γa containing Γa −1 individuals being part of a (different) negative
test, the message sent to the last individual warns this individual not to take value 0 as well, as otherwise
the test was unexplained. Finally, if there were two individuals in a not being warned about taking the
value 0, the test won’t send a warning. The possibility to write down (equivalent) forms of the statistical
physics’ message passing algorithms seems to be a key feature of group testing and similar problems as
we will see in due course more often.

Until now, all presented (non-adaptive) designs and algorithms have one thing in common. If we
restrict ourselves to the sublinear regime, each individual takes part in Ω (lnn) tests and there are tests
containing at least Ω (n/k) tests. Understanding the group testing problem under given restrictions on
the maximum degrees of individuals and tests is not only a challenging problem but it might influence
the group testing schemes used in real-world laboratories. Thus, let us introduce sparsity constrained
group testing.

Sparsity constrained group testing As before, we restrict ourselves to the noiseless case. We dis-
tinguish between Γ−sparse group testing in which each test may contain at most Γ individuals and
∆−divisible group testing whose restriction is that each individual may only be tested at most ∆ times.
Clearly, these models try to built up real world conditions in the sense that the test’s sensitivity might
decrease with very large pools (Γ−sparse) or that it is not possible to duplicate the patient’s samples
arbitrarily often.

Probably the most influential prior work to this thesis’s contributions is the one of Gandikota et al.
[86]. They stated (universal) information-theoretic converse results in both restriction models and
achievability results using the COMP algorithm on the random regular pooling scheme. Let us denote
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by minf,G(Γ) and minf,G(∆) the information-theoretic converse bounds and by mCOMP,G(Γ) and mCOMP,G(∆)
the achievability bounds of COMP in the Γ−sparse and ∆−divisible setting respectively obtained in [86].

More precisely, the authors find for Γ=Θ
((n

k

)β)
for some β ∈ [0,1) that

minf,G(Γ) = 1

1−β
n

Γ
and mCOMP,G(Γ) =

⌈
1

(1−θ)(1−β)

⌉⌈n

Γ

⌉
. (1.2.10)

Furthermore, with ∆= o(lnn) they prove weak converse respectively achievability statements at

minf,G(∆) =∆k
(n

k

)1/∆
and mCOMP,G(∆) = (

e∆kn1/∆)
. (1.2.11)

Comparing the achievability result with the converse statement, we observe a sizeable gap in the ∆−
divisible setting whilst in the Γ−sparse case the gap is only a multiplicative constant factor. We will
improve on the converse statements as well as provide a rigorous analysis of the DD algorithm in a
tailor-made pooling scheme which improves the achievability bounds in Section 2.1.

After having presented a prime example of a statistical inference problem in large planted versions of
statistical physics’ models, let us return to the question of how to express the physics’ intuition behind
the handling of such large random CSPs in a rigorous way. This might help studying random CSPs as
well as their planted versions, hence to study statistical inference problems.

1.3. Large discrete systems and their limits

The purpose of this section is two-fold. First, we will dive deeper into the already defined cut-distance
for probability measures and give an overview of recent results prior to this thesis’s contributions, for
instance we will present a regularity lemma for such measures. We will see that this notion is highly
inspired by graph regularity and the cut-distance used in graph limit theory and give a very gentle and
short introduction into this field as well. Second, we will slightly change the point of view on large graphs
from diluted mean-field models (random graphs) to deterministic graphs which are perturbed slightly
with a little bit of randomness. The latter ones are useful structures in order to study the expected
behaviour of algorithms or to obtain structural results on real world occurrences of large graphs.

1.3.1. Approaching pure states of spin glass systems: the cut-distance

We already learned about the cut-distance ∆� in Section 1.1.2.4. For the sake of the reading flow, recall
that it was defined in (1.1.14) for two probability measures µ,ν on some finite setΩn as

∆�
(
µ,ν

)= inf
γ∈Γ(µ,ν),
φ∈Sn

sup
S⊂Ωn×Ωn ,

X⊂[n],
ω∈Ω

∣∣∣∣∣∣∣
∑

(σ,τ)∈S,
x∈X

γ(σ,τ)
(
1 {σx =ω}−1

{
τφ(x) =ω

})∣∣∣∣∣∣∣ ,

where Γ(µ,ν) is the set of couplings of µ and ν and Sn is the set of permutations on [n]. Let us write
P (Ωn) for the set of probability measures over Ωn . It can be easily verified that ∆�(·, ·) satisfies the
triangle-inequality and is symmetric on P (Ωn) but it might happen that ∆�(µ,ν) = 0 even if µ 6≡ ν.
Therefore, let Ln(Ω) be the set of equivalence classes over P (Ωn) such that one class consists of those
measures with cut-distance zero. With a slight misuse of notation, we say that µ ∈Ln(Ω) is a probability
measure on Ωn rather than representing some equivalence class and now, ∆�(·, ·) defines a metric on
Ln(Ω). As n is supposed to grow to ∞ in typical applications, it might be tempting to introduce some
kind of limit theory.

1.3.1.1. The cut-distance in the thermodynamic limit

The cut-distance for probability measures was introduced by Coja-Oghlan, Perkins and Skubch [42] and
the authors provided an idea of how to get meaningful limit objects of discrete probability measures
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by using this cut-distance. Let us introduce some notation in order to grasp this idea. If σ ∈ Ωn is a
configuration, we can translate this configuration into a measurable function from [0,1) into the set of
probability measures overΩ. Denote by ΣΩ the space of all measurable functions from [0,1) to P (Ω) up
to equality almost everywhere. Then, express σ as

σ̂ : [0,1) →P (Ω) s.t. x 7→
n∑

i=1
δσi 1

{
x ∈

[
i −1

n
,

i

n

)}
.

If now µ ∈P (Ωn) is a probability measure onΩn , Coja-Oghlan, Perkins and Skubch [42] define

µ̂= ∑
σ∈Ωn

µ(σ)δσ̂ s.t. µ̂ ∈P (ΣΩ) . (1.3.1)

Thus, µ and µ̂ are in 1-to-1-correspondence. Now it is possible to equip P (ΣΩ) with a corresponding
continuous version of the cut-distance. To this end, let S[0,1) denote the set of all measure-preserving
bijections on [0,1) whose inverse is measure-preserving as well, then the cut-distance of two measures
µ,ν ∈P (ΣΩ) is defined as

D�(µ,ν) = inf
γ∈Γ(µ,ν),
ϕ∈S[0,1)

sup
B⊂Σ2

Ω,
U⊂[0,1),
ω∈Ω

∣∣∣∣∫
B

∫
U
σx (ω)−τϕ(x)(ω)dxdγ(σ,τ)

∣∣∣∣. (1.3.2)

Again, we identify two measures µ,ν if their cut-distance is zero and obtain LΩ as the space of all such
equivalence classes. It can be proven that LΩ is a compact metric space [42, Corollary 2.5]. The authors
prove this by the compactness of (a special version) of the so-called graphon space [127] and the exist-
ence of a homeomorphism from LΩ into the latter due to [102, Theorem 7.1]. Nevertheless, prior to
this thesis’s contributions, there was no rigorous limit theory for such probability measures. Especially
the limit objects (we will call them Ω−laws later on) were not described explicitly and the connection
between the discrete and continuous cut-distance was not understood for embedded measures con-
structed via (1.3.1). Furthermore, the exact connection to the graph limit theory was not carried out
and some important key features of graph limit theory, like reconstruction of a finite object by sampling
from a limit object were not known. We will discuss those missing pieces in Section 2.3. As we referred to
graph limit theory a couple of times, let us briefly describe this beautiful theory on a fairly short and in-
tuitive level. Lovász [127] provides a very detailed introduction into graph limit theory for the interested
reader.

1.3.1.2. A spark of graph limit theory

In a series of seminal papers, Borgs et al. and Lovász and Szegedy [31, 32, 128] introduced a very power-
ful theory which connects large discrete objects - growing sequences of dense graphs - with analyt-
ical functions called graphons which are measurable functions from the unit-square into [0,1]. We
give a little insight into this theory following Lovász [127]. In this context, we call a weighted graph
G = (V = {1, . . . ,n} ,E ,Ψ) on |V | = n vertices dense, if there is a constant ε> 0 such that |E | ≥ εn2, thus a
positive proportion of all edges is present. Furthermore, Ψ : V ×V → [0,1] describes the weight of each
edge (observe that a {0,1}−valued functionΨmakes G a simple graph). Without going much into detail,
one way of obtaining such limit objects is by using their version of the cut-distance for graphs. We begin
by introducing a very intuitive version of this distance, namely for graphs on the same vertex set of size
n. We identify a graph G with its adjacency matrix and denote by Gi j its entry, then the cut-distance
reads

δ�(G , H) = n−2 min
ϕ∈Sn

max
S,T⊂V

∣∣∣∣∣ ∑
s∈S,t∈T

Gs,t −Hφ(s),φ(t )

∣∣∣∣∣ . (1.3.3)

Intuitively speaking, the cut-distance measures the largest deviation of edges on subsets of vertices un-
der a best possible re-labelling of the vertices. In particular, isomorphic graphs are those graphs with
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cut-distance zero. One can imagine that this definition gets quite involved if it is defined for graphs on a
different number of vertices. Roughly said, in this case the cut-distance is defined as the minimum over
all values of the cut-distance between blow-ups of the graphs that have the same number of vertices
[127, Section 8.1.4].

Let us now embed such finite graphs into the space of kernels, thus measurable functions W : [0,1]2 →
[0,1]. Denote the space of all such kernels as K . In order to embed a graph we can, figuratively speaking,
shrink the adjacency matrix of a graph G from size n ×n onto the unit-square [0,1]2 such that the built
function takes a constant value on each little square corresponding to a matrix entry. Formally, if G =
(V ,E) is a graph on n vertices, we construct WG as the corresponding G−kernel as follows. Let S1, . . . ,S`
be a partition of [0,1] into n intervals such that Si = [(i −1)/n, i /n). Then let

WG (x, y) =
n∑

i , j=1
1

{
x ∈ Si , y ∈ S j

}
Gi , j

be the step-function which takes value 1 on square Si × S j if and only if edge i , j is present in G . Of
course, this definition easily generalises to weighted graphs as well.

Thus, we can embed any finite graph into the space of kernels K . But clearly, there are much more
functions in K as those that correspond to finite graphs. Following [127, Section 8.2.1], we define the
continuous version of the cut-distance for two kernels W,W ′ ∈K as

D�(W,W ′) = inf
ϕ∈S[0,1]

sup
S,T⊂[0,1]

∣∣∣∣∫
S×T

W (x, y)−W ′(ϕ(x),ϕ(y))dydx

∣∣∣∣ . (1.3.4)

As in the previous section, the continuous version seems to be the intuitive generalisation of the dis-
crete cut-distance (1.3.3) by replacing sums with integrals and permutations with measure preserving
bijections. On th other hand, we are in a good position that such intuition can be formalised rigorously
as for two graphs G , H and their corresponding G−kernel and H−kernel WG ,WH , we have [127, Lemma
8.9]

δ�(G , H) =D�(WG ,WH ).

We will see in Section 2.3 that we are not that lucky in the case of limit objects of probability measures
but it is possible to achieve similar but slightly weaker results.

Sampling A very elegant aspect about graph limits is that sampling from a kernel yields a finite graph
which is close to the kernel in the cut-distance. This fact is often referred to as a sampling lemma. More
precisely, given a kernel W , let k > 1 be an integer and sample x1, . . . , xk uniformly and independently
from [0,1]. Define a random graph G =G (k,W ) on k vertices such that edge i j is present with probab-
ility W (xi , x j ). Then we have the following sampling lemma [127, Lemma 10.16].

Sampling Lemma. Let W be a kernel and G =G (k,W ) defined as above. Then we have with
probability at least 1−exp(−k/(2lnk)) that

D�(WG ,W ) < 22p
lnk

.

It will turn out in Section 2.3 that a similar fact holds forΩ−laws as well.

Subgraph counts and homomorphism densities A further fairly important aspect about graph limit
theory is that the space of kernels really consists of meaningful limit object for sequences of graphs. To
this end, we need to briefly mention that graph convergence is actually defined as the convergence of all
homomorphism densities of finite graphs into the graph sequence. Therefore, a series of graphs (Gn)n

converges, by definition, if all series of homomorphism densities of finite graphs (t (H ,Gn))H converge
inR. Let us define the homomorphism density. A graph homomorphism f from a graph F = (V (F ),E(F ))
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into a graph G = (V (G),E(G)) is a function f : V (F ) →V (G) that maps edges on edges, thus i j ∈V (F ) ⇒
f (i ) f ( j ) ∈V (G). Now, hom(F,Gn) counts the number of homomorphisms from a given k−vertex graph
F into Gn and we define the homomorphism density as

t (F,Gn) = hom(F,Gn)

nk
.

With this notation at hand, convergence of graphs should be understand as follows. If two graph se-
quences produce the same convergent series of homomorphism densities, they should have much in
common (as they contain equally many copies of all finite graphs) and therefore converge to the same
limit object. Fortunately, it turns out that the kernels are good limit objects as we find that for any con-
vergent sequence (Gn)n of graphs there is a kernel W such that t (F,Gn) converges to t (F,W ) for every
finite graph F [127, Theorem 11.22]. Such a kernel is called the limit of the graph sequence (Gn)n and we
say that (Gn)n converges to W . Now it could in principle happen that multiple kernels satisfy this condi-
tion and clearly, kernels representing isomorphic graphs should definitely do so. To this end, denote by
W the space of kernels such that we identify kernels of cut-distance zero. We have that W is a compact
Polish space [127, Theorem 9.23]. It turns out that we are in good shape as [127, Theorem 11.22] proves
that a sequence of graphs (Gn)n with a diverging number of vertices converges to a kernel W if and only
if D�

(
WGn ,W

) → 0 and as W is a compact metric space, the uniqueness up to equivalent kernels W ′ -
kernels that satisfy D�

(
W,W ′)= 0 - follows directly.

After discussing some aspects of the kernel representation of a graph limit, let us shortly describe a
second important possibility to describe a limit object.

Aldous-Hoover representation The Aldous-Hoover representation theorem for exchangeable arrays
of random variables is closely connected to the graph limit theory [6, 96, 102]. More precisely, with W
being a kernel, we recall that G (k,W ) is the random graph obtained as follows.

• Draw X 1, . . . , X k uniformly at random and independently from [0,1].

• Let each edge i j be present in G (k,W ) with probability W (X i , X j ).

This can be naturally extended to an infinite random graph model G (∞,W ) by sampling infinitely many
points X i . Of course, G (∞,W ) contains every finite random graph G (k,W ) as an induced subgraph [31].
We observe that G (∞,W ) is an exchangeable random graph. Indeed, its distribution is invariant under
permutation of the vertices.

Thus, the Aldous-Hoover representation theorem says that any such infinite random graph can be
written as a mixture of random variables Ai j = W̃k (Y i ,Y j ) where {Y i }i∈N is a family of mutually in-
dependent [0,1]−valued random variables and

{
W̃k

}
k is a family of symmetric functions W̃k : [0,1]2 →

[0,1]. This matrix A = (Ai j )i , j is clearly an infinite random exchangeable array in [0,1]N×N and one
would suggest that it is in 1-to-1 correspondence with the adjacency matrix of G (∞,W ). And this intu-
ition is indeed correct. It is possible to proof that the set of exchangeable infinite arrays corresponding
to such an infinite graph equals the set of extremal points in the space of all exchangeable random ar-
rays. Therefore, the mixture is no real mixture but there is exactly one function W : [0,1]2 → [0,1] such
that Ai j =W (Y i ,Y j ) for all i , j . This is, of course, exactly the kernel W .

After having learned a spark of graph limit theory, let us use it to tackle one of the most influential
concepts in graph theory, the graph regularity.

1.3.1.3. Regularity of graphs, graph limits and probability measures

Since the first occurrence of a regularity lemma for graphs in 1975, graph regularity and its generalisation
have attracted a lot of attention. We refer to two very detailed overview articles by Rödl and Schacht
[151] and Komlos et al. [112] describing and analysing various variants of graph regularity and their
applications. In this thesis, we will only sketch two types of regularity, one which is just called regularity
as defined by Szemerédi [160] and a much weaker version called weak regularity by Frieze and Kannan
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[84]. Besides belonging clearly to the most studied types of regularity, we will see that those concepts
are closely related to the cut-distance for probability distributions.

Throughout this section we suppose that G = (V ,E) is a graph on n vertices with at least εn2 edges. The
regularity lemma says, intuitively speaking, that the vertex set of each such graph can be partitioned into
finitely many classes such that the edges between (almost all) those classes look random. Let us describe
this in more detail.

For two subsets X ,Y ⊂V of the vertex set we denote by E(X ,Y ) the set of edges with one endpoint in
X and one endpoint in Y . Then the edge density between X and Y is defined as

d(X ,Y ) = |E(X ,Y )|
|X | |Y | .

If the edges between X and Y were randomly chosen, we would expect that the edge density between
not too small subsets of X and Y roughly equals the overall edge density. Thus, let us call the pair (X ,Y )
ε−regular if for all X ′ ⊂ X , Y ′ ⊂ Y with

∣∣X ′∣∣≥ ε |X | and
∣∣Y ′∣∣≥ ε |Y | we have∣∣d(X ,Y )−d(X ′,Y ′)

∣∣≤ ε.

If we now have a partition S = (S0,S1, . . . ,S`) of the vertex set V , we say that S is ε−regular if

• the exceptional set S0 satisfies |S0| ≤ εn,

• for all 1 ≤ i < j ≤ ` we have that the pair (Si ,S j ) is ε−regular.

Now, the famous regularity lemma of Szemerédi [160] guarantees that every large enough dense graph
has such a partition of its vertex set.

Regularity Lemma. For all ε> 0 and every t ∈N there exists an integer T = T (ε, t ) such that
each graph G on at least T vertices has an ε−regular partition S = (S0, . . . ,S`) of its vertex set
where t ≤ `≤ T .

A specific feature of this theorem is that T is independent of the graph G and its size. Nevertheless, it
turns out that T is lower bounded by a tower of 2s of height proportional to ln(1/ε) [92]. One might ask,
do we get smaller partitions if we only want to have the property of being regular on average? Indeed,
Frieze and Kannan [84] answer this question positively.

Observe that given a regular partition S = (S0, . . . ,S`) we find that the number of edges between two
disjoint subsets of vertices A,B is within ±εn2 of

∑̀
i , j=1

d(Si ,S j ) |A∩Vi |
∣∣B ∩V j

∣∣ ,

thus the latter expression measures somehow the deviation from being regular. Therefore, we say that
a partition S = (S1, . . . ,Sk ) of the vertex set of a graph G = (V ,E) is weakly ε−regular if we have for all
disjoint A,B ⊂V ∣∣∣∣∣|E(A,B)|− ∑̀

i , j=1
d(Si ,S j ) |A∩Si |

∣∣B ∩S j
∣∣∣∣∣∣∣< ε. (1.3.5)

Now, the weak regularity lemma [84] guarantees the existence of a weakly regular partition for every
graph.

Weak Regularity Lemma. For all ε> 0 and every graph G there is a weakly ε−regular parti-
tion of its vertex set into k sets such that k ≤ exp

(
O

(
ε−2

))
.

Thus, the weak regularity lemma provides a partition which is on average regular but consists of consid-
erably less parts. Interestingly, if GS is the weighted graph on the same vertices as G with edge-weight
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d(Si ,S j ) for edge uv with u ∈ Si , v ∈ S j , we have that (1.3.5) implies

δ�(G ,GS) < 2ε. (1.3.6)

Therefore, the cut-distance is closely related to the concept of (weak) regularity. Of course, a similar res-
ult does hold for kernels as well. If W is a kernel and S = (S1, . . . ,S`) is a partition of [0,1] into measurable
sets, we define following [127, Section 9.2.1]2

WS(x, y) = 1

λ(Si )λ(S j )

∫
Si×S j

W (x, y)dydx for (x ∈ Si , y ∈ S j ). (1.3.7)

Thus, WS is obtained by averaging over each step Si×S j . Now the weak regularity lemma states that given
a kernel W we find a partition S of the unit interval into k ≤ exp

(
O

(
ε−2

))
sets such that D�(W,WS) < ε.

Let us now come back to discrete probability measures on Ωn for some finite set Ω. More precisely,
we look at their continuous embeddings as Ω-laws on ΣΩ. It is possible to define a similar concept of
regularity for those objects inspired by the concept of regularity in graph theory [21, 42]. In order to do
so, we need to introduce some notation.

For a set X ⊂ [0,1) and a configuration σ ∈ΣΩ as well as a spin ω ∈Ω define

σ[ω | X ] =
∫

X
σx (ω)dx.

Thus, σ[· | X ] : [0,1) → P (Ω) is a probability distribution on Ω and more precisely, it can be seen as a
continuous valued analogue of the empirical distribution of σ on X .

If we now have a partition V = (V0,V1, . . . ,V`) of [0,1), and a partition S = (S0,S1, . . . ,Sk ) of ΣΩ we say
that µ is ε−regular with respect to (V ,S), if

(i) the non-exceptional sets V1, . . . ,V` and S1, . . . ,Sk satisfy

λ (Vi )µ
(
S j

)> 0 and
∑̀
i=1

k∑
j=1

λ(Vi )µ(S j ) ≥ 1−ε,

(ii) for all 1 ≤ i ≤ `, 1 ≤ j ≤ k we have

max
σ,σ′∈Si

∣∣∣∣σ[·|V j ]−σ′[·|V j ]
∣∣∣∣

1 < ε,

(iii) for all 1 ≤ i ≤ ` and 1 ≤ j ≤ k we have for U ⊂ Vi with λ(U ) ≥ ελ(Vi ) and T ⊂ S j with µ(T ) ≥ εµ(S j )
that ∣∣∣∣∣∣〈σ[· |U ]〉µ[·|T ] −〈σ[· |Vi ]〉µ[·|S j ]

∣∣∣∣∣∣
1
< ε.

This definition deviates slightly from the one in [42] with respect to the exceptional sets but is clearly
equivalent. As stated in this publication, (ii) guarantees that the averages σ[· | Vi ] and σ′[· | Vi ] over Vi

of any two configurations from one cluster S j are close. More importantly, (iii) requires that the average
〈σ[· |U ]〉µ[·|T ] over a large sub-square does roughly equal the mean over the square given by the partition
Vi ×S j .

As in the case of graph regularity, this can be expressed via the cut-distance. Given an ε−regular
partition (V ,S), we define

σx [ω|V ] = ∑̀
i=0

1 {x ∈Vi }σx [ω |Vi ].

Furthermore, we let µ[· |V ,S] be the conditional expectation of µ with respect to this partition, thus

µ[· |V ,S] =
k∑

j=0
δ∫

S j
σ[·|V ]dµ(σ).

2We denote by λ(·) the Lebesgue-measure.



Introduction 39

Therefore, µ[· | V ,S] ∈ LΩ is an Ω−law which is supported on a discrete set of configurations σ :
[0,1) → P (Ω) which themselves are constant on each of the partition classes V . Comparing µ[· | V ,S]
with the step-kernel WS given via (1.3.7) we see that the two structures express very similar ideas, for
graphs on the one hand and probability measures on the other hand.

Thus, it might be no surprise that we find for an Ω-law µ and an ε−regular partition (V ,S) that [42,
Proposition 2.14]

D�
(
µ,µ[· |V ,S]

)< 2ε.

Moreover, the authors provide a regularity lemma for suchΩ−laws [42, Corollary 2.15].

Regularity Lemma for Ω−laws. For any ε > 0 there is a natural number N = N (ε) such
that for any Ω-law µ there are σ1, . . . ,σN : [0,1) → P (Ω) and ω = (ω1, . . . ,ωN ) ∈ P ([N ]) with
D�(µ,

∑N
i=1ωiδσi ) < ε.

A similar statement is known for probability measures µ on Ωn [21, Theorem 2.1]. Let us bring this no-
tion of regularity together with the idea of ε−symmetry discussed previously. First we observe that any
refinement of the classes V1, . . . ,V` only increases the cut-distance between µ and µ[· | V ,S] by a con-
stant factor. Therefore, we can refine a regular partition (V ,S) into singletons Vi = {i } and observe that
in this case µ[· |V ,S] becomes a convex combination over (on Si conditioned) product measures on the
marginals of µ[· | Si ]. Recall that for a probability measure ν ∈P (Ωn) we denote by ν̄ the corresponding
product measure on the same marginals, therefore, on each partition class Si we findµ[· |V ,S] = µ̄[· | Si ].

A direct consequence [21, Corollary 2.2] of the regularity lemma is the following. If S is an ε3−regular
partition of (Ωn) (we drop the singleton decomposition of V for the sake of readability from now on)
w.r.t. µ ∈P (Ωn) then we have:

Regularity and symmetry. For any ε> 0 there is η= η(ε,Ω) > 0 such that for all n ≥ η−1 and
any probability measure µ onΩn we have for j = 1, . . . ,k that ∆�(µ[· | S j ], µ̄[· | S j ]) <O(ε).

Thus, finding an ε−regular partition of the phase space guarantees to express a probability measure
as an convex combination of measures conditioned on the partition classes which look like a product
measure under the cut-distance. Clearly, it would be interesting to have algorithms that construct such
partitions efficiently. Here comes the flaw of all described regularity lemmas. While they guarantee the
existence of regular partitions, it is not clear how to generate them. A fairly elegant way of obtaining a
partition S of Ωn for some measure µ ∈ P (Ωn) is the so-called pinning operation introduced by Coja-
Oghlan et al. [49].

1.3.1.4. Pinning

Suppose we have a measureµ ∈P (Ωn) and we want to obtain a fairly related measure which is ε−symmetric.
In this case, the pinning lemma [49, Lemma 3.5] provides a very simple way of achieving this goal.

Pinning Lemma. For any ε> 0 there is a natural number T > 0 such that for every n > T and
every µ ∈P (Ωn) the following holds. Construct a (random) probability measure ν= ν(µ) ∈
P (Ωn) as follows.

• Sample σ̃∼µ.

• Choose independently an integer θ ∈ [1,T ) uniformly at random.

• Create a random subset U ⊂ [n] by including each coordinate with probability θ/n
independently.

• Define

ν(σ) =µ(σ)
1 {∀i ∈U :σi = σ̃i }

µ ({τ : ∀i ∈U : τi = σ̃i })
.

Then we have ∆� (ν, ν̄) <O
(
ε1/3

)
with probability at least 1−ε.
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Therefore, we draw just a single sample from µ and pin a relatively small number of coordinates to
their spins under this sample. This reweighed measure is now likely to be ε−symmetric. Fairly related
versions of such lemmas for probability measures were previously obtained by Montanari [137, Lemma
3.1] and Raghavendra and Tan [148].

It actually turns out that the pinning operation does not only yield such a reweighed measure but that
we can actually obtain a partition of the phase space and a corresponding family of reweighed measures,
when we just define the partition as given by all |Ω||U | possibilities of spins those variables in U can take.
While this operation is clearly a mighty tool for producing regular partitions, it was not known prior to
this thesis’s contributions whether and how similar approaches might work for Ω-laws. We will discuss
this in Section 2.3.

Let us for the sake of completeness mention that similar approaches of obtaining regular partitions for
graphs have been studied as well by (non-exclusively) Tao [163] and Fischer, Matsliah and Shapira [79]
by choosing partitions according to the adjacency of randomly selected vertices. Up to our knowledge,
a complete understanding on how the procedure of sampling and reweighing can be explicitly applied
in this context is not yet gained.

In this section we discussed the cut-distance and its connection to regularity for probability measures
and graphs. We saw that regularity implies that (dense) large graphs cannot look arbitrarily wild but do
contain a lot of structure. Structural results of (sparse) graphs will be the topic of the next section which
introduces the concept of random perturbation of graphs.

1.4. Perturbing sparse graphs: when randomness meets
determinism

The origin of randomly perturbing deterministic structures can be traced back to a contribution of Spiel-
man and Teng [159] who introduced the smoothed analysis of algorithms. The key idea is fairly simple.
While it is known for many algorithms that their worst-case running time exceeds the average case run-
ning time significantly, it can be observed in real world applications that this worst-case does not usually
occur. A prime example might be the simplex algorithm [61] whose worst-case complexity is exponen-
tial but nevertheless, the method is used quite frequently in applications. Of course, one could analyse
the average case running time but this might not give enough performance guarantees in production
systems, as it is not unlikely to observe an input deviating from the average case. The smoothed ana-
lysis of algorithms overcomes this flaw by analysing a worst-case input on whom random changes have
been applied. If the number of changes is fairly high, the instance clearly becomes average case by
definition but if the number of manipulations is small, the modified input is fairly close to a worst-case
instance which is reasonable to be observed in real applications as hitting the absolute worst-case is
very unlikely.

Subsequently, this idea of randomly perturbing deterministic structures became of interest in the
study of random graphs. For instance, one of the most famous results of extremal combinatorics might
be Dirac’s theorem [65] on Hamilton cycles. It states that whenever a graph on n vertices has minimum
degree at least dn/2e, this graph contains a Hamilton cycle, thus a closed loop through the graph visiting
each vertex exactly once. This result is optimal in the sense that there are graphs with minimum degree
bn/2c which do not contain such a cycle, i.e. let n = 2m−1 and take two copies of the complete graph on
m vertices Km which share exactly one common vertex. The latter graph has clearly no Hamilton cycle
but has minimum degree bn/2c. But it is of course very unlikely to observe such an extreme graph in a
real world network, thus many graphs with smaller minimum degree contain a Hamilton cycle (clearly,
the necessary minimum degree is 2 achieved by the cycle on n vertices Cn). Let us look at the average
case, which is the binomial random graph. It is well understood that G (n, p) undergoes a strict phase
transition with respect to containing a Hamilton cycle at p = n−1 lnn [116, 117, 147]. What happens if we
combine the probabilistic and deterministic objects? Denote by Gα = (V ,E) an arbitrary (probably ad-
versely chosen) graph on V = [n] with minimum degreeαn and denote furthermore by F =Gα∪G (n, p)
the union of this graph and an instance of the binomial random graph with edge probability p. Here we
define the union as follows: For each pair of vertices i , j ∈ (V

2

)
, we add an edge of G (n, p) independently
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of everything else with probability p. When does F contain a Hamilton cycle with high probability?
Clearly, if α ≥ 1/2, the existence follows solely from Dirac’s theorem applied to Gα. If on the other

hand p ≥ (1+ε) lnn/n, we find the cycle inside of the edges of G (n, p) with high probability. But what
happens in between?

This model of randomly perturbed graphs with given minimum degree was introduced by Bohman,
Frieze and Martin [28] for α = Θ(1), thus for dense graphs. In the aforementioned contribution the
authors explicitly find the trade-off betweenα and p. More precisely, they proved that for every constant
0 < α < 1/2 there are graphs Gα such that Gα ∪G(n, p) does not contain a Hamilton cycle with high
probability if p = o(1/n). On the other hand, if p =ω(1/n), any such union of graphs contains a Hamilton
cycle with high probability. It is important to observe that p = 1/n is the phase transition point in (solely)
G (n, p) of containing a cycle on all but εn vertices. Thus the transition point for the spanning structure
in the perturbed model equals (in this case) the transition point of the existence of an almost spanning
structure in the random graph which is due to the existence of isolated vertices below p ∼ lnn/n.

Of course, there is not only interest for Hamilton cycles but also for various different spanning struc-
tures. On the side of finding Dirac-like theorems for the existence of specific spanning structures in Gα

solely, there are for instance results for spanning trees [115], factors [94] as well as powers of Hamilton
cycles [113, 114]. Finally, there are even fairly generic results for the existence of a copy of any bounded
degree graph in Gα by Böttcher, Schacht and Taraz [36]. And clearly, the existence of all of those struc-
tures is known to undergo phase transitions in the random graph G (n, p). To briefly name a few import-
ant contributions, there are results on the existence of matchings [72], spanning trees [118, 139], factors
[107] and powers of Hamilton cycles [125, 141]. Finally, there are also generic results on the phase trans-
itions with respect to general bounded degree graphs [14, 76, 77, 150]. We refer to a recent overview
article of Böttcher [33] for a more detailed presentation.

It is not very surprising that since the first discussion of the existence of Hamilton cycles in randomly
perturbed graphs various contributions obtained results with respect to the aforementioned spanning
structures. Just to name a few, there are results on spanning trees [34, 119], factors [20] as well as powers
of Hamilton cycles [26]. Ultimately, there are recent results on the existence of general bounded degree
graphs in the perturbed model by Böttcher et al. [35]. Interestingly, in most of the results, the obtained
phase transition for p is a multiplicative factor of order lnn smaller than in G (n, p).

The knowledge of things becomes completely different if one allowsα= o(1), thus one has a determin-
istic sparse graph Gα and needs more edges from the random graph. We will investigate the existence of
perfect matchings, Hamilton cycles and bounded degree trees in this model of sparse perturbed graphs
in Section 2.4.
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2. Results

This chapter summarises the main results obtained in this thesis’s contributions. Those results will be
presented and very short proof sketches will be given showing the most important steps in order to
achieve those results. We emphasise that those sketches make simplifying assumptions and leave out
all technical details because they are just meant to grasp the main idea of how to prove a result. For
complete and rigorous proofs we refer the reader to the contributions in the appendix.

We start by discussing results with respect to the group testing problem. Subsequently, we will an-
swer the question of how many satisfying assignments a random 2-SAT formula has and state results in
context with a limit theory for discrete probability measures and the role of the cut-distance. Finally, we
discuss the existence of spanning structures in randomly perturbed sparse graphs.

2.1. Group Testing

As already discussed in the introduction, all our results are within the framework of Bayes optimal sub-
linear hypergeometric probabilistic group testing, thus we try to achieve inference with high probability
and the ground-truth σ is supposed to be chosen uniformly at random from all possible configurations
in {0,1}n of Hamming weight k ∼ nθ for some θ ∈ (0,1). The results of this section were obtained in the
following contributions which can be found in the appendix:

• Information-Theoretic and algorithmic thresholds for group testing [41],

• Optimal group testing [46],

• Near optimal sparsity-constrained group testing: improved bounds and algorithms [88].

We start by discussing results with respect to non-adaptive group testing schemes. A summary of the
obtained results can be found at the end of the section.

2.1.1. Non-adaptive Group Testing

Almost all obtained results make extensive use of the occurrence of different types of individuals in a
group testing instance. Following [88], we will shortly describe the combinatorial meaning of those
types.

Throughout the section we suppose that we have individuals V = {x1, . . . , xn} and tests F = {a1, . . . , am}
and that each individual’s infection status is given by the underlying ground-truth σ and all test-results
are given by σ̂.

2.1.1.1. Combinatorial properties of individuals

Suppose that some (non-adaptive) pooling scheme is given through the factor graph G = (V ∪F,E). We
abbreviate the set of uninfected individuals to V0 and the set of infected individuals to V1, thus

V0(G ) = {x ∈V (G ) :σx = 0} and V1(G ) = {x ∈V (G ) :σx = 1} .

Those uninfected individuals appearing in a negative test can be classified immediately and play there-
fore a special role. We define this set of individuals as V0−, formally

V0−(G ) = {x ∈V0(G ) : ∃a ∈ ∂G x : σ̂a = 0} .

Furthermore, with respect to the DD algorithm, it intuitively makes sense to denote the set of infected
individuals which appear in at least one test with only elements of V0−. Thus, upon classifying the latter
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0 1 1 1 1 1 1 1 1

Figure 2.1.: The local structure given by the underlying factor graph in the non-adaptive group testing
problem modified after [88]. Blue individuals are uninfected under the ground-truthσwhile
red individuals are infected. More precisely, we suppose that light blue individuals belong to
V0+ and dark blue individuals to V0−. From left to right, the upper individuals are elements
of V0−,V1−− and V+ respectively.

individuals, those infected individuals are easy to identify. More precisely, we define

V1−−(G ) = {x ∈V1(G ) : ∃a ∈ ∂G x : ∂G a \ {x} ⊂V0−(G )} .

Moreover, there might be totally disguised individuals. Following Aldridge, Johnson and Scarlett [10]
and Mézard, Tarzia and Toninelli [133], we say that an individual x is disguised in a test a if there is
an infected individual y ∈ ∂a \ {x}. A totally disguised individual is disguised in all of its tests. Clearly,
the infection status of those individuals cannot be inferred directly, but using the prior, it is possible
to declare any of those individuals as uninfected as long as there are not too many totally disguised
individuals [8, 41]. Formally, we let

V+(G ) = {x ∈V (G ) : ∀a ∈ ∂G x : (∂G a \ {x})∩V1(G ) 6= ;} .

For the sake of completeness, we furthermore define the set of totally disguised infected and uninfected
individuals, thus

V0+(G ) =V+(G )∩V0(G ) and V1+(G ) =V+(G )∩V1(G ).

If it is clear from the context which pooling scheme G is the matter of discussion, we will write V0+ =
V0+(G ) and equivalently abbreviate the other sets. A graphical visualisation of those types of individuals
is given in Figure 2.1.

The sizes of the sets V1+,V0+,V1−− have direct impact on the algorithmic and information-theoretic
feasibility of a group testing instance. For a configuration τ ∈ {0,1}n we denote by τ̂ = τ̂(G ) the corres-
ponding test-results on a pooling scheme G . Now we define

Sk = Sk (G ,σ) = {
τ ∈ {0,1}n : ||τ||1 = k and τ̂= σ̂}

as well as Zk = Zk (G ,σ) = |Sk | .

This notation enables us to find the following assertion which holds as the infection status of totally
disguised individuals can be swapped arbitrarily due to the supposed Bayes optimality ( [41, Corollary
2.2] and [88, Claim 2.3]).

Lemma 2.1.1. Let Zk (G ,σ) be defined as above, then the following holds.

• If Zk (G ,σ) = 1, there exists a (not necessarily efficient) algorithm which infers σ from (G ,σ̂) with
high probability.

• If Zk (G ,σ) = `, any algorithm (efficient or not) fails at inference of σ from (G ,σ̂) with probability
at least 1−`−1.

• For any test design G , we have Zk (G ,σ) ≥ |V1+(G )×V0+(G )| .
A similar statement follows for the DD algorithm but here we need to take the set V1−− into account

because it consists of exactly those individuals which will be misclassified by DD.

Lemma 2.1.2 (Corollary 2.4 of [88]). The DD algorithm recovers σ from (G ,σ̂) if and only if V1(G ) =
V1−−(G ).
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Let us subsequently state achieved information-theoretic bounds for non-adaptive hypergeometric
probabilistic group testing.

2.1.1.2. Information-theoretical results

Recall minf and mrand−reg from (1.2.5) and (1.2.8) as

minf =
1

ln2
k ln

n

k
and mrand−reg = max

{
θ

(1−θ) ln2 2
,

1

ln2

}
k ln

n

k
.

As discussed earlier, the random regular model was known to fail with positive probability below
mrand−reg due to [9]. We strengthen this converse statement and establish an achievability statement
at the same value, thus obtaining a strict phase transition in the random regular model. With a slight
misuse of notation we refer to a model as the random (almost) regular model if each individual chooses
∆ tests uniformly at random with or without replacement. While the technical delicacies of the proofs
change depending on the exact model formulation the results themselves stay the same.

Theorem 2.1.3 (Theorem 1.1 of [41]). Let G be the random almost regular pooling scheme with n indi-
viduals and m tests, ε> 0 and k ∼ nθ. Then the following holds.

• If m > (1+ε)mrand−reg, there is an (exponential time) algorithm inferring σ from (G ,σ̂) with high
probability.

• If m < (1−ε)mrand−reg, no algorithm (efficient or not) outputs σ given (G ,σ̂) with a non-vanishing
probability.

Proof sketch of Theorem 2.1.3. We need to establish two directions of the theorem, let us start with the
achievability result. We do this by employing Markov’s inequality and an idea from statistical physics.
More precisely, we denote by Zk,` the number of configurations τ 6=σ satisfying all test-results that have
overlap ` with σ where the overlap is defined as the number of individuals which are infected under τ
and σ. If we can show that the expected number of such individuals (for the sum over ` = 0. . .k −1) is
o(1), Markov’s inequality shows that there is, w.h.p., only one satisfying assignment (namely σ) which
can be found by exhaustive search.

Thus, let us bound the expected number of such configurations. First, we suppose ` < (1−1/lnn)k
and calculate the expected number of individuals quite directly as

E[Zk,`(G ,σ̂)] ≤O(1)

(
k

`

)(
n −k

k −`

)(
1−2(1−k/n)Γ̄+2(1−2k/n +`/n)Γ̄

)m
, (2.1.1)

where Γ̄ = n∆/m is the average test size. The combinatorial meaning is immediate. While the product
of the two binomial coefficients counts the number of possible assignments τ that have overlap ` with
σ, the last factor is the probability that an average test renders the same result underσ and τ. Of course,
we made many simplifying assumptions as, for instance, we supposed that all tests are independent
and the single test degrees are sufficiently concentrated. But it turns out that this can be turned into a
rigorous argument. Now we find – as long as `< (1−1/lnn)k – that an easy calculation provides

(1−1/lnn)k∑
`=0

E[Zk,`(G ,σ̂)] = o(1)

for the choice of m = (1+ε)mrand−reg.
Unfortunately, this argument fails for very large overlaps as the r.h.s. of (2.1.1) gets too large, thus the

expectation overshoots the value of the random variable dramatically. This is a kind of a lottery effect and
is well known in the random CSP literature as for big overlap values rare but very solution-rich clusters
dominate the expectation [3]. But fortunately, the random CSP literature enables us to cope with such
phenomena [1]. In short, we only need to show that the underlying random graph simply does not
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allow solutions having an overlap close to k asσ is locally rigid. More precisely, we can proof that above
mrand−reg, each individual is part ofΘ (∆) =Θ(lnn) tests such that all other contained individuals belong
to V0−. Therefore, upon changing the infection status of one individual from 1 → 0, we directly need to
change the status of ∼ lnn different individuals from 0 → 1 to compensate for those tests. But now, the
same applies for those individuals, thus we have to change the status of another lnn individuals from
1 → 0. This argument goes on for a couple of rounds until we proved that ` needs to be smaller than
(1−1/lnn)k.

We observe at this point that the both expressions in the max(·, ·) of mrand−reg exactly account for
those two arguments. While the ln−1 2 from the universal counting bound suffices to guarantee that the
expected number of alternative satisfying configurations is small, the non-adaptivity part accounts for
the local rigidity. This perfectly fits into the previous discussion.

Let us subsequently sketch how to achieve the converse statement, namely that any inference al-
gorithm fails below mrand−reg on the random regular model. As mrand−reg coincides with minf for θ <

ln2
1+ln2 , we only need to consider larger values of θ. The proof idea is fairly simple, as by Lemma 2.1.1,
we just need to calculate that we find ω(1) totally disguised infected and uninfected individuals with
high probability. For this proof sketch, we suppose that all tests are stochastically independent but we
remark that the actual proof is technically challenging in order to cope with the delicate dependencies
in the random regular model. I.e., it is possible to describe the number of infected individuals in each
test by a family of independent but conditioned binomial random variables. As a first step, we prove
that in the random regular model on m = ck ln n

k tests the choice ∆ = c ln2ln n
k is optimal. Intuitively,

this maximises the entropy of the system. Having established this, the probability for an individual x to
be totally disguised turns out to be roughly

(1− (1−k/n)Γ̄−1)∆ ∼ 2−∆ ∼ n−(1−θ)c ln2 2.

Thus, the expected number of individuals in V1+ is nθ−(1−θ)c ln2 2 and for V0+ we find E [|V0+|] À E [|V1+|].
Clearly, E [|V1+|] diverges as fast as a polynomial in n if m = (1−ε)mrand−reg and luckily it turns out that
Chebyshev’s inequality suffices to guarantee enough concentration.

Actually, it turns out that Theorem 2.1.3 is not the strongest result we can achieve. While it answers
all questions regarding information-theoretical inference in the random regular model, it might be the
case that there are different pooling schemes facilitating better. This is, indeed, not the case.

Theorem 2.1.4 (Theorem 2 of [46]). Let G be any arbitrary non-adaptive pooling scheme with n indi-
viduals and m tests, ε > 0 and k ∼ nθ. If m < (1−ε)mrand−reg, no algorithm (efficient or not) outputs σ
given (G ,σ̂) with a non-vanishing probability.

Theorem 2.1.4 implies two important facts. First of all, the random regular design is information-
theoretically optimal as there cannot be any better designs for inference. Second, as

mrand−reg > minf for θ > ln2

1+ ln2
,

we proved the existence of an adaptivity-gap. Thus, performing multiple stages of testing might de-
crease the number of required tests. Formerly, the question about the existence of such an adaptivity-
gap has been raised prominently [10, 108]. In light of the second part of Theorem 2.1.3 and The-
orem 2.1.4, we will write

mnon−ada = mrand−reg

from now on as this marks a strict phase transition point for non-adaptive group testing. Let us now give
a proof sketch of Theorem 2.1.4.

Proof sketch of Theorem 2.1.4. As before, we only need to establish the assertion for θ > ln2
1+ln2 as the

universal counting bound already proves the theorem for smaller values of θ.
This proof comes in three steps. First, we slightly change the model from a hypergeometric group

testing ground-truth σ to an i.i.d. ground-truth σ̃ where each entry is set to one with probability p ∼
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k−pk lnn
n . Thus, with high probability, we find a coupling of (σ,σ̃) such that turning few uninfected

individuals in σ̃ to infected creates σ. It turns out that finding totally disguised infected and uninfected
individuals in a testing scheme under σ̃ implies to find some of them also under σ. This change of the
model simplifies proving converse statements. As the underlying graph is deterministic, this enables us
to create the only source of independent randomness within the setup.

Second, we show that the number of totally disguised infected and uninfected individuals below minf

is large for θ really close to one. We first observe that even in an arbitrary test-design no test contains
more than n lnn/k individuals as otherwise a union bound over all tests shows that these tests render
a positive result anyways and could also be left out. But this already implies due to the handshaking
lemma that there are very few individuals participating in more than ln3 n many tests. Thus, the under-
lying testing scheme is, besides not knowing how it looks like exactly, fairly sparse if θ is large. Next, we
strengthen an argument based on the FKG-inequality and the probabilistic method of Aldridge [7] and
Mézard, Tarzia and Toninelli [133] to identify one individual y whose probability of being element of V+
is not too small, say ≥ exp

(−m ln2(2)/k
)
. Of course, this probability tends to zero (making it much more

difficult to find enough such individuals compared to Aldridge’s case). Next, we delete this individual
and all tests and individuals in its first, second, third and fourth neighbourhood. Clearly, the left-over
individuals are stochastically independent of y with respect to the property of belonging to V+. Further-
more, upon removal of the individuals, chances of being totally disguised only increase. Let us denote
by G1 the graph after removal of y and its described neighbourhoods. Due to the sparsity of the under-
lying graph we can show that m

n ∼ |F (G1)|
|V (G1)| , thus the ratio between tests and individuals stays roughly the

same. We repeat this procedure n1−δ times where δ = δ(θ) > 0 is a small constant depending on the
prevalence and identify n1−δ individuals which all are independently totally disguised with probability
at least q = exp

(−m ln2(2)/k
)
. As the infection status is independent of being totally disguised, we find

that the number of infected totally disguised individuals is dominated by a Bin(n1−δ, pq) random vari-
able while the number of totally disguised uninfected individuals is dominated by a Bin(n1−δ, (1−p)q)
variable. Both binomial random variables turn out to have expectation nΩ(1) for a suitable choice of
δ if m = (1− ε)mnon−ada and thus the Chernoff bound guarantees the existence of many infected and
uninfected totally disguised individuals.

As a third step, we need to show that if we could solve a group testing instance with low prevalence
given through θ with (1−ε)mnon−ada(θ) tests we were also able to solve an instance of larger prevalence
given via θ′ with (1−η)mnon−ada(θ′) tests. To this end, let ln2

1+ln2 < θ < θ′ < 1 and suppose that G = (V ∪F,E)
is a pooling graph satisfying

|V (G )| = n, and |F (G )| = m = (1−ε)mnon−ada(n,θ).

We construct a pooling graph G ′ for n′ ≈ nθ/θ′ individuals out of which k ′ ∼ n′θ′ ∼ k are infected, thus
an instance with the same number of infected individuals but those are found within a much smaller
population n′ ¿ n.

• Select n′ individuals uniformly at random out of all individuals and define G ′ on those individuals
but on the same tests as G .

• Select an adjusted ground-truth σ′ ∈ {0,1}n′
u.a.r. with Hamming weight k and denote by σ̂′ the

corresponding test-results.

Now it is easy to proof that the probability of having multiple elements in the solution space of (G ,σ̂) is
at least as high as observing that many in the solution space of (G ′,σ̂′). Indeed, by construction there is
a coupling ofσ andσ′ such that all infected individuals coincide. This is true because we first choose n′
individuals uniformly at random. But this implies σ̂ = σ̂′, thus whenever a configuration τ explains σ̂′
we can construct a configuration explaining σ̂ by setting the infection status of the not in σ′ contained
individuals to 0. Finally, the assertion follows from the fact that the choice n′ ∼ nθ/θ′ allows to calculate

mnon−ada(n′,θ′) = θ′

(1−θ′) ln2 2
k ′ ln

n′

k ′ =
θ′

ln2 2
k ′ lnn′ ∼ θ′θ

θ′ ln2 2
k lnn = θ

(1−θ) ln2 2
k ln

n

k
= mnon−ada(n,θ).
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While Theorems 2.1.3 – 2.1.4 answer all questions with respect to information-theoretical phase trans-
itions in non-adaptive group testing, we expect to require significantly more tests if we restrict the design
choices. More precisely, as the random regular model has tests of sizeΘ(n/k) and each individual takes
part in Θ(lnn) tests, the number of tests required for inference might increase in sparsity constrained
settings. As explained earlier, the work of Gandikota et al. [86] provided some information-theoretical

converse statements, i.e. for the maximum test-degree Γ = O
(
(n/k)β

)
and the maximum individual

degree ∆ = o(lnn) they provide information-theoretical converse statements at minf,G(Γ) and minf,G(∆)
respectively given in Equations (1.2.10) – (1.2.11) as

minf,G(Γ) = 1

1−β
n

Γ
and minf,G(∆) =∆k

(n

k

)1/∆
.

We need to stress that the converse result with respect to ∆−divisible group testing is of a weak nature,

thus they prove that any testing scheme with success probability at least 1−ε requires at least∆k
(n

k

) 1−5ε
∆

tests.
Let us begin with the ∆−divisible case. To this end define

mnon−ada(∆) = max
{

exp(−1)∆k1+ (1−θ)
∆θ ,∆k1+ 1

∆

}
. (2.1.2)

Then we find that no testing-scheme with individual degree at most ∆ can be used to infer σ from the
test-results below mnon−ada(∆). We tacitly suppose that

θ/(1−θ) <∆

as otherwise mnon−ada(∆) would exceed n. Observe that we reduced the exponential dependency on the
number of tests provided by [86] to a constant factor of exp(−1).

Theorem 2.1.5 (Theorem 3.1 and Theorem 3.2 of [88]). Let ∆ = ln1−δn for some δ ∈ (0,1] and suppose
k = nθ with θ ∈ (0,1). Let furthermore G be an arbitrary non-adaptive pooling scheme in which each
individual gets tested at most ∆ times and let ε> 0. Then the following holds.

• If m ≤ (1−ε)∆k1+1/∆, any non-adaptive pooling scheme with any algorithm (efficient or not) fails
at inferring σ from (G ,σ̂) with probability at least max

{
Ω(ε2),1−O

(
(1−ε/2)∆

)}
.

• If m ≤ (1−ε)exp(−1)∆k1+(1−θ)/(θ∆), any pooling scheme with any algorithm (efficient or not) fails
at inferring σ from (G ,σ̂) with high probability.

We remark that the second part of Theorem 2.1.5 does not only hold for non-adaptive pooling schemes
but for adaptive ones as well. Therefore, we will prove this part later. Let us, at this point, introduce a
technique which we will be using for proving the first part of the theorem. We make extensive use of the
so-called 2−round exposure technique [103] which will help us to obtain further results later on.

Without going too much into detail, the technique reads as follows. Suppose we want to find a sub-
graph in G (n, p). It might be helpful to avoid stochastic dependencies by obtaining one part of the
subgraph in G (n, p1) (with p1 < p) and afterwards expose the missing edges of G (n, p −p1). It is known,
that if a subgraph is found in G (n, p −p1)∪G (n, p1) with high probability, it is contained in G (n, p) as
well with high probability. We will use this technique in order to expose the infected individuals in two
rounds, more precisely, we will find a set of infected individuals with certain properties of size roughly
αk and analyse their neighbourhood. Afterwards, we will infect each individual in this neighbourhood
with probability ∼ (1−2α)k/n independently which will yield totally disguised infected individuals. We
will start with a proof sketch of Theorem 2.1.5.

Proof sketch of (the first part of) Theorem 2.1.5. In a first step we argue again that we may employ the

i.i.d. model with p ∼ k+pk lnn
n . Furthermore, we prove that it suffices to find infected totally disguised

individuals in the problem at hand as there will be at least as many uninfected totally disguised indi-
viduals with high probability. Before starting the actual proof, we modify the graph such that it does not
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contain tests with less than constantly many individuals for a suitable constant and call the resulting
pooling graph G = (V ∪F,E) such that |V | = n and |F | = (1−ε)mnon−ada(∆).

A key insight, again provided by the FKG-inequality, is that the probability for an individual x to belong
to V+(G ) is at least as high as in a model in which all tests are disjoint, thus

P (x ∈V+(G )) ≥
∏

a∈∂x

(
1− (

1−p
)Γa−1

)
if Γa denotes the degree of test a.

Now we employ the 2−round exposure technique and infect every individual with probabilityαp end-
ing up with a set of infected individuals K1 of size at least αk/2. We observe that the expected number
of totally disguised individuals can only increase if those individuals share tests. Therefore, we built an
auxiliary model G ′ as follows. We include every element of K1, and for each such individual we include
as many disjoint tests of size corresponding to the tests it belongs to in G . Now we mark each individual
added with those tests with probability q = (1−2α)p as infected.

Let
X u = ∏

a∈∂u

(
1− (

1−q
)Γa−1

)
denote the probability that u is totally disguised in this auxiliary model. Jensen’s inequality and the
inequality of arithmetic and geometric means allow to calculate

E [X u] ≥ (1−ε/2)−∆k−1.

Therefore, with X = ∑
u∈K1

X u we have E[X ] ≥ α (1−ε/2)−∆ /2 and as X u and X v are independent by
construction a generalised Chernoff bound yields

P
(

X <α/4(1−ε/2)−∆
)< exp

(−Θ(
α (1−ε/2)−∆

))
.

Finally, we observe that
∑

x∈K1
P (x ∈V1+(G )) ≥ X and Markov’s inequality suffices to show that we

observe at least one totally disguised infected individual with probability at least X /(1+ X ). Thus with
the bound on X and a suitable choice of α=α(ε) we obtain the result.

The suspicious reader might ask why the statement (and the end of the proof sketch) require that
much detailed calculation and explicit statements of probabilities. This is due to the fact that∆might be
a constant. Indeed, if∆was diverging, the Chernoff-like bound on X would clearly suffice as (1−ε/2)−∆→
∞ but if∆ is a constant, the calculations become much harder. This is even more challenging under the
Γ=Θ(1) restriction as rounding errors need to be taken into account.

In the Γ−sparse case, we strengthen the converse statement at minf,G(Γ) for the special case of Γ=Θ(1)
being a constant independent of the number of individuals. We define

mnon−ada(Γ) = max

{(
1+

⌊
θ

1−θ
⌋)

n

Γ
,2

n

Γ+1

}
. (2.1.3)

Again, we tacitly suppose that Γ >
(
1+

⌊
θ

1−θ
⌋)

as otherwise individual testing would be superior. Then

we find that no non-adaptive pooling scheme can infer the ground-truth using less than mnon−ada(Γ)
tests.

Theorem 2.1.6 (Theorem 4.1 of [88]). Let G be any non-adaptive pooling scheme with tests of size at
most Γ =Θ(1). Suppose G contains at most m = (1−ε)mnon−ada(Γ) tests for some ε > 0. Then any infer-
ence algorithm fails at recovering σ from (G ,σ̂) with high probability if θ/(1−θ) is no integer and with
probabilityΩ(1) if θ/(1−θ) is an integer.

Interestingly, for very few density levels θ, the phase transition could only be proven to be coarse
rather than strict. This arises from technical reasons as, for instance, counting the number of nodes
with degree at most θ/(1−θ) which is tight in the integer-case.
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Proof sketch of Theorem 2.1.6. We start by defining

d+ = 1+
⌊

θ

1−θ
⌋

and d− =
⌊

θ

1−θ
⌋

and need to distinguish between low prevalence and high prevalence.

Let us begin to sketch the case 1/2 ≤ θ < 1. Again, we employ the i.i.d. model with p = k−pk lnn
n . A first

observation is that whenever G ′ is a pooling scheme with maximum test degree Γ on

m = (1−2ε)d+n/Γ= (1−2ε)mnon−ada(Γ)

tests achieving inference, there is a pooling scheme G on the same set of individuals with

m′ = (1−ε)d+n/Γ

tests which achieves inference as well and which has the additional property that each individual gets
tested at most ∆ = Θ(1) times. This follows immediately from a plain counting argument as there can
only be n/C individuals of degree ≥ C ′ as m is linear in n. Thus, testing each individual of degree > C ′

individually causes n/C additional tests. Clearly, inference in G ′ implies inference in G and we get the
claim by choosing C = Γ/(εd+). By a similar token, one can achieve that we might suppose that the
minimum test-degree is at least 2 (if d+ ≥ 3).

A second observation is that m = (1−ε)d+n/Γ implies that there are at least αn individuals of degree
at most d− by the handshaking lemma. Now we claim that there are also βn individuals of degree at
most d− and distance at least 6 in G which follows from simple counting as all variables have bounded
degree. Let B denote a set of individuals satisfying those two properties.

Then clearly, the property of being disguised is independent for x, x ′ ∈ B and the probability turns out
to be, as before, at least

P (x ∈V+) ≥
∏

a∈∂x

(
1− (1−p)Γa−1)=Θ(

pd−)
.

By the independence we directly find that a binomial random variable Bin
(
βn,Θ

(
pd−+1

))
dominates

|V1+(G )|. Therefore, the expected number of totally disguised infected individuals isΘ
(
nθ−(1−θ)d−)

.
The failure with high probability if θ/(1−θ) is no integer and with positive probability if it is follows

directly from the Chernoff bound.
Hence, we are only left to prove the result for 0 < θ < 1/2. The first fact which follows from double

counting the edges of the pooling graph G = (V ,E) is that there are at least εn individuals of degree one.
A second observation is that there cannot be many tests containing two (or more) individuals of degree
one. Assume there were n/

p
k such tests, then the Chernoff bound guarantees that we have

p
k lnn tests

containing two individuals of degree one out of which one is infected. Thus any inference algorithm
has to guess the infection status of those individuals and therefore the chance of correct inference is
2−ω(1) = o(1). But those two simple observations already suffice as they imply directly that

(2−ε)n/Γ= m ≥ εn −o(n)

needs to hold. Solving for ε implies

m ≥ 2
n

Γ+1
−o(n).

Therefore, the theorem follows from combining the arguments for small and large θ.

Let us briefly mention that those sparsity constrained results do explicitly not converge to mrand−reg

for ∆→ lnn and Γ→ n/k what might at the first glance be a surprise. But actually, it is not very sur-
prising. First, the bounds are given only with respect to the first order and lower order terms might
get relevant in the limit and second, the proofs extensively make use of the sparsity, thus many partial
results do not carry over to the unconstrained setting.

We observed the splitting of the information-theoretic bound into two parts (thus a maximum over
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two terms) in the unrestricted group testing in mnon−ada as well as in the ∆−sparse case in mnon−ada(∆).
This is actually not very surprising. The first part comes in both cases from an information-theoretic
argument (for instance, the counting bound) which applies for adaptive as well as non-adaptive pooling
schemes, as the amount of information provided by the test-results must exceed certain bounds. On
the other hand, the non-adaptivity strikes with respect to the different types of individuals. If the set of
totally disguised infected individuals is non-empty, non-adaptive pooling schemes are doomed to fail
while adaptive pooling schemes might classify those individuals in subsequent stages of tests. This is
why the second term in the maximum actually corresponds to the phase transition point from which on
there are totally disguised infected individuals in a pooling scheme.

After having discussed the information-theoretic side, let us now present algorithmic results in the
aforementioned models.

2.1.1.3. Algorithms

We will first discuss two major results obtained in [41] and [46] with respect to unrestricted non-adaptive
group testing algorithms. The first result shows that DD and SCOMP fail at exactly the same threshold
in the random regular model, thus we obtain a fitting converse statement to the achievability result
of DD obtained by [108] and settle a strict phase transition. Furthermore, we reject the conjecture of
Aldridge, Baldassini and Johnson [8] that SCOMP could outperform DD asymptotically. Recall

mDD = max

{
θ

(1−θ) ln2 2
,

1

ln2 2

}
k ln

n

k

from (1.2.9). Then our result reads as follows.

Theorem 2.1.7 (Theorem 1.2 of [41]). Let ε > 0 be a constant. Then, if G is an instance of the random
regular model with m ≤ (1− ε)mDD tests, both SCOMP and DD fail at inferring σ from (G ,σ̂) with high
probability.

Therefore, Theorem 2.1.7 does not only establish a phase transition but it also shows that there is a gap
of a factor of ln2 between the information-theoretic achievability bound and the best known achieving
efficient algorithm on the random regular model. Let us sketch how to prove this converse statement.

Proof sketch of Theorem 2.1.7. In a first step we need to show that DD fails on the random regular model
with m = (1−ε)mDD tests with high probability. To this end let m = ck ln n

k and recall that any individual
chooses ∆= d ln n

k tests uniformly at random. In this contribution we chose the tests with replacement,
thus an individual is part of one test twice from time to time. Thus, the average test-degree Γ̄ turns out
to be dn

ck . Analogously as before, we suppose for gathering the main idea of the proof that there were
no stochastic dependencies (which is clearly false). In this simplified version, the probability for an
individual to be disguised is roughly given by(

1−
(
1− k

n

)Γ̄)∆
∼

(
1−exp

(
−d

c

))∆
.

Therefore, the expected number of totally disguised uninfected individuals is

E [|V0+|] ∼ (n −k)

(
1−exp

(
−d

c

))∆
.

Actually, this argument as well as the fact that the value is concentrated, can be proven rigorously by
describing the number of infected and uninfected individuals per test as a family of independent bino-
mials conditioned on a (not too unlikely) event. Furthermore, it is possible to prove that DD achieves its
best results for the choice d = c ln2, therefore |V0+| ∼ n2−∆ ∼ n1−(1−θ)c ln2 2.

However, it is not clear at all how to find a rigorous argument which enables us to calculate the size of
V1−−. Let us change our point of view and observe that DD identifies an infected individual in a positive
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test a if and only if, besides x, there are no elements of V1 nor V0+ in a. Therefore, let

W = number of positive tests containing exactly one element of V1 ∪V0+.

We are left with calculating the expectation of W which turns out to be a mildly delicate calculation
involving the description of the number of uninfected disguised, uninfected non-disguised and infected
individuals per test as a family of independent conditioned multinomial-variables. Nevertheless, it can
be shown that

E [W ] ∼ k∆

2
exp

(
− ln2n(1−θ)(1−c ln2 2)

)
which tends to zero below the DD threshold. Thus, by Markov’s inequality we already established the
converse statement. Let us furthermore show how to calculate the size of V1−− from that point. It is
possible to show that W is actually tightly concentrated around its mean, thus

W ∼ k∆

2
exp

(
− ln2n(1−θ)(1−c ln2 2)

)
.

Now, we can rigorously calculate the probability that a given infected individual x does not belong to
V1−−, as

P (x 6∈V1−− | x ∈V1) ∼
(

k∆−W

∆

)(
k∆

∆

)−1

.

Indeed, such an infected individual would need to choose all its ∆ edges out of the k∆−W edges be-
longing to tests containing either a totally disguised individual or a second infected one. By plugging in
m = (1−ε)mDD Markov’s inequality shows that DD fails with high probability. Nevertheless, we are still
left to prove that the greedy extension SCOMP fails as well.

To this end, let us observe that there are Ω (|V0+|) À k totally disguised uninfected individuals which
are contained in exactly∆ tests. Indeed, with high probability, each individual is contained in at least∆−
` (`=O(1)) different tests which can be easily verified. Furthermore, the probability of being in exactly
∆−`′ tests for 0 ≤ `′ ≤ ` isΩ(1), thus a positive fraction of all totally disguised uninfected individuals is in
∆ different tests. Therefore, already the first individual taken by SCOMP is only infected with probability

k
Ω(|V0+|)+k = o(1). Thus, SCOMP fails with high probability.

While the previous result is a converse statement about the performance of specific algorithms, we
could not answer the question whether there is an efficient algorithm achieving at mnon−ada on the
random regular model. Fortunately, we could prove that this gap between information-theoretic and al-
gorithmic achievability is not due to the group testing problem itself. More precisely, we can introduce
a different (random) pooling scheme coming with an efficient decoding algorithm called Spatial Infer-
ence Vertex Cover-algorithm (SPIV) which succeeds with m = (1+ε)mnon−ada many tests at inference of
σ with high probability.

Theorem 2.1.8 (Theorem 1.2 of [46]). Let ε > 0 be a constant. Then there is a pooling scheme called
spatially coupled random regular model Gsc coming with an efficient inference algorithm SPIV which
succeeds at inferring σ from (Gsc ,σ̂) with m = (1+ε)mnon−ada many tests.

In the specific case of Theorem 2.1.8 we will not give an explicit proof sketch as the explanation of
the pooling scheme and the inference algorithm allow presenting the proof idea on the fly whereby we
follow the contribution [46].

We start by defining the pooling scheme. The main idea of the spatial coupling has its origins in
coding theory [15, 123, 124]. It was applied, for instance, to LDPC-codes. The key idea is to add some
kind of geometry to the random regular graph such that, for a specific individual, the neighbourhood
looks fairly similar in both models (as the random regular model is known to be information-theoretic
optimal). But this geometry constraint allows a trick at inference. Let us partition the set of individuals
into `∼p

lnn compartments V [1], . . . ,V [`] of size n/` and the m tests into compartments F [1], . . . ,F [`]
as well. Let s ∼ lnlnn be the size of the sliding window. Then we furthermore add 10ks lnn/` additional
tests into a larger compartment F [0] whose purpose will become clear in due course.
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V [7] V [8] V [9] V [1] V [2] V [3] V [4] V [5] V [6]

F [7] F [8] F [9] F [1] F [2] F [3] F [4] F [5] F [6]
F [0] F [0] F [0]

· · · · · ·

Figure 2.2.: The spatially coupled test design with n = 36,`= 9, s = 3. The graphic is modified after [41].
The individuals in the seed (blue) join additional tests from F [0].

As in the random regular graph, we let ∆ = c ln2ln n
k denote the individual degree if m = ck ln n

k and
let the individuals choose their tests as follows.

• For i = 1, . . . ,` and j = 1, . . . , s every individual x ∈V [i ] chooses independently from all other ran-
domness ∆/s tests from F [i + j −1] without replacement.

• Those individuals from V [1]∪ ·· · ∪V [s] independently choose 10ln(2) lnn additional tests from
F [0] uniformly at random without replacement.

All indices of compartments need to be read such that V [`+ i ] = V [i ] and F [i +`] = F [i ] for i = 1. . .`.
Thus the pooling graph has a ring structure such that, locally seen, all edges from an individual are going
to its right whereas all incoming edges in a test come from the left. A visualisation can be found in Figure
2.2.

Why should such a graph perform better? Suppose we already classified all individuals in compart-
ments V [1], . . . ,V [h] successfully. If we now are about to infer the infection status of those individuals
in V [h +1] we can use a lot of information. Indeed, in the tests in F [h +1] there are just the individuals
of V [h +1] unclassified whilst in the tests in F [h +1+ j ] at least proportion (s − j )/s is already known.
Therefore, if an early test emphasises that an individual was infected or uninfected, this information
might be more confidential than an information gained in a test far to the right. This is exactly the idea
behind the SPIV algorithm.

The main challenge of inference is to distinguish the k infected individuals from those ω(k) totally
disguised uninfected individuals. Therefore, we introduce a random variable W x, j whose distribution
differs for real infected individuals x and uninfected but disguised individuals. By choice of∆, the num-
ber of infected individuals per test a is (approximately) Po(ln2) distributed. But it turns out that this
number’s distribution changes when conditioning on specific events.

We define for an individual x ∈V [i +1] and a compartment F [i + j ] for j = 1. . . s

W x, j = number of tests in compartment F [i + j ] containing x

and no infected individual from the preceding compartments.

Because the number of infected individuals in a test from a specific compartment is Po(ln2/s) distrib-
uted, the probability that a specific test contains no infected individual from any of the compartments
V [i + j − s +1], . . . ,V [i ] turns out to be 2−(s− j )/s , therefore

E
[
W x, j | x ∈V [i +1]∩V1

]∼ ∆
s

2 j /s−1.

Equivalently, we can calculate

E
[
W x, j | x ∈V [i +1]∩V0+

]∼ ∆
s

(
2 j /s −1

)
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as the sole difference is that a specific test a needs to contain at least one infected individual which is
not x. Therefore, the number of infected individuals in a, conditioned on containing an element of V0+,
turns out to be a conditioned Poisson distributed variable Po≥1(ln2). We clearly find

E
[
W x, j | x ∈V [i +1]∩V0+

]< E[
W x, j | x ∈V [i +1]∩V1

]
.

Unfortunately, it turns out that trying to distinguish the infection status solely on the sum of those ran-
dom variables does not suffice as there will be too much fluctuation [46, Section 4.3]. Therefore, we
should try to incorporate the intuition that tests in a compartment close to the individual might contain
more valuable information. We define

W ∗
x =

s−1∑
i=1

w j W x, j where w j ∼− ln
(
1−2− j /s−1

)
. (2.1.4)

Thus, W ∗
x weighs information from closer tests higher. The optimal value of the weighs w j was obtained

by a delicate large deviation analysis using a Lagrange optimisation [46, Sections 4.7 and 4.8].
If we call the individuals in V [1]∪ . . .∪V [s] =Vseed the seed (those individuals which are connected to

tests in F [0]) the idea is now to classify the individuals subsequently starting at the seed. As we clearly
cannot compute W ∗

x as this would require knowledge about σ, we have to rely on the current estimate
of the ground-truth, thus let

Wx, j (τ) =
∣∣∣∣{a ∈ ∂x ∩F [i + j −1] : max

y∈∂a∩(V [1]∪...∪V [i ])
τy = 0

}∣∣∣∣
and analogously

W ∗
x (τ) =

s−1∑
i=1

w j Wx, j (τ).

We apply DD to the seed individuals as the graph on the seed individuals and the tests of F [0] is an
instance of the random regular model which is dense enough to allow classification by DD. We let τ be
the current estimate of σ which we initialise to the all zero vector outside of the seed. Then we proceed
with the individuals in the next compartment and

• declare an individual as uninfected if it is in at least one negative test,

• declare an individual x as uninfected, if W ∗
x (τ) is smaller than the expected value for infected

individuals under σ,

• declare an individual as infected otherwise.

We iterate with this procedure through the graph and stop when all individuals are classified. We call the
estimate of the ground-truth produced by this algorithm τ. Unfortunately, it turns out that τ does prob-
ably not coincide withσ. But fortunately, if |F [1]∪ . . .F [`]| = (1+ε)minf, we have at least [46, Proposition
4.6]

|{x : τx 6=σx }| = kn−Ω(1).

Thus, using only as many tests as given by the universal counting bound, we achieve already partial
recovery of σ with high probability. To this end observe that |F [0]| = o(m) is of lower order.

Corollary 2.1.9. The SPIV algorithm on Gsc with (1+ε)minf tests succeeds at (1−o(1))−partial recovery
of σ from (Gsc ,σ̂) with high probability.

But of course we want to achieve exact recovery. It turns out that a rigidity argument helps in estab-
lishing an exact recovery statement. If m = (1+ε)mnon−ada, each infected individual is contained in at
leastΘ(lnn) tests in which no second infected individual appears. Let Sx (τ) denote the number of (pos-
itive) tests in which an individual would be the only infected individual under τ if it was infected. Then
a combinatorial clean-up step could read as follows.
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For lnn steps repeat thresholding Sx (τ) with respect to the current estimate τ in order to classify in-
dividual x as infected or uninfected. By the expansion properties of the random graph it is possible
to prove that this reduces the number of misclassified individuals by a factor of at least 3 each step.
Thus, the final estimate τ coincides with σ w.h.p.. This is again an example of the splitting of the phase
transition point into two parts. The non-adaptive tail of the phase transition point corresponds to the
combinatorial observation of having some kind of local rigidity, similarly as we already saw in the proof
sketch of Theorem 2.1.3.

We can now state the SPIV algorithm completely and formally.

Input: Spatially coupled pooling scheme Gsc = (V ∪F,E), test-results σ̂ ∈ {0,1}m

Output: Estimate σ̃ of σ
1 Infer the infection status for all x ∈Vseed by DD and obtain σ̃Vseed .
2 Initialise σ̃x = 0 for all x 6∈Vseed .
3 for i = s, . . . ,`−1 do
4 for x ∈V [i +1] do
5 if x is in at least one negative test then
6 σ̃x = 0 // set infection status to uninfected
7 else if W ∗

x (σ̃) < (1−ζ)
∑s−1

j=1
∆
s w j 2 j /s−1 then

8 σ̃x = 0 // set infection status to uninfected
9 else

10 σ̃x = 1 // classify as infected
11 Let σ̃(1) = σ̃.
12 for i = 1, . . . , lnn do
13 For all x ∈V [s +1]∪·· ·∪V [`] calculate

14 Sx

(
σ̃(i )

)
= ∑

a∈∂x:σ̂a=1
1

{
∀y ∈ ∂a \ {x} : σ̃(i )

y = 0
}

15 Let σ̃(i+1)
x =

{
σ̃(i )

x if x ∈V [1]∪·· ·∪V [s],

1
{
Sx

(
σ̃(i )

)> ln1/4 n
}

otherwise

16 return σ̃(dlnne)

Algorithm 4: The SPIV algorithm by Coja-Oghlan et al. [46] using a spatially coupled pooling
scheme.

We should emphasise that the decoding algorithms in prior applications on spatially coupled in-
ference graphs like coding or compressed sensing were approximate message passing or BP like al-
gorithms [106, 123, 124]. On the first glance, those algorithms are clearly much more sophisticated than
the combinatorial and easy to digest SPIV algorithm. But based on the discussion about WP and DD,
we should not be too surprised that actually the decisions based on (a normalised version of) W ∗

x cor-
respond to the estimate after one round of BP.

Therefore, we have proven that the group testing problem is very special with respect to its solvability.
Either, it is completely impossible or it is easy (there is an efficient algorithm for inference) but there
is no hard phase. Such phenomena are known as impossible-easy phase transitions. Furthermore, we
discussed that there is indeed a gap between adaptive algorithms and non-adaptive algorithms, thus
multiple stages of testing can decrease the number of tests required in total, at least if many individuals
are supposed to be infected.

As we will discuss next, we observe similar phenomena even if we restrict the maximum capacity of a
test or the number of tests an individual can be part of.

Let us first present the results we obtained with respect to the ∆−divisible restricted group testing
problem. We recall that we already provided a result showing that each non-adaptive group testing
scheme which tests each individual at most ∆ times fails with high probability if it contains less than
mnon−ada(∆) tests where

mnon−ada(∆) = max
{

exp(−1)∆k1+ (1−θ)
∆θ ,∆k1+ 1

∆

}
.
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We will show that the DD algorithm on the random regular model solves the group testing problem
almost at this bound, thus let mDD(∆) denote the phase transition point of DD in the random (almost)
regular model, then we have

mDD(∆) = max
{
∆k1+ (1−θ)

∆θ ,∆k1+ 1
∆

}
(2.1.5)

which is a factor of e away from the converse statement for θ < 1/2 and matches it for θ ≥ 1/2. We define
the random almost regular model in a way that each individual chooses ∆ tests uniformly at random
with replacement, thus the test-degree sequence is random (but sufficiently concentrated). Then we
obtain the following theorem.

Theorem 2.1.10 (Theorem 3.3 [88]). Let G∆ be the random regular model where each individual joins
∆=O(ln1−δn) (0 < δ≤ 1) tests on m tests. Then , if m ≥ (1+ε)mDD(∆), DD succeeds at inference of σ from
(G∆,σ̂) with probabilityΩ(1) if ∆=O(1) and with probability (1−o(1)) if ∆=ω(1).

Thus, Theorem 2.1.10 shows in combination with the information-theoretic converse at mnon−ada(∆)
that the random-regular model is information-theoretic optimal for large θ and that DD performs op-
timally in this regime.

Proof sketch of Theorem 2.1.10. Analogously as in the DD analysis in the unrestricted problem (The-
orem 2.1.7), we bound the expected number of positive tests containing exactly one infected and no
uninfected totally disguised individual E [W ] with the only difference that some probabilities have to be
calculated slightly more carefully if ∆ does not diverge. Again we require to describe some local prop-
erties of tests by a family of independent conditioned multinomial random variables. Of course, the
resulting formulas differ such that

E [W ] ∼∆k · (1− (1+ε)−1k−1/∆)
.

Nevertheless, we will omit any details here.
But in this case, as we want to proof that DD actually succeeds, we require a stronger result as Markov’s

inequality applied on the expectation of W does not suffice. Luckily, it turns out that W is fairly concen-
trated around its expectation. Therefore, with high enough probability, we find

W ∼∆k · (1− (1+ε)−1k−1/∆)
.

Now, we can rigorously calculate the probability that a given infected individual x is classified falsely by
DD, thus does not belong to V1−−, as

P (x 6∈V1−− | x ∈V1) ∼
(

k∆−W

∆

)(
k∆

∆

)−1

∼ (
(1+ε)−1k−1/∆)∆

.

Indeed, such an infected individual would need to choose all its∆ edges out of the k∆−W edges belong-
ing to tests containing either a totally disguised individual or a second infected one. A standard calcula-
tion involving a case distinction between small and large θ suffices in order to obtain the expected num-
ber of individuals x ∈V1 \ V1−− and to observe that this number is at most (1+ε)−∆ if m = (1+ε)mDD(∆)
tests are carried out and the theorem follows by Markov’s inequality.

Of course, above’s theorem does only give an achievability result for DD on a specific design. We can
actually prove that DD is failing below mDD(∆) on the random almost regular model. Clearly, we only
need to show this for small θ as the assertion for large θ follows from the universal converse bound.

Theorem 2.1.11 (Theorem 3.4 of [88]). Let 0 < θ < 1/2 and let G∆ be the random almost regular model
on m tests. If m ≤ (1−ε)∆k1+(1−θ)/(∆θ), DD fails at inference of σ from (G∆,σ̂) with probability 1−o(1) of
∆=ω(1) and with probabilityΩ(1) if ∆=Θ(1).
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Proof sketch of Theorem 2.1.11. Similarily as in the achievability proof, we find by analysing the number
of positive tests containing exactly one infected and no uninfected totally disguised individual that

E [|V1−−(G∆)|] ∼ k
(
1− (

1−exp
(−(1−ε)−∆ (1−1/∆)

))∆)
.

But then Markov’s inequality readily yields that the probability of having at least γk infected individuals
outside of V1−−(G ) is at least

1− 1− (
1−exp

(−(1−ε)−∆ (1−1/∆)
))∆

1−γ
and therefore, the assertion of the theorem follows. Indeed, this probability is 1−o(1) for ∆→∞ for any
0 < γ< 1 and if ∆ is a constant, a suitable choice of γ makes the probabilityΩ(1).

Thus, we understand DD on the random regular model completely.
We are left to discuss theΓ−sparse case. This is an especially interesting case as the underlying (almost

regular) model has constant degrees on both sides, thus the construction of the graph requires a lot
more attention. Ultimately, we will see that DD actually succeeds at the information-theoretic universal
converse mnon−ada(Γ) on a suitable chosen almost regular graph for all θ outside of a set of Lebesgue-
measure zero. Recall that

mnon−ada(Γ) = max

{(
1+

⌊
θ

1−θ
⌋)

n

Γ
,2

n

Γ+1

}
and define

mDD(Γ) =
max

{(
1+

⌊
θ

1−θ
⌋)

n
Γ ,2 n

Γ+1

}
, θ

1−θ 6∈Z
max

{(
2+

⌊
θ

1−θ
⌋)

n
Γ ,2 n

Γ+1

}
, θ

1−θ ∈Z.

Therefore, mDD coincides with the universal converse if θ/(1−θ) is no integer.
Let us first describe how to obtain the almost regular pooling scheme. If θ ≥ 1/2, we create the random

pooling scheme by the configuration model as a random regular multi-graph G (Γ,∆). Thus, with ∆ =
mΓ/n, each individual node gets ∆ clones and each test node gets Γ clones and a perfect matching is
chosen uniformly at random. On the other hand, if θ < 1/2, it turns out that this model is not optimal.
In this case, we select γ≤ 2n

Γ+1 individuals X ⊂ {x1, . . . , xn} uniformly at random and put them apart. The
exact value of γ is chosen such that the remaining individuals can be pooled by G (Γ−1,2). Now we select
a uniform matching between the tests F (G (Γ−1,2)) and the remaining individuals X . For a brief check
of sanity, observe that this pooling is only possible for m ≥ 2 n

Γ+1 by comparing degrees. Furthermore
observe that in the final graph any test has size Γ−1 or Γ. We will call this graph model G∗(Γ). Therefore,
let us define

G (Γ) =
{

G (Γ,mΓ/n), θ ≥ 1/2

G∗(Γ), θ < 1/2.
.

With this model at hand, we can state the achievability result.

Theorem 2.1.12 (Theorems 4.10 and 4.18 of [88]). If DD is applied on an instance of G (Γ) with m ≥
mDD(∆), it succeeds at inference of σ from (G (Γ),σ̂) with high probability.

Observe that interestingly, the achievability bound is tight, thus we do not even need a multiplicative
factor of (1+ε).

Proof sketch of Theorem 2.1.12. The proof comes in two major steps. First, we give an achievability res-
ult of DD on the random regular model G (Γ,∆) for any choice of θ. More precisely, let

∆DD = max

{
2,1+

⌊
θ

1−θ
⌋}

denote the individual degree, then we have the following.
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Achievability on the random regular model. DD recovers σ from (GΓ(Γ,∆DD),σ̂) correctly
w.h.p..

Observe that by definition of the random regular graph we have m ≥∆DD n
Γ . It turns out that this part of

the proof follows completely analogous ideas as the achievability proof of DD in the ∆−divisible case
and will thus be omitted. Of course, a technical challenge is to deal with the (higher) number of multi-
edges. Fortunately, the heavy stochastic dependencies caused by the configuration model vanish as we
can describe the important local properties of tests by a family of independent conditioned multinomial
random variables as before. The sole technical challenge is to deal with the (higher) number of multi-
edges.

As we have proven the success of DD with m =∆DD n
Γ tests, the part of the theorem for θ ≥ 1/2 follows.

But it turns out that we can indeed perform better if θ < 1/2. The main idea is the following. We let G∗,r
Γ

be the subgraph created in the first step of generating G (Γ), thus an instance of G (Γ−1,2) on n′ = n −γ
individuals where γ≤ 2

Γ+1 n. Without loss of generality we suppose that γ= 2
Γ+1 n as otherwise we could

fill the instance with dummy-individuals which are known to be uninfected.
We furthermore let σ[G∗,r

Γ ] and σ̂[G∗,r
Γ ] be the infection status vector and test-result vector on this

induced subgraph. Observe that for θ < 1/2 we have ∆DD = 2. Now we obtain the result as follows.

(i) Let θ′ = θ′(θ) describe the prevalence on σ[G∗,r
Γ ], then we have θ′ ∼ θ with high probability.

(ii) We already know that m = 2 n−γ
Γ−1 = 2 n

Γ+1 tests suffice for DD to infer σ[G∗,r
Γ ] from G (Γ− 1,2) and

σ̂[G∗,r
Γ ].

(iii) We prove that adding the matching edges in order to generate G (Γ) from G (Γ−1,2) does, with high
probability, enable DD to infer σ from G (Γ).

It is easy to see that (i) follows from the Chernoff bound as the number of infected individuals inσ[G∗,r
Γ ]

is a hypergeometrically distributed random variable k ′ ∼ H
(
n,k,n′) and thus concentrated around its

mean k ′ ∼ Γ−1
Γ+1 k. Furthermore, (ii) is a direct consequence of above’s result with respect to achievability

on the random regular model. Therefore, we only need to discuss (iii).
The key property of the proof is that for k = o(

p
n) we do not find two infected individuals in any

bounded part of the graph. Suppose that an individual x gets connected to a negative test. If x is un-
infected itself, the test stays uninfected an DD recovers x (and the other individuals) correctly. If x is
infected, each uninfected individual in the test joins a second test which is negative as well with high
probability due to the fact that there are no two infected individuals within a finite range within the
random graph with high probability.

If on the other hand x connects to a positive test and is uninfected, a similar argument shows that the
causing already contained positive individual can be identified by DD through both its tests with high
probability. Thus the previously infected individual in σ[G∗,r

Γ ] can be still inferred by DDand x will be
declared uninfected.

Finally, if x is infected, it will connect to a negative test with high probability. Indeed, as it is infected
with probability ∼ k/n and its test is chosen uniformly at random, this test will contain a second infected
individual with probability ∼ k2/n2 and a union bound shows that therefore, with high probability, all
infected individuals connect to negative tests in the matching process.

Therefore, DD infers σ from G (Γ) and σ̂ w.h.p., if it infers σ[G∗,r
Γ ] from G∗,r and σ̂[G∗,r

Γ ] w.h.p..
Above’s bounding of the probability of bad events can be done rigorously and hinges on precise but

elementary calculations which make extensive use of the fact that a uniformly at random chosen subset
of individuals was put apart before creating the regular part of the graph.

Next, we will present the results we obtained with respect to adaptive group testing. Afterwards, we
summarise the results on non-adaptive group testing as well as adaptive group testing shortly in Sec-
tion 2.1.3.
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2.1.2. Adaptive Group Testing

As in the section about non-adaptive group testing, we split our results into a section about information-
theoretic aspects as well as algorithmic aspects respectively.

2.1.2.1. Information-theoretic results

With respect to the information-theoretic phase transitions, we achieved primarily results in the context
of sparsity constrained group testing. More precisely, while the contribution of Gandikota et al. [86]
only provided non-adaptive converse statements, we give information-theoretic converse results for all
adaptive pooling schemes in the ∆−divisible and the Γ−sparse case. To this end, let ∆ = ln1−δn and

Γ= (n
k

)β with 0 < δ≤ 1 and 0 ≤β< 1. Then define

minf(∆) = exp(−1)∆k1+ 1−θ
∆θ and minf(Γ) = n

Γ

as the information-theoretic threshold for any test-design in which individuals get tested at most ∆
times and, respectively, each test has size at mostΓ. We letσdenote the ground-truth and for an `−stage
testing procedure G = (G1, . . . ,G`) we let σ̂= (σ̂1, . . . ,σ̂`) denote the sequence of test-results.

Theorem 2.1.13 (Theorems 3.1 and 6.2 of [88]). Suppose G (∆) = (G1(∆), . . . ,G`(∆)) is an `−stage test-
ing procedure such that any individual gets tested at most ∆ times in total and respectively that G (Γ) =
(G1(Γ), . . . ,G`(Γ)) is an `−stage testing procedure such that any test contains at most Γ individuals. Then
the following holds.

• If G (∆) contains at most (1−ε)minf(∆) tests, inference ofσ from (G (∆),σ̂) fails with high probability.

• If G (Γ) uses at most (1−ε)minf(Γ) tests, inference of σ from (G (Γ),σ̂) fails with probabilityΩ(1).

Proof sketch of Theorem 2.1.13. The proof of the first part of the theorem resembles the counting based
proof of the universal counting bound in the unrestricted group testing problem.

We first show that any adaptive strategy with m tests succeeds with probability at most∑∆k
i=0

(m
i

)(n
k

) ∼ exp(H(∆k/m))(n
k

)
which is given by a short calculation using the Nishimori property that guarantees that choosing one
possible solution is the best an inference algorithm can do. We directly find that there can be at most
∆k positive tests in total, as each infected individual can be tested at most ∆ times. Therefore, the
summation accounts for all possible choices of positive tests. Plugging in m = (1−ε)minf(∆) yields the
assertion of the theorem.

The second part, namely the Γ−sparse case, might be actually called a folklore argument. Indeed,
n
Γ (1− o(1)) tests of size at most Γ are clearly required to test n − o(n) of all individuals at least once,
which is a necessary requirement for inference.

Overall it turns out that under both kinds of restrictions the adaptive converse statements are strictly
below the non-adaptive converse results and non-adaptive achievability results. In the case of∆− divis-
ible group testing, this is only true for θ > 1/2. This alone can clearly not answer the question whether
there is an adaptivity-gap in restricted group testing or not. But the next section will show that such a
gap really exists.

2.1.2.2. Algorithms

We introduce two new algorithms for the two restricted group testing models. Let us start with the
∆−divisible case which can be solved by Algorithm 5.

Clearly, this algorithm strongly resembles the binary splitting approach of Hwang [98] and Allemann
[13]. The only major difference is that we do not split groups into halves in order to guarantee the
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Input: n,k,∆
Output: Estimate K̃ ⊂ {x1, . . . , xn} of the infected individuals.

1 Set ñ = (n
k

) ∆−1
∆ .

2 Set K̃ =;.
3 Arbitrarily divide the n individuals into n/ñ groups of size ñ.
4 Test each of these groups and discard those with a negative result.

5 Denote the remaining groups by A(0)
j .

6 for i = 1 to ∆−1 do
7 for each group A(i−1)

j from the previous stage do

8 Arbitrarily divide all individuals in A(i−1)
j into ñ1/(∆−1) sub-groups of size ñ1−i /(∆−1).

9 Test each sub-group and discard any that returns a negative outcome.

10 Label the remaining sub-groups as A(i )
j .

11 Add the individuals from all of the remaining singleton groups A(∆−1)
j to K̃ .

Algorithm 5: Splitting algorithm for the ∆−divisible restricted group testing as posed in [88].

∆−restriction. As we will see, it does not perform tightly at the information-theoretic converse bound
proven before. Let

madap−alg(∆) =∆k1+ 1−θ
θ∆

be an algorithmic threshold. Then we find the following theorem.

Theorem 2.1.14 (Theorem 5.1 of [88]). There is a choice of ñ = ñ(n,k,∆) such that Algorithm 5 succeeds
with at most (1+ε)madap−alg(∆) tests.

Therefore, the algorithm performs for all θ at exactly one of the bounds of non-adaptive group testing
(mnon−ada(∆)) establishing an adaptivity-gap as in the unrestricted group testing problem.

Proof sketch of Theorem 2.1.14. It is clear from the definition of the algorithm that it recoversσ correctly
as all infected individuals will be tested individually. The core idea is to optimise the choice of ñ in such
a way that tests do not get too large as otherwise they will be very likely positive. Starting initially with
groups of size ñ, the size is continuously decreasing whenever the test-outcome is still positive.

Clearly, in the first stage we conduct ñ tests and as there are k infected individuals, each subsequent
stage of testing can produce at most kñ

1
∆−1 additional (smaller) tests, therefore

m ≤ n

ñ
+ (∆−1)kñ

1
∆−1 .

The assertion of the theorem follows with ñ = n(1−θ)(∆−1)/∆.

After having understood a splitting approach towards∆−divisible constrained instances of group test-
ing, we will subsequently present an algorithm for Γ−sparse group testing. In this case, we will use a
standard binary splitting approach as a sub-routine, thus let us shortly describe how it works in detail.
Given a group of individuals, test the whole group and if the test is positive, split the group into two
equal parts and tests each part. If the test is negative, we know that all individuals are uninfected and do
not need to test further. Iterate this process until all positive tests contain exactly one individual. Now
we can state Algorithm 6. We stress that the algorithm basically reduces to applying the first round of
the Dorfman-algorithm followed by a binary splitting algorithm for all positive tests.

How many tests does this algorithm require? It turns out that at least its first order complexity coin-

cides (up to rounding) with the information-theoretic converse if Γ = O
(n

k

)β for some β ∈ [0,1). Thus,
let

madap−alg(Γ) =
⌈n

Γ

⌉
+ lnΓ

ln2
k

denote the algorithmic achievability bound.
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Input: n,k,Γ
Output: Estimate K̃ ⊂ {x1, . . . , xn} of the infected individuals.

1 Set T = dn/Γe and K̃ =;.
2 Choose one partition of all individuals into groups G1, . . . ,GT of size Γ.
3 for i = 1. . .T do
4 Test group Gi .
5 if the outcome is positive then
6 Infer the infection status of all individuals in Gi by binary splitting.
7 else
8 Declare all individuals in Gi as uninfected.

9 Add the individuals from all of the remaining singleton groups A(∆−1)
j to K̃ .

Algorithm 6: Splitting algorithm in the Γ−sparse restricted group testing. A similar version was
introduced in [88].

Theorem 2.1.15. Algorithm 6 succeeds at inference of σ requiring at most (1+ε)madap−alg(Γ) tests.

Proof sketch of Theorem 2.1.15. Again, it is clear that the algorithm succeeds at inference. Thus, we only
need to bound the number of tests required. At the first stage, we clearly conduct T = ⌈n

Γ

⌉
tests. Sub-

sequently, we apply the binary splitting algorithm to groups of at most Γ individuals each. But due to
Hwang [98] it is known that binary splitting on a group of Γ individuals out of which ki are infected
requires not more than

mHwang ∼
ki ln Γ

ki

ln2

tests. As Γ≥ 2, we find lnΓ
ln2 ≥ 1 and therefore, testing all those groups of size at most Γ requires at most

T∑
i=1

ki lnΓ−ki lnki

ln2
≤ k

lnΓ

ln2

tests. Therefore, we clearly find

m ≤
⌈n

Γ

⌉
+k

lnΓ

ln2

yielding the assertion of the theorem.

Finally, with respect to the unrestricted group testing problem, we find as a direct consequence of the
previous discussion on SPIV that we can use SPIV to infer all individuals with minf tests within two
rounds.

Corollary 2.1.16 (Theorem 1.3 of [46]). There is a two-stage inference algorithm which achieves inference
of σ with high probability requiring at most minf tests.

Indeed, it turns out that applying SPIV with the spatially coupled testing strategy using minf tests does
render an estimate σ̃ of σ where all but kn−Ω(1) = o(k/lnn) individuals are identified correctly. Instead
of applying the previously described clean-up step based on a local rigidity argument (which requires
mnon−ada tests), we proceed as follows.

(i) Test any individual which is infected under σ̃ individually.

(ii) Test all individuals which are uninfected under σ̃ with the random regular model using DD.

Clearly, (i) requires at most (1+o(1))k = o(minf) tests and the prevalence in (ii) is o(k/lnn), thus DD re-
quires o(minf) tests in order to succeed.
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2.1.3. Summary of phase transitions in group testing

Let us begin by drawing a picture of unrestricted group testing. In Figure 2.3 we present a phase diagram
based on the results obtained in [41, 46]. While exact recovery in the red areas (below mnon−ada) is not
possible within one round of testing, in the light red area adaptive algorithms (e.g. Alleman’s algorithm)
succeed. The existence of this adaptivity-gap was unknown prior to this thesis’s contributions. Fur-
thermore, recovery in the blue area is information-theoretically possible on the random-regular model
which was previously only known for θ > ln2

1+ln2 while the efficient DD algorithm was proven to fail in the
light blue area. Finally, we introduced the spatially coupled test-design and the efficient SPIV algorithm
which already succeeds in this light blue area. Observe that we also managed to proof that inference of
all but o(k) individuals is possible within one round and inference of all individuals within two rounds
by SPIV outside of the dark-red area.

0 ln2
1+ln2

1
2

1

ln−2 2

ln−1 2

(2ln2 2)−1

((1+ ln2) ln2)−1

density parameter θ

m̃non-ada

m̃DD

m̃inf

Figure 2.3.: The phase transitions in non-adaptive unrestricted hypergeometric group testing. The
graphic is modified after [46, Figure 1]. We write m̃ = m · (k ln(n))−1.

With respect to the ∆−divisible group testing problem, we present the (not completely understood)
phase diagram in Figure 2.4. In the dark blue area, the simple COMP algorithm was known to perform on
the random-regular model non-adaptively [86] while we proved that DD performs on the same model
already in the light blue area. Furthermore, below the black line (red area), every testing scheme (even
adaptive schemes) fail while below the red-dotted line all non-adaptive schemes do not succeed. Thus,
the yellow area shows a regime where there might be non-adaptive schemes coming with efficient al-
gorithms (e.g. SPIV-like ideas) but they are currently not known. Further, in the yellow and orange area
there might be adaptive algorithms for inference of σ but they are also currently not known. Finally,
the light red area marks a regime where we proved the existence of an adaptivity-gap, thus we found
an efficient adaptive algorithm performing in this regime but there cannot be a non-adaptive pooling
scheme facilitating inference.

Finally, the discussed phase transitions in the Γ−sparse group testing problem for Γ=Θ(1) are given in
Figure 2.5. Above the blue line, the COMP algorithm studied by Gandikota et al. [86] succeeds at inference
on the random regular model. In contrast, we can observe that DD (succeeding at mnon−ada(Γ) on all
θ outside of a set of measure zero) requires n/Γ tests less almost everywhere for θ > 1/2 on the same
model. Furthermore, DD performs slightly better in sparse instances on the matching model. Moreover,
no algorithm (efficient or not) can succeed at inference below the red line on any non-adaptive pooling
scheme. Finally, any adaptive testing scheme fails below the black line while we presented an algorithm
who succeeds at this point (up to rounding). We stress that the points on which the achievability bound
of DD satisfies m̃DD(Γ) = m̃non-ada(Γ)+1 rather than being equal correspond to the jumps in the phase
diagram.
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Figure 2.4.: Important phase transitions in ∆−divisible hypergeometric group testing with ∆ =
O

(
ln1−δn

)
for some δ ∈ (0,1]. The plot is with respect to the choice of parameters ∆ = 5,

n = 105. The phase-transition lines correspond to the exponents of the actual phase trans-
ition points, thus we have m =∆km̃ .
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Figure 2.5.: The phase transitions in non-adaptive hypergeometric group testing under the Γ−sparse
restriction for Γ = Θ(1). We define m = m̃ n

Γ and tacitly assume that n/Γ ∈ Z. Furthermore,
the plot is with respect to the choice Γ= 4.

In the next section, we will present how to achieve a formula that counts the number of solutions for
a random 2−SAT formula.

2.2. Counting solutions of a random 2-SAT formula

As already discussed in the introduction, it was a prominently posed open question, how many satisfy-
ing assignments a random 2−SAT formula typically possesses [78]. Fortunately, the marginals obtained
through Belief Propagation plugged into the Bethe functional yield a precise prediction. In the contri-
bution

The number of satisfying assignments of random 2-SAT formulas [2]

we prove that this non-rigorous prediction is indeed correct. Before stating the main theorem, we re-
quire a bit of additional notation. Suppose we have n variables x1, . . . , xn taking spins in Ω = {±1} and
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a parameter 0 < d < 2. Then we create m ∼ Po(dn/2) clauses and obtain a formula Φ by choosing
one uniformly at random from all possible formulas that have two distinct variables per clause. As be-
fore, Z (Φ) denotes the corresponding partition function. Let us introduce a Belief Propagation operator
BPd : P ((0,1)) → P ((0,1)) that maps a probability measure π onto π′ as follows. Let d+,d− ∼ Po(d/2)

and
{
µπ, j

}
j

be a family of independent samples from π. Thus, µπ, j is a random probability measure on

(0,1). Then we define π′ = BPd (π) as the distribution of∏d−
i=1µπ, j∏d−

i=1µπ, j +
∏d+

i=1µπ, j+d−
.

We will see in due course that this operator basically coincides with the Belief Propagation estimate of
the marginals (1.1.20). We furthermore denote by BP`d the `−fold iteration of the BPd operator. Finally,
we let δx ∈P ((0,1)) denote the atom on x. Now we can finally state our main theorem.

Theorem 2.2.1 (Theorem 1.1 of [2]). For any 0 < d < 2 the limit πd = lim`→∞BP`(δ0.5) exists and

lim
n→∞

1

n
ln Z (Φ) = E

[
ln

(
d−∏
i=1

µπd ,i +
d+∏
i=1

µπ,i+d−

)
− d

2
ln

(
1−µπd ,1µπd ,2

)]

in probability.

Theorem 2.2.1 implies that the free entropy density is really given through the Bethe functional (1.1.22).
Let us stress that the paper’s main contribution is actually a lower bound on ln Z (Φ) as a tight upper
bound could be computed by the so-called interpolation method [142]. Furthermore we stress that, of
course, the result of the theorem might be hard to digest as it is far from obvious how to calculate a
closed form. Nevertheless, it turns out that numerical approximations are easy to get.

How can we proof the statement of Theorem 2.2.1? To this end, let µΦ ∈ P ({±1}n) be the Boltzmann
distribution of the physical system given through the random factor graph corresponding to the random
formulaΦ. As we are in the zero-temperature limit, µΦ corresponds to the uniform distribution over all
satisfying assignments (see (1.1.7)).

Supposing that the BP prediction is correct, it is not very surprising that πd can actually be written in
terms of the marginals of the Boltzmann distribution, more precisely as the random probability measure
which is the P−weak limit of

πΦ = 1

n

n∑
i=1

δµΦ(σxi =1).

A core argument of the proof is that Belief Propagation is able to not only find the correct marginals
but even the correct marginals for any boundary condition. Letσ∼µΦ be a sample from the Boltzmann
distribution and τ be a second satisfying assignment. We define ∂2`x as the variables of distance exactly
2` from variable x and ν` as the Belief Propagation estimation of the marginals. For the sake of the
reading flow we recall the Belief Propagation messages and its estimation of the marginals from the
introduction and plug in the specific setup at hand. A more detailed derivation can be found in [2].
We let r ∈ {±1} indicate whether variable x appears positively or negatively in clause a and let s be the
corresponding sign of variable y . Then we let

ν(`)
Φ,a→x (t ) =

1−1 {r 6= t }ν(`−1)
Φ,y→a(−s)

1+ν(`−1)
Φ,y→a(s)

, ν(`)
Φ,x→a(t ) =

∏
b∈∂x\{a}ν

(`)
Φ,b→x (t )∏

b∈∂x\{a}ν
(`)
Φ,b→x (1)+∏

b∈∂x\{a}ν
(`)
Φ,b→x (−1)

be the Belief Propagation messages and define

ν(`)
Φ,x (t ) =

∏
a∈∂x ν

(`)
Φ,a→x (t )∏

a∈∂x ν
(`)
Φ,a→x (1)+∏

a∈∂x ν
(`)
Φ,a→x (−1)

,
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as the BP estimate of the marginals. Finally, we let

µΦ
(· |σ∂2`x1

= τ∂2`x1

)=µΦ (
· | ∀y ∈ ∂2`x1 :σy = τy

)
be the Boltzmann distribution conditioned on having a specific boundary condition on variables of
distance 2` from x1.

Then, ifΦ is satisfiable with high probability, we have [2, Theorem 1.2]

lim
`→∞

limsup
n→∞

E
[∣∣∣µΦ(σx1 =±1)−ν(`)

Φ,x1
(±1)

∣∣∣ | Z (Φ) > 0
]
= 0

and
lim
`→∞

limsup
n→∞

E
[

max
τ

∣∣∣µΦ(σx1 = 1 |σ∂2`x1
= τ∂2`x1

)−ν(`)
Φ,x1

(1)
∣∣∣ |Z (Φ) > 0

]
= 0.

We emphasise again that this observation is really strong and it is clearly one of the most important
features of the contribution to prove this assertion. Indeed, it shows that Belief Propagation does render
the correct marginals given any boundary condition. Why is this so important? It formally justifies core
assumptions of the statistical physics’ 1-RSB Ansatz (see Section 1.1.5.1) in the 2−SAT problem. Having
the (non-rigorous) discussion of Section 1.1.5.1 in mind, let S(Φ) be the set of all satisfying assignments
of Φ. Then we can observe by the triangle inequality that the Boltzmann distribution itself is a Bethe
state as

lim
`→∞

limsup
n→∞

E

[
max
τ∈S(Φ)

∣∣µΦ(σx1 = 1 |σ∂2`x1
= τ∂2`x1

)−µΦ(σx1 = 1)
∣∣ |Z (Φ) > 0

]
= 0.

Thus, as in Sections 1.3.1 and 1.1.5.1, we established being in a replica symmetric phase, hence the
Boltzmann distribution does not exhibit long-range correlations but is o(1)−symmetric.

We recall, that o(1)−symmetry is defined as∑
s,t∈{±1}

E
[∣∣µΦ(σx1 = s,σx2 = t )−µΦ(σx1 = s) ·µΦ(σx2 = t )

∣∣ |Z (Φ) > 0
]= o(1).

Let us now sketch in four steps how to obtain the results, of course, as in the previous sections, this
sketch only carries the main ideas of the proof and is not meant to be complete nor rigorous.

Existence of the limit. First, we need to verify that the limit πd actually exists. This can be done
rigorously by showing that the Belief Propagation operator BP is a contraction and actually converges
quite fast towards a unique fixed-point. Furthermore, we can prove that the limit πd does not only exist
but satisfies a tail-bound of the form E

[
ln2 (

µπd
/
(
1−µπd

))]<∞.

The Boltzmann distribution is a Bethe state. Second, we prove that BP renders the correct con-
ditional marginals and that the marginals do not depend on the boundary conditions. We stress that
the formula locally looks like a Galton-Watson tree, thus we suppose working on a tree. We make use of
a feature which might be exclusive in the 2−SAT problem compared to general k−SAT, namely that we
can actually construct the worst-case boundary conditions. Indeed, suppose we start at a root vertex
x0 and we want BP to output an as-high-as-possible marginal of the truth value +1 for x0. Look at the
clauses x0 is part of, more precisely, partition them into those clauses A− in which x0 is negated and
those clauses in which x0 comes positively (A+). As we want to nudge x0 towards taking the value +1,
we set all the variables being its partner in a clause of A+ to a value that does not satisfy the clause, thus
x0 needs to be set to +1 in order to satisfy all clauses in A+. Analogously, we set all its partner-variables
in the tests of A− to the value that satisfies the clauses already, thus x0 does not need to satisfy them.
This procedure can now be iterated until depth 2` and a visualisation is given in Figure 2.6.

Of course, there are two different worst-case boundary conditions, one that nudges x0 to +1 and one
which nudges it to −1. Due to symmetry, it actually suffices to prove that the marginals of the +1-
nudging configuration, call it σ+, coincide with the unconditional marginals. As the construction of
σ+ clearly depends on the formula Φ, respectively on the Galton-Watson tree with root x0, we have to
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+1 +1
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−1 −1
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−1 +1 −1

+ + −

Figure 2.6.: Construction of a worst-case boundary condition. The value of the variables are chosen in
the (unique) way that nudges the parent variables in the direction provided by setting x0

(grey vertex) to +1. The graphic is modified after [2, Figure 2].

deal with delicate dependencies. More precisely, if we really went down the tree starting at x0 to create
σ+, we already would have revealed all randomness and it is far from clear how to work up this tree
afterwards in order to compute the BP marginals. Fortunately, we can associate a random variable
ηx ∈R∪ {±∞} with each variable x of this tree which expresses how much x can nudge its grand-parent
to the value it should take under σ+. These random variables ηx have a very comfortable (Markov-like)
property which basically says that the value at vertices of distance k À k ′ from x0 does not depend on
the vertices of distance at most k ′ from x0.

How could such a random variable look like? To this end let Z (T x0 ,σ+,σ+
x ) denote the number of

satisfying assignments with boundary σ+ on the tree T x0 of depth 2` rooted at x0 and truth value σ+
x at

x. Analogously, let Z (T x0 ,σ+,−σ+
x ) count exactly those such assignments that have truth value −σ+

x at
x. Now we define ηx as the log-likelihood ratio between those quantities

ηx = ln
Z (T x0 ,σ+,σ+

x )

Z (T x0 ,σ+,−σ+
x )

.

Intuitively, as BP should calculate the marginal of x0 with respect to a uniformly chosen satisfying
assignment, the fraction between Z (T x0 ,σ+,σ+

x ) and Z (T x0 ,σ+,−σ+
x ) exactly expresses the extend to

which x can be used to nudge its grand-parent into the correct direction. It turns out that the distribu-
tion of ηx0

can be expressed as the iterative application of a suitable operator which itself turns out to be
a W1-contraction. Analysing this operator is technically challenging, i.e. due to studying the problem at
zero temperature which allows Z to decrease from an exponentially large number to zero by setting just
a single variable to a certain truth value. But at least it is possible to analyse it and therefore prove that
BP renders the correct marginals. The details can be found in [2, Section 5].

The Aizenman-Sims-Starr scheme. The third step is to prove that

1

n
E[ln(Z (Φ)∨1)] → E

[
ln

(
d−∏
i=1

µπd ,i +
d+∏
i=1

µπ,i+d−

)
− d

2
ln

(
1−µπd ,1µπd ,2

)]
(2.2.1)

in probability where we suppose that d+,d− ∼ Po(d/2) denote the number of clauses in which a variable
appears positively and negated respectively and where ∨ abbreviates the maximum. This truncation
inside of the mean is actually necessary to deal with the case that, with very little probability, the formula
could be unsatisfiable. The proof is done by the so-called Aizenman-Sims-Starr scheme [5]. To explain
the main-idea, let Zn denote the partition function of a particle system with n variables. Then we clearly
find

lim
n→∞

1

n
E [ln Zn] = lim

n→∞
1

n

n−1∑
i=1

(E [ln Zi+1]−E [ln Zi ]) = lim
n→∞

1

n

n−1∑
i=1

E

[
ln

Zi+1

Zi

]
.
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Therefore, in order to calculate the partition function, we only need to understand its development
when going from a system of size n to a system of size n +1. How can this be calculated? We need to
couple a system with n particles and a corresponding system with n +1 particles by adding a particle
and a few random clauses such that both systems follow the correct distribution. Let us discuss this in
the setting of the 2−SAT problem. SupposeΦn is a random formula with n variables and mn ∼ Po(dn/2)
clauses whileΦn+1 has n+1 variables and mn+1 ∼ Po(d(n+1)/2) clauses. How could we possibly couple
the formulas?

We start by a formula Φ′ on n variables that obtains some cavities, thus a few clauses less than it
actually requires. More precisely, it has m′ ∼ Po (dn/2−d/2) clauses. Now we obtain Φn from Φ′ by
adding Po(d/2) uniformly at random chosen clauses and Φn+1 by adding one variable xn+1 coming
along with Po(d) clauses to Φ′, each of them taking a uniformly at random chosen second variable.
Suppose we add fromΦ′ toΦn+1 the clauses a1, . . . , ad such that the sign of xn+1 in clause ai is randomly
sampled as si from {−1,+1}. A visualisation is given in Figure 2.7.

Figure 2.7.: A sketch of the Aizenmann-Sims-Starr scheme in the random 2−SAT problem. The formula
Φ′ contains too few clauses and can be used to coupleΦn andΦn+1. The signs of the literals
(red and blue edges) are drawn uniformly at random.

Then it suffices to prove that

E

[
ln

Z (Φn)

Z (Φ′)

]
∼ d

2
E
[
ln

(
1−µπd ,1µπd ,2

)]
and E

[
ln

Z (Φn+1)

Z (Φ′)

]
∼ E

[
ln

( ∑
ω=±1

d∏
i=1

(
1−1 {ω 6= si }µπd ,i

))]
.

(2.2.2)

Indeed, suppose this is true. Then the second summand of (2.2.1) is already found as

E

[
ln

Z (Φn+1)

Z (Φn)

]
= E

[
ln

Z (Φn+1)

Z (Φ′)

]
−E

[
ln

Z (Φn)

Z (Φ′)

]
.

Furthermore, if we partition the newly added clauses with respect to the sign of xn+1 in the clause, we
find that the last term can be written as

E

[
ln

Z (Φn)

Z (Φ′)

]
∼ E

[
ln

( ∑
ω=±1

d∏
i=1

(
1−1 {ω 6= si }µπd ,i

))]∼ E
[

ln

(
d−∏
i=1

(
1−µπd ,i

)+ d+∏
i=1

(
1−µπd ,i+d−

))]
.

This equals the first summand of (2.2.1) as 1−µπ,i and µπ,i are equally distributed due to the symmetry
of the signs of the single clauses. Thus, let as argue why (2.2.2) should intuitively hold.
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Suppose we equippedΦ′ with a randomly chosen satisfying assignmentτ, thus with a random sample
from the Boltzmann distribution. Upon adding xn+1 with its connected clauses, there are two possibil-
ities. Either, the truth value of xn+1 already satisfies a clause. In this case, the probability of extending τ
is one. If xn+1 does not satisfy clause ai , then the second (randomly chosen) variable needs to satisfy it.
This does happen with probability (1−µπd ,i ). Altogether, this yields

E

[
ln

Z (Φn+1)

Z (Φ′)

]
∼ E

[
ln

( ∑
ω=±1

d∏
i=1

(
1−1 {ω 6= si }µπd ,i

))]
.

On the other hand, if we add Po(d/2) clauses and connect them randomly to two variables and equip
them with random signs, the probability that those two chosen variables both do not satisfy the clause
under τ is given by µπd ,1µπd ,2. Therefore, the proportion of satisfying assignments of Φ′ that are still

satisfying forΦn is expected to be
(
1−µπd ,1µπd ,2

) d
2 yielding

E

[
ln

Z (Φn)

Z (Φ′)

]
∼ d

2
E
[
ln

(
1−µπd ,1µπd ,2

)]
.

Of course, in a rigorous proof we need to deal with a lot of technical challenges. First, one needs to
explicitly find a valid coupling (Φn ,Φn+1). Second, randomly chosen variables might be almost and
on average independent due to replica symmetry, but they are not completely independent. Third and
most importantly, we are in the low-temperature limit. Therefore, adding one single clause could erase
all satisfying assignments. A detailed proof how to handle those delicate technicalities can be found in
[2, Section 6].

Concentration of the free entropy. Finally, as a last step, we need to show that ln(Z (Φ)∨1) is concen-
trated around its mean. Proving this assertion seems on the first glance very challenging due to the huge
fluctuations occurring in the low-temperature limit. Indeed, standard tools like the Azuma-Hoeffding
inequality are doomed to fail as with little probability there might be exponentially large changes in the
partition function. But fortunately, we are in the good shape that Panchenko and Talagrand [142] already
proved that the partition function of the 2−SAT problem at positive temperature is concentrated apply-
ing the interpolation method of statistical physics. Let Zβ(Φ) be the partition function with respect to
formulaΦ of the 2−SAT problem at inverse temperatureβ. It is clear by the definition that Zβ(Φ) ≥ Z (Φ)
and it is known from [142] that n−1 ln Zβ(Φ) does only exceed the value of the corresponding Bethe func-
tional Bβ by a factor of (1+o(1)) with high probability. Even more importantly, we find that the Bethe
functional has a natural limit B∞(πd ) <∞ which coincides with the expectation of (2.2.1) and therefore,
it is possible to show that ln Z (Φ) does not exceed its expectation by more than ±εn (for any ε> 0). The
details dealing with the exact functions, calculations and requirements for taking the limit can be found
in [2, Section 7].

Therefore, the four described steps suffice to calculate the number of satisfying assignments of a ran-
dom 2−SAT formula with high probability. In the next section we will discuss results with respect to a
limit theory for discrete probability measures akin to the graph limit theory.

2.3. Limits of discrete probability measures and the cut-distance

All results of this section were obtained in

The cut metric for probability distributions [47]

and establish a consistent limit theory for discrete probability measures.
We recall from the introduction that the cut-distance of two probability measures µ,ν ∈ P (Ωn) is
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defined as

∆�
(
µ,ν

)= inf
γ∈Γ(µ,ν),
φ∈Sn

sup
S⊂Ωn×Ωn ,

X⊂[n],
ω∈Ω

∣∣∣∣∣∣∣
∑

(σ,τ)∈S,
x∈X

γ(σ,τ)
(
1 {σx =ω}−1

{
τφ(x) =ω

})∣∣∣∣∣∣∣ ,

where Γ(µ,ν) is the set of couplings of µ and ν and Sn is the set of permutations on [n]. Further, Ln(Ω)
is the set of equivalence classes over P (Ωn) identifying those measures with cut-distance zero.

Embedding discrete measures Moreover, we already learned about some kind of continuous em-
bedding of configurations σ ∈Ωn into the space ΣΩ of measurable functions from [0,1) →P (Ω) by

σ̂ : [0,1) →P (Ω) s.t. x 7→
n∑

i=1
δσi 1

{
x ∈

[
i −1

n
,

i

n

)}
such that an associated probability measure µ ∈P (Ωn) can be expressed as

µ̂= ∑
σ∈Ωn

µ(σ)δσ̂ s.t. µ̂ ∈P (ΣΩ) .

Finally, we recall that the cut-distance of two such measures µ,ν ∈P (ΣΩ) is defined as

D�(µ,ν) = inf
γ∈Γ(µ,ν),
ϕ∈S[0,1)

sup
B⊂Σ2

Ω,
U⊂[0,1),
ω∈Ω

∣∣∣∣∫
B

∫
U
σx (ω)−τϕ(x)(ω)dxdγ(σ,τ)

∣∣∣∣
and identify measures with cut-distance zero. The resulting space of Ω−laws is denoted by L = LΩ.
From the definition it is immediate that D�(µ̂, ν̂) ≤∆�(µ,ν) but it is less clear if the other direction holds.
We provide an argument that the embedding is, nevertheless, consistent as we have the following.

Theorem 2.3.1 (Theorem 1.2 of [47]). There is a function f : [0,1] → [0,1] with f −1(0) = {0} such that for
all n ≥ 1 and all µ,ν ∈P (Ωn) we have

f
(
∆�(µ,ν)

)≤ D�(µ̂, ν̂) ≤∆�(µ,ν).

This assertion is far from being obvious. Indeed, equality would hold if the measure preserving bijec-
tion in the definition of D�(·, ·) was restricted to map intervals Ii = [(i −1)/n, i /n) onto intervals I j com-
pletely. But one can proof that the mass of one such interval does at least not split too much, more pre-
cisely, any reasonable such bijection maps at least mass n−3 from one interval into another one. There-
fore, we get instantly∆�(µ,ν) ≤ n3D�(µ̂, ν̂). If n is small, this observation suffices clearly. If, on the other
hand, n is sufficiently large, we partition the phase space Ωn as well as the coordinates [n] by the regu-
larity lemma in such a way that on each little part of the partition, we can argue that the induced step
functions µ̂, ν̂ have to be very close to µ,ν under any permutation and obtain ∆�(µ,ν) ≤ D�(µ̂, ν̂)+o(1),
establishing the theorem.

We will first show that there is a different, very elegant possibility to describeΩ−laws. More precisely,
such a description was already introduced in [42].

The kernel representation The kernel representation of Ω−laws says briefly that it is possible to
describe such a measure as something very similar to a graph limit if we define an appropriate distance.
We will start discussion the other way round, thus we first define the space of kernels K by identifying
all measurable functions κ,κ′ : [0,1]2 → P (Ω) with cut-distance zero where the cut-distance is defined
as

D�(κ,κ′) = inf
φ,φ′∈S[0,1]

sup
S,X⊂[0,1],
ω∈Ω

∣∣∣∣∫
S

∫
X
κs,x (ω)−κ′φ(s),φ′(x)(ω)dxds

∣∣∣∣ .
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Comparing D�(·, ·) with the usual cut-distance for kernels from the graph limit theory D�(·, ·), we ob-
serve that (for a given ω) the major difference is that we may permute the entries on the two axis in-
dependently which clearly accounts for the fact that in the graph limit case both axes correspond to
vertices of a graph while in the setting at hand, the x−axis represents coordinates while the s−axis rep-
resents configurations. Furthermore, we allow maximisation with respect to the spin ω while in the
graph case we already have κs,x ∈R.

Now, suppose we have a kernel κ, then it induces a function κs : [0,1] →P (Ω) ∈ΣΩ mapping x → κs,x .
We define µκ ∈L as the distribution of κs for an uniformly at random chosen s ∈ [0,1]. Of course, each
Ω−law µ can be seen as the distribution of some κµs as well, i.e. κµ coincides with s : [0,1] →P (Ω) on a
set of measure µ(s).

With this picture in mind, it is actually not very surprising that those two objects are basically the
same.

Theorem 2.3.2 (Theorem 1.4 of [47]). The map K →L induced by κ 7→µκ is an isometric bijection.

The actual proof which can be found in [47, Section 3] is quite technical but its main idea is to start
with an arbitrary map f : [0,1] →P (Ω) that maps s 7→ fs and to associate a kernel κ f : [0,1]2 →P (Ω) (by

κ
f
s,x = fs,x ) with it. Analogously, the same map f can be used to transform the Lebesgue measure into a
Ω−law µ f . All we need to show is that for two such functions f , g we find

D�(κ f ,κg ) = D�
(
µ f ,µg

)
.

Let us shortly come back to the connection between graph limits and our kernels. For the sake of
clarity, we will refer to the graph limit kernels as graphons from now on. First, a graphon is a symmetric
mapping and it turns out that we can make our kernels symmetric as follows. To this end, we define the
transpose κ† : (s, x) 7→ κx,s of a kernel κ and observe that κ is symmetric if κ = κ†. For κ ∈ K , define a
family

{
κ(ω)

}
ω∈Ω of symmetric functions by

κ(ω)
s/2,(1+x)/2 = κs,x (ω), κ(ω)

(1+s)/2,x/2 = κx,s(ω), κ(ω)
s/2,x/2 = κ(ω)

(1+s)/2,(1+x)/2 = 0. (2.3.1)

Intuitively, we squeeze the kernel from [0,1]2 to [0, 1
2 ]2 and put it in the bottom left part of a unit square

and add its transpose as the upper right part. The upper left as well as the upper right part will just equal
zero. Clearly, each κ(ω) is a symmetric function from [0,1]2 → [0,1], thus a (bipartite) graphon where κ(ω)

s,x

is the corresponding edge weight.
Therefore, it is not surprising that various of the properties and results of graph limit theory carry over

to the limit theory for discrete probability measures. We start by presenting one very important feature
of graph limits, namely that it is possible to find a representation as an exchangeable array.

Exchangeable arrays We recall from the introduction that the graph limits were originally defined
by the convergence of all series of homomorphism densities which basically expresses the density of
how often which subgraph is present in the sequence of graphs. We will see that a similar equivalence
is correct in the case of convergence of a sequence of probability measures (µn)n to an Ω−law µ with
specificΩn×n-matrices replacing subgraphs.

To this end, we call a probability distributionΞ ∈P
(
ΩN×N

)
exchangeable if the distribution of X Ξ(i , j )

coincides with the distribution of X Ξ(ϕ(i ),ψ( j )) for any ϕ,ψ ∈ Sn where i , j ∈ [n] and X Ξ is a two-
dimensional infinite array overΩ sampled fromΞ. The space of such exchangeable arrays has nice prop-
erties, for instance, it is compact and separable if equipped with the weak topology (Tychonoff’s the-
orem). It is easy to generate such an infinite array from a kernel. Indeed, sample s1, x1, s2, x2, . . . ∈ [0,1]
uniformly at random and independently and create an array X κ such that each entry X κ(i , j ) is just
an independent sample from κs i ,x j ∈ P (Ω). For the sake of brevity, we denote by X µ the infinite array
obtained from κµ if κµ is the corresponding kernel to theΩ−law µ.

Of course, if π ∈ P (K ) is a distribution on such kernels, the same procedure induces a distribution
Ξπ on infinite arrays by first drawing κ from π and then creating X κ. It turns out that this operation
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is indeed a homeomorphism. If both probability spaces, P
(
ΩN×N

)
and P (K ) are equipped with the

weak topology1, we have the following theorem.

Theorem 2.3.3 (Theorem 1.8 of [47]). The map π 7→Ξπ is a homeomorphism.

This theorem is kind of an extension of a result in graph limit theory. Indeed, in the special case
Ω = {0,1} it boils down to the the directed graph version of [63, Theorem 5.3]. Now we can see that a
similar principle as the subgraph count is really an important feature in the theory of convergence of
probability measures. Suppose that (µN )N≥1 is a sequence ofΩ-laws that converges to µ ∈L . Then we
find an exchangeable array X µN such that for all n ≥ 1 and all matrices A ∈Ωn×n we have that

lim
N→∞

P
[∀i , j ∈ [n] : X µN (i , j ) = Ai , j

]=P[∀i , j ∈ [n] : X µ(i , j ) = Ai , j
]

. (2.3.2)

If on the other hand (2.3.2) holds for all n ≥ 1 and all A ∈Ωn×n , then the theorem implies

lim
N→∞

D�(µN ,µ) = 0.

The existence of such a representation as an exchangeable array for an Ω−law enables us to obtain a
very basic result of graph limit theory in the context ofΩ−laws very elegantly: the sampling lemma.

Sampling from an Ω−law A further feature of graph limit theory is the sampling operation. Given a
large enough random graph obtained from a graphon by sampling, this finite graph will be very close to
the original graphon under the cut-distance. We will use the possibility to expressΩ−laws as exchange-
able infinite arrays to obtain a similar result for discrete probability measures. More precisely, given an
Ω−law µ and its representation as an exchangeable array X µ, we define µn as the empirical distribution
of the rows of the upper n ×n−submatrix of (X µ), thus formally

µn(σ) = 1

n

n∑
i=1

1
{∀ j ∈ [n] : X µ(i , j ) =σ j

}
(σ ∈Ωn).

As X µ is clearly dependent on the random coordinates (si , x j )i , j≥1, the obtained measureµn is a random
probability distribution. We obtain the following sampling lemma.

Theorem 2.3.4 (Theorem 1.9 of [47]). There is c > 0 such that for all n > 1 and all µ ∈ L we have
E
[
D�(µ,µn)

]≤ c/
p

lnn.

It turns out that this dependence on n is actually best possible (besides a possibly optimised choice
of the constant c).

Theorem 2.3.5 (Theorem 1.10 of [47]). There is a constant d > 0 such that for any ε > 0 we find some
Ω−law µ such that D�(µ,ν) ≥ ε for every ν ∈L which is supported on at most exp(d/ε2) configurations.

The proofs of Theorems 2.3.4 and 2.3.5 make extensive use of the close connection to graph limit the-
ory. The sampling lemma itself is proven analogously as its corresponding form in the case of graph
limits (see, for instance, [127, Section 10]) and can be found in [47, Section 3]. While the proof idea
is similar, technical challenges appear due to the missing symmetry of the kernels. Let κ be a kernel,
then we begin by obtaining a (finite) kernel κn as the matrix (κs i ,x j )i , j which is obtained by sampling
x1, s1, . . . , xn , sn ∈ [0,1] u.a.r.. Furthermore, κ̂n is the n ×n upper left sub-matrix of X κ. We first show
that, with sufficiently high probability, the cut-distance between two kernels κ,κ′ is sufficiently well
approximated by the cut-distance between the corresponding finite kernels κn ,κ′n which follows from a
carefully applied result from the graph limit theory. Afterwards, we use a standard large deviation bound
to prove that E [D�(κn , κ̂n)] = o(1). To obtain the result itself, we require the the regularity lemma. More
precisely, we find that the step-kernel κ̂ coincides with the step-kernel guaranteed by the regularity

1We define the weak topology on a set with respect to a family of functions as the coarsest topology under which all those
functions are continuous.
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lemma, thus it is close to κ under the cut-distance and therefore κn and κ̃n are close as well. Finally, it
suffices to see that the two step-kernels κ̂ and κ̂n are close to each other which can be done by compar-
ing them on each step.

We furthermore want to show that the dependency on n in the sampling lemma is roughly optimal.
In this case apply a result from graph theory directly. It is known that there are graphons WG such
that each partition P of the vertex set which induces a step-graphon satisfying D�(WG ,WGP ) < ε (c.f.
Section 1.3.1.2) has to consist of at least exp

(
Θ(ε−2)

)
parts [56, Theorem 7.1]. Now, given such a graphon

WG , we create a kernel κG by (2.3.1) and apply the sampling lemma. If the assertion of Theorem 2.3.5
was false, we would obtain a step-kernel κG

n on fewer steps satisfying D�(κG ,κG
n ) < ε/2. But asΩ= {0,1},

we have
D�(κG ,1,κG ,1

n ) ≤ 2D�(κG ,κG
n ) < ε

which is a contradiction to the aforementioned result from graph limit theory [56, Theorem 7.1].
In the next paragraph we will discuss the pinning operation (c.f. Section 1.3.1.4) in the general context

ofΩ−laws.

Pinning Recall from the introduction that the pinning operation says roughly that conditioned on
pinning a few coordinates to specific values each probability measure over Ωn becomes extremal. For
the convenience of the reader, we recall that for µ ∈P (Ωn) we denote by

µ̄(σ) =
n∏

i=1
µi (σi )

the corresponding product measure on the same marginals. Furthermore, we call a measure ε−extremal
if we have ∆�(µ, µ̄) < ε.

It is possible to generalise this notion toΩ−laws. Indeed, if µ ∈L is anΩ−law, we define µ̄ ∈L as the
generalised product measure on the same marginals, thus it is the atom concentrated on

[0,1] →P (Ω), x 7→
∫
ΣΩ

σx dµ(σ). (2.3.3)

We find clearly that D�(µ̄, ν̄) = 0 whenever D�(µ,ν) = 0, therefore, (2.3.3) induces a mapping from the
space ofΩ−laws into itself by µ 7→ µ̄. It turns out that those generalised product measures carry a lot of
information about the actualΩ−laws.

Theorem 2.3.6 (Theorem 1.11 of [47]). Letµ,ν beΩ−laws and µ̄, ν̄ the corresponding generalised product
measures given via (2.3.3). Then we have

D�(µ̄, ν̄) ≤ D�(µ,ν) and D�(µ̄, ν̄) ≤ max
ω∈Ω

∫ 1

0

∣∣∣∣∫
ΣΩ

σx dµ(σ)−
∫
ΣΩ

σx dν(σ)

∣∣∣∣dx ≤ 2D�(µ̄, ν̄). (2.3.4)

Furthermore, the set of extremal laws is a closed subset of allΩ−laws.

The proof of this lemma follows from a fairly short technical calculation whose most important idea
it is to partition the space of coordinates [0,1] into X +(ω) and X −(ω) such that

X +(ω) =
{

x ∈ [0,1] :
∫
ΣΩ

σx (ω)dµ(σ)−
∫
ΣΩ

σx (ω)dν(σ) ≥ 0

}
.

This helps to cope with the possible cancelling out of contributions with different signs in the definition
of the cut-distance.

Once we introduced ε−extremity also in the limit case ofΩ−laws, it is a natural question whether the
pinning operation of Coja-Oghlan et al. [49] generalises and yields ε−extremal Ω−laws. To this end, let
us define the pinning operation for anΩ−law µ. Given some integer θ ≥ 1 and θ coordinates x1, . . . , xθ ∈
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[0,1] as well as a configuration τ ∈Ωθ, we define a normalising constant

Z = Zµ(τ, x1, . . . , xθ) =
∫
ΣΩ

θ∏
i=1

σxi (τi )dµ(σ).

Furthermore, if Z > 0, let µτ↓x1,...,xθ be defined as

dµτ↓x1,...,xθ (σ) = 1

Z

θ∏
i=1

σxi (τi )dµ(σ) (2.3.5)

and µτ↓x1,...,xθ =µ if Z = 0.
This pinning operation looks very similar to the discrete version and indeed, the discrete version is

contained as a special case in which each of the factors on the r.h.s. of (2.3.5) is either one or zero.
As in the discrete case, it becomes interesting if we chose x1, . . . , xθ randomly. More specifically, for a

given θ ≥ 1,

(i) let x1, x2, . . . ∈ [0,1] be u.a.r. and mutually independent,

(ii) draw τ ∈ΣΩ from the distribution µ,

(iii) pick a reference configuration τ̂ from τx1 ⊗·· ·⊗τxθ ∈P
(
Ωθ

)
,

(iv) obtain µτ̂↓θ =µτ̂↓x̂1,...,x̂θ via (2.3.5).

By the choice of τ being sampled from µ, we clearly find that Z µ(τ̂) > 0 almost surely. Finally, we let

µ↓θ = E
[
µτ̂↓θ | x1, . . . , xθ

] ∈L .

Intuitively spoken, µ↓θ is a weighted probability measure such that each configuration’s probability is
weighted according to the probability of its reference configuration.

The pinning lemma itself in the continuous case does guarantee that we find with high probability an
approximation of anΩ−law µ supported on few ε−extremalΩ−laws. More precisely, it reads as follows.

Theorem 2.3.7 (Theorem 1.12 of [47]). Given ε ∈ (0,1) and anΩ−law µ, draw 0 ≤ θ = θ(ε) ≤ 64ε−8 ln |Ω|
uniformly and independently of everything else. Then we find with probability at least 1−ε that µτ̂↓θ is
ε−extremal and E[D�(µ,µ↓θ)] < ε.

While the proof of the pinning lemma is the technical main contribution of [47] and relies on delicate
and technically challenging results, it is surprisingly easy to give a high level sketch. In the following
sketch, let δ,δ′, . . . be small and suitable chosen constants.

First, we need to verify that the pinning operation is continuous with respect to the cut-distance.
Second, given an Ω−law µ, we use the sampling lemma to obtain a discrete probability measure ν ∈
P (Ωn) such that D�(µ,ν) < δ. Now we apply the pinning operation to µ as well as to ν and obtain
(written a bit shortly) µ↓n and ν↓n . By the continuity of the pinning operation we have

D�(µ↓n ,ν↓n) < δ′

and as the pinning operation reduces to the discrete pinning regarding ν, the discrete pinning lemma
guarantees that

E
[
∆�

(
ν↓θ,ν↓θ

)]< δ′′.
Now, as the embedding of discrete probability measures into theΩ−laws respects the cut-distance (The-
orem 2.3.1), we directly get

E
[
D�

(
ν↓θ,ν↓θ

)]< δ′′′.
Now the results on how far the generalised product measures are from the actual measures in the cut-
distance (Theorem 2.3.6) and the triangle inequality give

D�
(
µ↓θ,µ↓θ

)< δ′′′′+D�
(
ν↓θ,ν↓θ

)
.
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Therefore, it is possible to reduce the continuous pinning to the discrete version and the assertion fol-
lows from Markov’s inequality.

While the pinning operation stands at the heart of the contribution we obtained two more results. The
first of those two is with respect to multi-overlaps.

Overlaps We will first describe two very basic operations on probability measures that turn out to be
continuous with respect to the cut-distance. For the sake of simplicity, we will describe their meaning
for discrete measures overΩn and will just shortly state the corresponding operation onΩ−laws.

The first such operation is the construction of a product measure. More precisely, suppose we have
two probability measuresµ,ν ∈P (Ωn). Then their productµ⊗ν is a probability distribution on (Ω×Ω)n

such that (µ⊗ν)(σ,τ) =µ(σ)ν(τ).
Analogously, we could define a tensor µ⊗ν such that for σ1,τ1, . . . ,σn ,τn ∈Ωwe obtain

µ⊗ν
((
σ1

τ1

)
, . . . ,

(
σn

τn

))
=µ(σ1, . . . ,σn)ν(τ1, . . . ,τn).

Clearly, both constructions are equivalent but the – perhaps less intuitive – tensor variant naturally ex-
tends to Ω−laws [49]. More precisely, it is convenient to identify the Ω−laws with their corresponding
kernel. To be more precise, suppose that Λ : [0,1] → [0,1]× [0,1], x 7→ (Λ1(x),Λ2(x)) is any measurable
bijection mapping the Lebesgue measure λ1 on [0,1] onto the Lebesgue measure λ2 on [0,1]2. Further-
more, Λ needs to satisfy that Λ−1 maps the Lebesgue measure on [0,1]2 to the Lebesgue measure on
[0,1]. Such transformations of the Lebesgue measure clearly exist, for instance, a proof is given by [102,
Theorem A.7]. If now κ and κ′ are the kernel representations of twoΩ−laws, we define their generalised
product as

κ⊗κ′ : [0,1]2 →P (Ω2), (s, x) ∈ [0,1]× [0,1] 7→ κΛ1(s),x ⊗κ′Λ2(s),x ∈P (Ω2).

Thus, by re-translating the kernels into Ω−laws we immediately find that, given Ω-laws µ,ν, above’s
procedure yields anΩ2-law µ⊗ν. As already pointed out, this operation is continuous.

Theorem 2.3.8 (Theorem 1.15 of [47]). The map (µ,ν) ∈L (Ω) 7→µ⊗ν ∈L (Ω2) is continuous with respect
to the cut-distance.

The second basic operation resembles the procedure which is used to generate an n ×n (rank one)
matrix over Ω from two vectors σ,τ ∈ Ωn . More precisely, if σ,τ ∈ Ωn are two vectors we define σ⊕
τ ∈ (Ω2)n×n as the n ×n-matrix with entries (σ⊕τ)i j = (σi ,τ j ) for all i , j ∈ [n]. Given two probability
distributions µ,ν ∈ P (Ωn), we define µ⊕ν as follows. First, sample σ ∼ µ and τ ∼ ν. Second, obtain
µ⊕ν as σ⊕τ.

Of course, this operation can be generalised to Ω−laws directly and interestingly, it can be expressed
by the generalised product measure ⊗. Suppose that κ,κ′ are kernel representations of Ω−laws and
define

κ⊕κ′ : [0,1]2 →P (Ω2), (s, x) 7→ κs,Λ1(x) ⊗κs,Λ2(x).

As the ⊕−operation boils down to the ⊗−operation, it is not hard to guess that it is continuous as well.

Theorem 2.3.9. The map L (Ω) →L (Ω2), (µ,ν) 7→µ⊕ν is continuous with respect to the cut-distance.

This two (very fundamental) operations are everything we need to express the quantity of multi-
overlaps quite elegantly. Recall from the introduction that the overlap matrix of two configurations σ,τ
was denoted by 〈σ,τ〉 and expresses on how many particles the spins of σ and τ coincide. This can
be naturally extended with regard to two aspects. First, instead of comparing discrete configurations
we can calculate the overlap of two generalised configurations σ,τ ∈ ΣΩ. Second, we can compute the
overlap of more than two (generalised) configurations. Thus, let σ1, . . . ,σn ∈ ΣΩ and ω1, . . . ,ωn ∈Ω and
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define

Rω1,...,ωn (σ1, . . . ,σn) =
∫ 1

0

n∏
i=1

σi ,x (ωi )dx.

Given an Ω−law µ and an integer ` ≥ 1 we calculate a similar quantity by averaging over the choice of
the configuration through µ, thus

R`,ω1,...,ωn (µ) =
∫
ΣΩ

· · ·
∫
ΣΩ

Rω1,...,ωn (σ1, . . . ,σn)`dµ(σ1) · · ·dµ(σn).

This finally enables us to define the multi-overlap of anΩ−law µ as the array

R`,n(µ) = (R`,ω1,...,ωn (µ))ω1,...,ωn∈Ω.

As those multi-overlaps are built by concatenations of ⊗ and ⊕, it is no surprise that the following holds.

Corollary 2.3.10 (Corollary 1.15 of [47]). The functions µ ∈L 7→ R`,n(µ) with `,n ≥ 1 are continuous.

Let us now come to the last result obtained in [47] which can be seen as one of the most fundamental
properties of a consistent limit theory.

Compactness of the space of Ω−laws While [49] already provided an argument that the space
(L ,D�) is a compact metric space by comparing it to the space of decorated graph limits, we give a self-
contained argument which is based on previous results within the theory of limits of discrete probability
measures.

We will first analyse the space of kernels K . To this end, we define three different variants of the
cut-distance. More precisely, we define

D�(κ,κ′) = inf
φ,ψ∈S[0,1]

sup
S,X⊂[0,1]
ω∈Ω

∣∣∣∣∫
S

∫
X

(
κs,x (ω)−κ′φ(s),ψ(x)(ω)

)
dxds

∣∣∣∣ ,

D�(κ,κ′) = inf
φ∈S[0,1]

sup
S,X⊂[0,1]
ω∈Ω

∣∣∣∣∫
S

∫
X

(
κs,x (ω)−κ′φ(s),x (ω)

)
dxds

∣∣∣∣ ,

D@(κ,κ′) = sup
S,X⊂[0,1]
ω∈Ω

∣∣∣∣∫
S

∫
X

(
κs,x (ω)−κ′s,x (ω)

)
dxds

∣∣∣∣ .

Therefore, the strongest version of the cut-distance is D@(·, ·) which does not allow for any measure
preserving transformations while the slightly weaker variant D�(·, ·) allows to permute the coordinates
corresponding to the generalised configurations. Finally, D�(·, ·) which we previously studied, is the
weakest form of the cut-distance which allows measure preserving transformations in both dimensions.

In a first step we verify that the set of kernels is complete with respect to D@(·, ·) which requires a
delicate technical analysis employing the Riesz representation theorem as well as the Radon-Nikodym
theorem. Then, the second and third step adapt the well known fact that the quotient space with respect
to a linear subspace of each complete metric space is complete itself. Indeed, (K ,D�) is a quotient
space of (K ,D@) by identifying kernels κ,κ′ with D�(κ,κ′) = 0. Analogously, (K ,D�) is a quotient
space of (K ,D�). By the kernel representation (Theorem 2.3.2) this immediately implies that the space
ofΩ−laws is complete with respect to D�(·, ·) as well.

We are left to show that the space of kernels is separable. Fortunately, by the regularity lemma we
know that the Ω−laws with finite support are actually a dense subset of L . Therefore, it suffices to
prove that ΣΩ is separable. But the latter is clear as the set of all finite linear combinations of indicator
functions x 7→ 1{a < x < b} with a,b ∈Q is a dense subset of all measurable continuous functions from
[0,1] → R. Again employing the kernel representation, we find that this separability carries over to the
space of kernels.
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Up to now we found that L is complete and separable but of course this does not necessarily imply
compactness. We use the representation ofπ ∈P (L ) as a distribution over exchangeable infinite arrays
in E ⊂ P

(
ΩN×N

)
to prove compactness. As the latter space is known to be compact it suffices to find a

continuous mapping from E to P (L ).
Let us sketch how such a mapping could look like. Let ξ ∈ E be a distribution over infinite arrays, then

we define a mapping ξ 7→ ρξ,n as follows. First, we draw an array X ξ from ξ. Subsequently, we define
µξ,n ∈P (Ωn) as the empirical distribution of the rows of the top-left n ×n submatrix of X ξ and identify
it with its embedding into L . Finally, ρξ,n is the distribution of µξ,n w.r.t. the choice of X ξ. It turns out
that we have for every ξ ∈ E that ρξ = limn→∞ρξ,n exists and ξ 7→ ρξ is continuous [47, Lemma 3.13].

Into the other direction, it is also possible to associate a distribution ξµ ∈ E with anΩ−law µ. Indeed,
as discussed in the paragraph about the representation as exchangeable arrays, we can simply define ξµ

as the distribution of X µ. This mapping actually shows that the space ofΩ−laws can be embedded into
E as ρξ

µ

turns out to be the atom on µ (e.g. δµ ∈ P (L )). Again, the corresponding mapping µ 7→ ξµ is
continuous which directly implies that the mapping E → P (L ), ξ 7→ ρξ is surjective [47, Lemma 3.14,
Corollary 3.15]. Altogether, this implies the compactness of the space ofΩ−laws.

2.3.1. Summary: the cut-distance for probability measures

We established a self-contained and consistent limit theory for discrete probability measures on Ωn

akin to the graph limit theory. We showed that the limit space L =L (Ω) ofΩ−laws is a compact space
closely related to the space of graphons.

We furthermore analysed different representations for anΩ−law µ. First, it is possible to define a cor-
responding kernel, thus a function from the unit square into the probability measures over Ω. Second,
each µ is in correspondence with a (random) exchangeable two-dimensional infinite arrayΞµ ∈ΩN×N.

The latter representation enabled us to prove a sampling lemma comparable to the sampling lemma
of graph limit theory. Moreover, we extended the pinning operation of [49] to the more general case of
Ω−laws. Finally, we proved that the operation of obtaining multi-overlaps is continuous with respect to
the cut-distance which might be an important step towards rigorising some statistical physics’ predic-
tions as the (multi-)overlap is a frequently studied observable.

Let us in the next section leave the world of statistical physics once more and discuss results with
respect to perturbed random graphs.

2.4. Spanning structures in randomly perturbed sparse graphs

Recall that in the setting of randomly perturbed graphs some arbitrary (possibly deterministic) graph
Gα = (Vα,Eα) with minimum degree αn is given. Furthermore, we take the edges from an instance
G of G (n, p) and examine whether there are certain spanning structures present in Gα ∪G with high
probability. We start by stating the obtained results.

Theorem 2.4.1 (Theorems 1.1 and 1.2 of [93]). Let Gα be a graph with minimum degree αn and G an
instance of G (n,β/n).

• If β≥−(6+o(1)) lnα, Gα∪G contains a Hamilton cycle with high probability.

• If β≥−(4+o(1)) lnα, Gα∪G contains a perfect matching with high probability.

Let us first observe that the theorem is tight (up to a constant factor). Indeed, if Gα is the complete
bipartite graph on classes Vα,V1−α of size αn and (1−α)n, we cannot find a perfect matching if there is
an independent set of size larger than αn in V1−α. It is known that the number of isolated vertices in the
random graph is ∼ n exp

(−β)Àαn if β= o(− lnα). Therefore, one requires β=Ω (− lnα), and of course,
if there is no perfect matching, we cannot find a Hamilton cycle either.

Furthermore, we obtained results with respect to the existence of spanning bounded degree trees.
More precisely, we state some kind of a meta-theorem which allows – given an almost spanning structure
of sufficient size in G (n,β/n) – to find the spanning structure by the edges in the deterministic graph.
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Theorem 2.4.2 (Theorem 1.6 of [93]). Let∆≥ 2 be an integer and suppose that α,β,ε : N 7→ [0,1] are such
that 4(∆+1)ε < α∆+1. Furthermore suppose that G

(
n,β/n

)
contains a given tree with maximum degree

∆ on (1−ε)n vertices w.h.p. and that Gα is an arbitrary graph with minimum degree αn.
Then any tree with maximum degree ∆ on n vertices can be found in Gα∪G

(
n,β/n

)
with high probab-

ility.

The theorem solely does of course not answer the question whether we find spanning trees or not.
But with a recent result of Balogh et al. [19], we find the following.

Corollary 2.4.3 (Corollary 1.8 of [93]). For ∆≥ 2 there exists C > 0 such that for α=α(n) :N 7→ (0,1) and
β=β(α) =−Cα−(∆+1) lnα the following holds. Any n-vertex tree T with maximum degree∆ is a subgraph
of Gα∪G

(
n,β/n

)
with high probability.

How can we proof such statements? We will only give an idea of the proof with respect to the Hamilton
cycle as the other theorems follow fairly similar ideas. We need two major ingredients. First, we require
a long cycle in the random graph. Fortunately, such a result already exists.

Lemma 2.4.4 (Frieze [83]). Let 0 <β=β(n) ≤ lnn. Then the random graph G (n,β/n) contains a cycle of
length at least

(
1− (1−o(1))βexp

(−β))
n with high probability.

Second, we will use the previously explained multiple round exposure technique with the difference
that we in this case reveal edges of the random graph in multiple rounds instead of infected individuals
like in the group testing problem. Now we already have everything at hand to sketch the proof of (the
first part of) Theorem 2.4.1.

Proof sketch of the first part of Theorem 2.4.1. Observe that for very small α = O(n−1/6) our choice of β
already guarantees that the random graph is known to contain a Hamilton cycle w.h.p..

Thus, suppose that α = ω(n−1/6). We start by revealing almost all edges of the random graph. More
precisely, we reveal the edges of G (n, (β−1)/n).

Within this random graph we find by the previous lemma a path P on all but at most βexp
(−β)

n
vertices. Say that those left-over vertices are denoted by V ′. We will subsequently absorb all but two
such vertices onto the path P using edges from the deterministic graph Gα.

To this end, let B (u, v) denote the set of vertices x that lie on P and are a neighbour of u in Gα such
that the neighbours of u on the path P are also connected to v via edges in Gα. Formally,

B (u, v) = {
x ∈ ∂Gα

(u)∩P | ∂P (x) ⊂ ∂Gα
(v)

}
.

A visualisation is given in Figure 2.8. Suppose P = p1 . . . p` is the path. Then clearly, if for a vertex

p1 p2 p3 . . . p j−1 p j p j+1 . . . p`

v

Figure 2.8.: Absorbing structure for vertex v onto the path p1 . . . p` using edges from Gα (red). The
graphic is modified after [93].

v ∈ V ′ there is some p j ∈ B (p`, v), we can create a longer path p1 . . . p j−1v p j+1 . . . p`p j which contains
v . It turns out that, up to some technicalities which guarantee that those absorbing structures do not
overlap too much, we can follow this approach greedily until all but 2 vertices are absorbed. Indeed, as
B (u, v) is a uniformly at random chosen set of vertices due to the randomness of G (n, (β−1)/n), we find

|B (u, v)| ≥ 2

5
α3βexp

(−β)≥ α3n

4
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with high probability for the choice of β. While absorbing the left-over vertices greedily for∣∣V ′∣∣−2 ≤βexp
(−β)

n

rounds, we remove in every step all used vertices from all sets B (u, v) and the absorbed vertex from V ′.
As after βexp

(−β)
n rounds the size of B (u, v) only decreased by at most βexp

(−β)
n (for any pair of

vertices u, v), we have after absorbing that

|B (u, v)| ≥ α3n

4
−βexp

(−β)
n ≥ α3n

8

if α=ω(
n−1/6

)
. Thus, absorbing all but two vertices is indeed possible to be done greedily.

Therefore, all we need to do at this point is to close the cycle. Recall that we obtained a path P =
p1 . . . pn−2 and are left with two additional vertices a,b. If there is an edge pi p j between B (p1, a) and
B (pn−2,b), we already found a Hamilton cycle C = pi p1 . . . pi−1api+1 . . . p j−1p j+1 . . . pn−2p j pi . And in-
deed, by revealing the missing edges from G (n,1/n), we find that such an edge is present with high
probability.
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3. Outlook

This chapter will state open problems related with this thesis’s contributions and aims for giving rise
to possibly interesting further research directions within the respective fields. We start by stating such
research questions with respect to the group testing problem.

3.1. Group testing

Non-adaptive group testing in the sublinear regime In the sublinear regime where the number
of infected individuals scales as k = nθ, this thesis’s contributions draw a somehow complete picture
of non-adaptive noiseless hypergeometric group testing. While the analysis of SPIV and the proof of
the universal information theoretic converse does not require exact knowledge about k but its order
of magnitude suffices, it seems very likely that those results might carry over to i.i.d. models as well.
Nevertheless, while SPIV is an efficient algorithm from a theoretical point of view, requiring lnlnn →∞
shows that the result is only of theoretical nature. Furthermore, the spatially coupled design is clearly
much more complicated than the random regular model. Therefore, an intriguing question would be
the following.

Question 3.1.1. Is there an efficient algorithm succeeding at mnon−ada on the random regular model?
Furthermore, is there a deterministic graph G with (1+ε)mnon−ada tests coming with an efficient algorithm
for high probability recovery of σ from (G ,σ̂)?

Besides searching for more practical algorithms, one could ask what happens when we leave the
Bayes optimal setting. Suppose the student does only receive an estimate k̃ of k (thus, not the com-
plete teacher’s prior). If k̃ > k, inference will still be possible by SPIV as we conduct only too many
tests and each test is more likely to be negative. If, on the other hand, k exceeds the guess k̃, complete
recovery is not possible under the studied designs. Therefore, the following question might arise.

Question 3.1.2. Given an estimate k̃ < k of the number of infected individuals, how many tests suffice
to infer the ground-truth completely or at least up to small errors depending on k̃ and k? How would an
optimal design look like?

Similarly, while we proved that (1−o(1))−recovery is possible at minf using the spatially coupled design
with SPIV, it is also known that, information-theoretically, it is possible to achieve (1−γ)−recovery on
a Bernoulli test-design with no more than minf tests. Up to our knowledge, there are only non-rigorous
contributions which provide evidence that it might be possible algorithmically [99]. Further, there can-
not be any design on less than (1−γ)minf tests achieving (1−γ)− recovery [152].

Question 3.1.3. Is partial recovery of all butγk infected individuals possible algorithmically under Bernoulli
group testing at the information-theoretic threshold?

But nevertheless, this part of group testing is fairly well understood. Things are completely different
for sparsity constrained group testing.

Sparsity constrained group testing As already seen in the previous chapter, the sparsity constrained
group testing problem is not as well understood as the unrestricted case. A fairly natural question is if
the phase diagram in the ∆−divisible case does actually look similar to the one in unrestricted group
testing.

Question 3.1.4. Is there an adaptive algorithm testing each individual at most ∆ times succeeding at
minf(∆) or can we proof that minf(∆) is not tight? Furthermore, is there a spatially coupled design coming
with an efficient algorithm performing as well as the binary splitting approach (or even better)?
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In the Γ−sparse case we completely understood the problem if Γ is a constant.

Question 3.1.5. Does the analysis of the Γ = Θ(1) case extend to larger values of Γ? And, if so, does it
strengthen existing bounds?

Finally, one might be slightly irritated by the fact that the achievability and converse bounds in the
∆−divisible case do not converge to their unrestricted counterpart.

Question 3.1.6. How does the group testing problem behave in the critical regimeω(ln1−δn) =∆= o(lnn)
and what happens at the phase transition ∆→ lnn?

Furthermore, there is already extensive work on noisy group testing.

Noisy group testing Without going too much in detail, the state of the play is comparable to the
state of the art in noiseless non-adaptive group testing prior to this thesis’s contributions. While simple
algorithms are well understood [89, 108, 155], it is even not known under simplistic noise models like the
binary symmetric channel if recovery of the ground-truth is possible efficiently at the Shannon capacity
bound. It might be tempting to analyse whether a spatially coupled design could improve bounds in the
noisy setting as well.

Question 3.1.7. Does a spatially coupled design coming with a SPIV like algorithm perform better at
inference under a noisy setting than currently known algorithms?

Returning to the noiseless case, we find that even the linear case is not completely understood.

Linear group testing More precisely, while non-adaptive algorithms need to fail with high probability,
it is possible to infer the ground-truth within multiple rounds of testing at the universal converse [13,
98]. Nevertheless, one important question is still open.

Question 3.1.8. Are there any (potentially exponential-time) algorithms on less than n − 1 tests which
succeed at inference of the ground-truth if the prevalence is larger than 1/3 in the hypergeometric group
testing problem? Or conversely, can we proof that such algorithms do not exist?

A bit more application-driven question is the following. Which influence do such asymptotic designs
have on real world group testing?

Applications Suppose we have k = 5 infected individuals within a population of n = 1000. Then the
following statement sounds correct.

By the given prevalence of 0.5% we are clearly in the setting of linear group testing. There-
fore, any non-adaptive group testing strategy fails due to Aldridge [7] and we need 1000 tests
for inference within one round.

While this seems to be indeed true, let us provide a second statement which might also sound plausible.

As the number of infected individuals k scales like n0.233, we require 1
ln2 2

· 5 · ln(200) ≈ 56
tests such that DD infers the infected individuals correctly.

Finally, the folklore counting bound yields that we require 2m > (1000
5

)
, thus we need at least m ≥ 43 tests.

Of course, above’s statements do not only contradict each other, they are also false. All provided proofs
in all contributions (besides the universal counting bound) are obtained under the assumption that n
tends to ∞. Therefore, all we can say is that something in between 43 and 1000 tests will be the correct
answer. But this is of course very unsatisfactory.

Question 3.1.9. Given a real world instance on n individuals with an infection rate of α with a realistic
false positive and false negative rate, how could an almost optimal non-adaptive or two-stage design look
like in order to infer almost all individuals correctly?
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An answer to this question would be of high interest in applications. First intends are done by, for
instance, Aldridge [12] and Cuturi et al. [57], but we are far from knowing precise statements. A natural
suggestion is that an inference algorithm based on Belief Propagation might facilitate best-possible.

This question directly extends to different inference problems. It might be a fruitful research direc-
tion to apply message passing algorithms coming with a spatially coupled design to various inference
problems. Unfortunately, in general it is much harder to find combinatorial descriptions of those mes-
sage passing algorithms as in the group testing problem. Therefore, they might be highly challenging to
analyse.

3.2. Random satisfiability

As described earlier, we could exactly pin down the number of satisfying assignments of a random
2−SAT formula in terms of the Bethe functional. A natural question would be if the result can be ex-
tended to general random k−SAT formulas. It is at least far from clear if this is possible. Indeed, the
core of our proof technique is the possibility to construct worst-case conditions at the boundary of a
random tree in order to prove that the Boltzmann distribution is a Bethe state itself. Even in a random
3−SAT formula it is not clear how such worst-case conditions might be constructed as the number of
possibilities to nudge the marginal of a parent variable into a certain direction is huge and dependent
on decisions in different sub-trees.

Within the setting of random 2−SAT we could furthermore ask if we can pin down the distribution of
ln Z (Φ) exactly.

Question 3.2.1. Does n−1/2(ln Z (Φ)−E ln Z (Φ)) converge to a Gaussian random variable?

3.3. The cut-distance, regularity and limits of probability measures

We managed to develop a consistent limit theory for discrete probability measures akin to the graph
limit theory. Furthermore, we introduced the pinning operation on the limit objects (Ω−laws) as an
elegant and easy algorithm to obtain a decomposition of the phase state on which the respective prob-
ability measures are extremal, thus close to product measures under the cut-distance. This is a kind
of a regularity lemma which allows to write a probability measure as a convex combination of simple
measures.

There is a second string of research, primarily by Austin [17], which develops similar regularity lemmas
based on the so-called dual total correlation (DTC). The latter can be seen as a generalisation of the
classical mutual information from 2 to n random variables which reads as

DT C (µ) = H(X 1, . . . , X n)−
n∑

i=1
H(X i | X 1, . . . , X i−1, X i+1, . . . , X n)

with H(·) being the entropy and X 1, . . . , X n random variables with joint distribution µ.
Described very briefly, it says that a small dual total correlation implies that a probability measure is

close to a product measure with respect to a specific transportation metric [17, Theorem A]. Further, a
regularity lemma is known which guarantees that there is a partition of the phase space which allows
to write a probability measure as a convex combination of measures with low dual total correlation [17,
Theorem 1.1]. An intriguing question is the following.

Question 3.3.1. Is there a natural connection between the cut-distance of µ and µ̄ and the dual total
correlation of µ?

A second and a third question regarding regularity arise with respect to the pinning operation itself.
First, we need to pin a random number of coordinates in order to achieve an extremal measure. It is not
clear whether this part of the statement has a deeper reason or if it is just a relic of the proof technique
which is originally based on a contribution of Raghavendra and Tan [148]. Furthermore, the pinning
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lemma yields a sufficient condition on how many variables have to be pinned to specific spins. A lower
bound on how many variables are necessary is currently unknown.

Question 3.3.2. What is a lower bound on the number of variables which are necessary to be pinned in
the pinning operation? Is it necessary that this number is random?

3.4. Perturbed graphs

The note on spanning structures in randomly perturbed sparse graphs establishes sufficient results for
Hamilton cycles and matchings in graphs that are optimal up to a constant. Furthermore, it gives a
meta-theorem which proves that the existence of almost spanning bounded degree trees in G (n,β/n)
suffices in order to gain the complete spanning structure in G (n,β/n) forβ=−Ω ((∆+1)ln(α)) if∆ is the
maximum degree of the tree. Thus, the first question which was also stated in the note reads as follows.

Question 3.4.1. Is any given tree with maximum degree ∆ on (1 −C exp(−β))n vertices contained in
G (n,β/n) for 0 <β≤ lnn and a suitable chosen constant C ?

Moreover, we already discussed that the sufficient conditions proven in the note are probably not tight
but the proof technique yields to those expressions. It is likely to be true that the choice of other, more
complicated, absorbing structures and a more carefully applied large deviations analysis might yield to
better constants in the theorems. Therefore, it is an interesting question to pin down the exact phase
transition points.

Question 3.4.2. Can we establish strict phase transitions for the existence of a Hamilton cycle and a per-
fect matching in G (n,β/n)∪Gα?

Finally, while we only studied certain spanning structures in graphs, the objects of interest can be
extended. First, we can study different spanning structures in graphs like for instance triangle factors.
Second, one can extend the analysis from perturbed sparse graphs to perturbed sparse hypergraphs.
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4. Zusammenfassung

Die Analyse sehr großer diskreter Systeme ist ein wesentlicher Bestandteil aktueller Forschung in, unter
anderem, der Diskreten Mathematik, der Informatik sowie der Statistischen Physik. Von besonders ho-
her Relevanz ist das Phänomen der Phasenübergänge [78, 82, 121]. Hierbei handelt es sich um Momente
in der Evolution eines Systems, an welchen sich dessen Verhalten dramatisch verändert. Solche Phasen-
übergänge wurden und werden beispielsweise in zufälligen Graphen, Spin-Gläsern und bezüglich der
Performance von Algorithmen untersucht.

Seit einigen Jahrzehnten kristallisiert sich immer weiter heraus, dass einige Ideen der Statistischen
Physik auf die Untersuchung von eigentlich rein kombinatorischen Problemen übertragen werden kön-
nen [168]. Zu solchen Problemen zählen zum Beispiel die Beantwortung der Frage nach Erfüllbarkeit ge-
gebener zufälliger Formeln oder auch die Analyse der algorithmischen und informationstheoretischen
Lösbarkeit von Inferenzproblemen wie dem Group-Testing Problem [68, 133]. Eine wesentliche Heraus-
forderung aus Sicht der Mathematik besteht darin, die Ideen der physikalischen Heuristiken in rigorose
mathematische Verfahren und Beweise zu übersetzen.

In dieser Dissertation untersuchen wir, wie Ideen aus der physikalischen Theorie der diluted mean-
field models für Spin-Gläser dazu genutzt werden können, zufällige Erfüllbarkeitsprobleme zu analysie-
ren. Insbesondere nutzen wir diese Ideen, um zu berechnen, wie viele Lösungen eine zufällige 2-SAT
Formel in der Regel besitzt. Zudem werden wir die sogenannte planted Version von solchen zufälligen
Erfüllbarkeitsproblemen untersuchen. Es stellt sich durch die Brille der Statistischen Physik betrachtet
heraus, dass solche Modelle genutzt werden können, um statistische Inferenzprobleme auszudrücken
[168].

Sowohl durch die Analyse von Problemen der statistischen Inferenz als auch durch das Untersuchen
der zufälligen Erfüllbarkeit stellen wir fest, dass eine geschickte Kombination von Ideen der statistischen
Physik mit ureigenen kombinatorischen Eigenschaften zufälliger Graphen zu rigorosen, neuen Resulta-
ten führt. Wir beginnen mit einer knappen Einführung in wesentliche Begriffe der statistischen Physik.

Grundlagen der statistischen Physik Gegeben sei eine Menge V = {x1, . . . , xn} von n Partikeln. Ein
Spin-System mit diesen Partikeln besteht aus einer endlichen Menge Ω von möglichen Spins sowie ei-
nem k−uniformen dekorierten Hypergraphen G = (V ,E , J ), welcher die Interaktionen zwischen den Par-
tikeln beschreibt. Genauer gesagt bezeichnen wir mit σ ∈Ωn eine Konfiguration, welche jedem Partikel
einen der möglichen Spins aus Ω zuordnet und mit H :Ωn → R eine Energie-Funktion, die jeder Konfi-
guration ihre Energie zuweist. Formal definieren wir die Energie-Funktion H als

H(σ) =− ∑
(i1,...,ik )∈E(G)

Ji1,...,ik (σi1 , . . . ,σik ).

Im Spezialfall k = 1 bezeichnen wir das System als ein nicht-interagierendes System, da die verschiede-
nen Partikel gar nicht miteinander interagieren, während höhere Werte von k ein sogenanntes k−body
interacting System beschreiben. In dieser Dissertation werden wir nur den Fall k = 2 untersuchen, das
heißt, der zugrunde liegende Hypergraph G ist ein einfacher Graph. Die Familie

{
Ji , j

}
i j∈E(G) beschreibt

die Stärke und Art der Interaktion der interagierenden Partikel.
Jede Wahl der Coupling-Konstanten Ji j sowie der Energie-Funktion H und des Interaktionsgraphen

G beschreibt ein spezifisches Spin-System. Klassische Systeme, wie das Potts-Modell oder das Edwards-
Anderson-Modell sind Modelle, in denen G einem Gitter-Graphen (zum Beispiel Z3) entspricht. Diese
Modelle mögen die naheliegensten Interaktionsmodelle für zum Beispiel Ferromagnetismus sein, al-
lerdings sind diese auf Grund der geometrischen Beziehungen im Graphen mathematisch sehr schwer
zu analysieren [135]. Eine mögliche Vereinfachung sind sogenannte mean-field-Modelle wie das SK-
Modell [158], in denen der Interaktionsgraph dem vollständigen Graphen entspricht. Ferner wird eine
Energie-Funktion gewählt, deren Wert invariant gegenüber Permutationen der Partikel ist. Auf diese Art
und Weise werden einfachere Modelle definiert, welche die lokale und globale Struktur sowie Abhängig-
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keit verschiedener Partikel ignorieren. Es stellt sich heraus, dass diese Modelle einfacher zu analysieren
sind als ihre zugehörigen Gitter-Pendants [143, 162], allerdings wichtige physikalische Eigenschaften
nicht korrekt beschreiben können [157].

Die sogenannten diluted mean-field Modelle, wie das Viana-Bray-Modell [166], versuchen die ma-
thematische Einfachheit der mean-field-Theorie möglichst beizubehalten und dennoch wesentliche
Eigenschaften realer Systeme möglichst gut zu modellieren. Der Kerngedanke ist, dass der zugrunde
liegende Interaktionsgraph ein (zufälliger) dünner Graph ist, das heißt, dass zwar die globale Geome-
trie sicherlich nicht gegeben ist, der Graph lokal aber an einen Gittergraphen erinnert. Tatsächlich ist
es so, dass die Analyse gut gewählter diluted mean-field Modelle zu exakten Lösungen von Problemen
in (echten) Spin-Glas-Modellen führen kann [144], das heißt, diese Modelle tragen noch wesentliche
Informationen von realitätsnahen Modellen in sich, während sie mathematisch analysierbar bleiben.

Außerdem können wesentliche Probleme der Informatik, wie das zufällige Erfüllbarkeitsproblem und
weitere Constraint Satisfaction-Probleme (CSPs), als diluted mean-field Modell beschrieben werden.

Bevor wir uns diesem Punkt zuwenden, werden wir noch eine wichtige Wahrscheinlichkeitsvertei-
lung, die sogenannte Boltzmann-Verteilung, einführen. Dazu erinnern wir uns an ein wesentliches Prin-
zip der Physik: Ein System versucht immer einen Zustand minimaler Energie einzunehmen. Auch Mo-
delle von Partikelsystemen sollten diese Eigenschaft widerspiegeln. Wir sagen, dass das System in einem
Zustand minimaler Energie ist, wenn H(σ) durch die Konfiguration σ ∈Ωn minimiert wird. Außerdem
bezeichnen wir mitΩn

0 ⊂Ωn die Menge der Konfigurationen, welche die Energie minimieren. Eine ver-
nünftige und natürliche Wahrscheinlichkeitsverteilung sollte also Konfigurationen inΩn

0 bevorzugen.
Dazu führen wir die inverse Temperatur β> 0 ein und definieren die Boltzmann-Verteilung aufΩn als

µβ(σ) = exp
(−βH(σ)

)
Zβ

, wobei Zβ =
∑
σ∈Ωn

exp
(−βH(σ)

)
.

Die Normalisierungskonstante Zβ der Boltzmann-Verteilung wird auch Partitionsfunktion genannt. Die
Boltzmann-Verteilung spiegelt die Idee, dass das System einen Zustand minimaler Energie anstrebt,
wider. Je geringer die Energie H(σ), desto höher ist die Wahrscheinlichkeit σ unter µβ zu beobach-
ten. Steigt die Temperatur des Systems stark an (β wird klein), so verringert sich dieser Effekt und für
β→ 0, also im high-temperature limit, wird die Boltzmann-Verteilung zur uniformen Verteilung aufΩn .
Wächst β hingegen, wird das System also abgekühlt, so verstärkt sich o.g. Effekt, sodass die Boltzmann-
Verteilung im zero-temperature limit die uniforme Verteilung auf allen Zuständen minimaler Energie
wird. Formal ausgedrückt finden wir die folgenden Zusammenhänge:

lim
β→0

µβ(σ) = 1

|Ωn | und lim
β→∞

µβ(σ) = 1
{
σ ∈Ωn

0

}∣∣Ωn
0

∣∣ .

Da in der statistischen Physik (und auch in der theoretischen Informatik) oft das makroskopische Ver-
halten von sehr großen Systemen (n →∞) von Interesse ist, wird häufig der sogenannte thermodynami-
sche Grenzwert eines Systems betrachtet [135]. Wir bezeichnen mit φn,β = ln(Zβ) die freie Entropie und

mitφβ = limn→∞
ln(Zβ)

n die freie Entropiedichte (free entropy density). Innerhalb eines physikalischen Sy-
stems definieren wir nun die nicht-analytischen Punkte von φβ als Phasenübergänge. Das sind Punkte,
an denen sich das qualitative Verhalten des Systems drastisch ändert [135]. Wir betrachten insbesondere
Phasenübergänge von den bereits angesprochenen CSPs.

Constraint Satisfaction und Phasenübergänge Zunächst definieren wir, was wir unter CSPs ver-
stehen. Ein besonders prominentes Beispiel ist das k−SAT Problem, also die Frage nach Erfüllbarkeit
einer aussagenlogischen Formel in konjunktiver Normalform mit Klauseln der Größe k. Genauer gesagt
ist eine k−SAT FormelΦ eine Konjunktion von m Klauseln

Φ=Φ1 ∧ . . .∧Φm ,

sodass jede Klausel selbst eine Disjunktion von exakt k Literalen der Variablen x1 . . . xn ist.
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Ist eine Formel Φ gegeben, so lautet eine der wichtigsten Fragen offenbar, ob es eine Belegung σ :
{x1, . . . , xn} → {−1,+1}n gibt, welche jeder der Variablen einen der Wahrheitswerte WAHR und FALSCH
zuordnet, sodass jede Klausel Φ j (und somit die gesamte Formel Φ) erfüllt ist. Wir interpretieren den
Spin +1 als WAHR und den Spin -1 als FALSCH. Eine solche Formel Φ kann als Faktorgraph visualisiert
werden.

Ein Faktorgraph G = (V ∪F,E ,Ψ) ist ein bipartiter Graph mit einer Menge von Variablenknoten V und
einer Menge von Faktorknoten F , einer Kantenmenge E sowie einer Familie von GewichtsfunktionenΨ
[81].

Wir beschreiben im Folgenden eine Konstruktionsanweisung für einen Faktorgraphen GΦ, der die
k−SAT FormelΦ repräsentiert [135]. Seien die Knotenmengen als

V = {x1, . . . , xn} sowie F = {
aΦ1 , . . . , aΦm

}
gegeben. Ferner besteht die Kantenmenge E = {

aΦ1 , . . . , aΦm
}

aus zwei disjunkten Klassen E+ und E−,
sodass die Kante xi aΦj genau dann in E− liegt, wenn Variable xi negiert in Klausel Φ j vorkommt, und

in E+, falls xi positiv in Φ j enthalten ist. An jedem Faktorknoten a j existiert eine lokale Funktion Ψa j :

{−1,+1}|∂a j | → {−1,+1}, sodass für eine Belegung σ ∈ {−1,+1}n das Folgende gilt:

Ψa j (σ∂a j ) = 1
{

max
xi∈∂a j

{
σi si j = 1

}}
.

Eine Visualisierung eines solchen Faktorgraphen findet sich in Abbildung 4.1.

x1 x2 x3 x4 x5

a1 a2 a3 a4

Abbildung 4.1.: Der Faktor-Graph GΦ zur 3−SAT FormelΦ : (x1 ∨x2 ∨x3)∧ (¬x2 ∨x3 ∨x4)∧ (¬x1 ∨¬x3 ∨
¬x5)∧(x2∨¬x3∨x5). Die n = 5 Variablenknoten sind als Kreise dargestellt, die m = 4 Fak-
torknoten als Rechtecke und die Farbe der Kanten beschreibt, ob eine Variable negiert
oder nicht negiert in einer Klausel vorkommt.

Während für k ≥ 3 das Entscheidungsproblem, ob eine k−SAT Formel mindestens eine erfüllende
Belegung besitzt, N P -schwer ist [109], kann es leicht als physikalisches System aufgefasst werden [111].
Die n Variablen entsprechen den Partikeln des Systems und die Wahrheitswerte den SpinsΩ= {−1,+1}.
Eine Belegung entspricht nun einer Konfiguration σ ∈Ωn und eine mögliche Energie-Funktion ist

Hk−S AT (σ) = ∑
aΦj ∈F

1−Ψa j (σ∂a j ).

Also entspricht Hk−S AT (σ) genau der Anzahl an nicht-erfüllten Klauseln unter einer gegebenen Konfigu-
ration. Betrachten wir nun den zero-temperature limit, so ist die entsprechende Boltzmann-Verteilung
µ∞ = limβ→∞µβ die uniforme Verteilung auf solchen Konfigurationen, die am wenigsten Klauseln ver-
letzen. Das heißt, wenn σ ∼ µ∞ eine zufällige Konfiguration (gezogen von µ∞) ist, so ist Φ genau dann
erfüllbar, wenn Hk−S AT (σ) = 0 gilt. Da wir wissen, dass k−SAT N P -schwer ist, folgt direkt, dass es im
Allgemeinen auch schwer ist, eine Konfiguration minimaler Energie in einem Spin-System zu finden.

An dieser Stelle fällt auf, dass sich die Boltzmann-Verteilung eines CSPs sehr elegant faktorisieren
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lässt, das heißt,

µ∞(σ) = lim
β→∞

∏
aΦj ∈F

exp
(
−β1

{
aΦj is not satisfied under σ

})
Z (Φ)

.

Das ist keine Eigenart spezieller CSPs, sondern eine sehr universelle Eigenschaft aller CSPs, die sich als
Faktorgraph ausdrücken lassen. Wir bemerken, dass ...

• ... jeder Faktor in der Boltzmann-Verteilung zu einem Faktorknoten in GΦ korrespondiert,

• ... fürβ> 0 jede nicht-erfüllte Klausel eine Art Strafe von exp(−β) auf die Wahrscheinlichkeit, diese
Konfiguration zu beobachten, addiert.

• ... falls Φ erfüllbar ist, der Träger der Boltzmann-Verteilung im low-temperature limit den erfül-
lenden Belegungen einer Formel entspricht.

• ... fallsΦ erfüllbar ist, die Partitionsfunktion im low-temperature limit der Anzahl der erfüllenden
Belegungen entspricht.

Oft werden im Kontext von CSPs sogenannte zufällige CSPs betrachtet [156]. Was meint zufällig hier-
bei? Sind n Variablenknoten und m Faktorknoten (wobei m durchaus auch zufällig sein kann) sowie
deren Grade gegeben, so bilden wir einen zufälligen bipartiten Graphen. Je nach CSP können die Grad-
sequenzen der Knoten selbst zufällig sein. Sind die Gradsequenzen gegeben, so ziehen wir uniform und
unabhängig von allem anderen Zufall einen Faktorgraphen, der die entsprechenden Gradsequenzen
hat.

Im Falle von k−SAT werden n Variablenknoten und m Faktorknoten gegeben. Jeder Faktorknoten hat
Grad k und jede Variable hat Grad Po(mk/n). Wir wählen, gegeben

{∑n
i=1 d i = mk

}
, einen zufälligen

einfachen Graphen mit den gegebenen Gradsequenzen. Ferner markieren wir jede Kante unabhängig
und uniform mit +1 mit Wahrscheinlichkeit 1/2 und mit −1 mit Wahrscheinlichkeit 1/2. Eine sehr einfa-
che Frage lautet: Ist für n →∞ die entstandene zufällige Formel mit hoher Wahrscheinlichkeit erfüllbar?
Diese Frage wurde exzessiv untersucht, unter anderem auch mit Methoden der statistischen Physik [37,
111], und es wurde eine präzise Vermutung für ein kritisches Verhältnis αs = ms/n zwischen Klauseln
und Variablen formuliert, sodass eine zufällige Formel mit geringerem Verhältnis erfüllbar und mit hö-
herem Verhältnis nicht erfüllbar ist. Wir haben also einen Phasenübergang gefunden. Genauer gesagt
wurde dieses Problem aufbauend auf vielfältigen Arbeiten [4, 51, 54, 91] schlussendlich von Ding, Sly
und Sun [64] gelöst, die beweisen konnten, dass für k groß genug der Erfüllbarkeits-Schwellenwert bei

αs = 2k ln2− 1+ ln2

2
+O(2−k )

liegt. Natürlich finden solche Phasenübergänge auch in allgemeinen zufälligen CSPs statt [136] und der
Erfüllbarkeits-Schwellenwert ist nicht der einzige interessante Schwellenwert. Sei dazu S die Menge
aller erfüllenden Belegungen einer zufälligen Formel. Wir sagen, dass zwei Lösungen verbunden sind,
wenn ihr Hamming-Abstand 1 ist, und bezeichnen die Menge aller verbundenen Lösungen als Cluster.
Es zeigt sich, dass die Geometrie von S hoch komplex ist, aber glücklicherweise liefert der 1-RSB-Ansatz
der statistischen Physik ein nicht-rigoroses aber detailliertes Bild, wie sich S mit wachsendem Faktor-
zu-Variablen-Verhältnis α entwickelt (siehe Abbildung 4.2).

Wir starten beiα= 0 und lassenα stetig wachsen. Dann beobachten wir die Existenz von vier Schwel-
lenwerten αu ≤αclus ≤αcond ≤αs , an denen sich die Struktur von S drastisch verändert [121, 138, 169,
170]. Wir bezeichnen S manchmal als Lösungsraum und die erfüllenden Belegungen analog als Lösun-
gen.

1. Istα<αu , so existiert exakt ein Cluster von Lösungen. Diese Phase wird als unique phase bezeich-
net.
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Abbildung 4.2.: Übersicht über die Geometrie des Lösungsraums in zufälligen CSPs. Der 1-RSB-Ansatz
sagt die Existenz von vier wichtigen Phasenübergängen vorher. Die Abbildung ist modi-
fiziert nach [138, 169, 170].

2. Sobald α größer wird als αu , befindet sich das System in der extremalen Phase. Wenige und ex-
ponentiell kleine Cluster von Lösungen entstehen, die neben einem großen Cluster einige wenige
Lösungen enthalten.

3. Am clustering-Schwellenwert αclus zerfällt die Menge der Lösungen in exponentiell viele, expo-
nentiell kleine Cluster.

4. Wenn α nun größer wird als der condensation-Schwellenwert, so befinden sich fast alle Lösungen
in endlich vielen verschiedenen Clustern.

5. Schlussendlich, sobald α größer wird als der Erfüllbarkeits-Schwellenwert αs , enthält S keine
Lösungen mehr.

Formal betrachtet existieren strikte und schwache Schwellenwerte. Ist P irgendeine Eigenschaft und
α eine Parametrisierung eines zufälligen Systems (im obigen Beispiel ist P die Menge der nicht erfüllba-
ren Formeln undα die Faktoren-zu-Variablen-Dichte), dann durchläuft das System G (der Faktorgraph)
einen strikten Phasenübergang am strikten Schwellenwert α∗, falls für jedes ε> 0:

P
(
G ∈P |α≤ (1−ε)α∗)= o(1) und P

(
G ∈P |α≥ (1+ε)α∗)= 1−o(1).

Analog findet ein schwacher Phasenübergang statt, falls

P
(
G ∈P |α= o(α∗)

)= o(1) sowie P
(
G ∈P |α=ω(α∗)

)= 1−o(1).

Die Definition verlangt offenbar, dass P mit wachsendem α wahrscheinlicher wird. Natürlich kann
es analog auch für Eigenschaften definiert werden, die mit fallendem α wahrscheinlicher werden.

Friedgut und Bourgain [82] haben gezeigt, dass jedes zufällige System bezüglich einer monoton stei-
genden oder fallenden Eigenschaft einen nicht-uniformen strikten Phasenübergang durchläuft. Bei-
spielsweise fällt die Frage, ob eine zufällige k−SAT Formel erfüllbar ist, darunter, da das Hinzufügen
von Klauseln die Wahrscheinlichkeit reduziert, dass die Formel erfüllbar bleibt. Selbstverständlich lie-
fert das Resultat nur eine Existenzaussage, das heißt, es bleibt unklar, was die entsprechenden Schwel-
lenwerte sind. Für viele Eigenschaften bezüglich des zufälligen Graphen G (n, p)1 ist der Schwellenwert
bekannt [103], aber in Bezug auf zufällige CSPs sieht die Welt anders aus, auch wenn in den letzten
Jahren Schwellenwerte für manche zufälligen CSPs gefunden wurden [25, 43, 55, 64].

In dieser Dissertation beantworten wir eine offene Frage bezüglich des Lösungsraums des zufälligen
2−SAT Problems. Das 2−SAT Problem ist ein Spezialfall des bereits diskutierten k−SAT und auf eine
gewisse Art und Weise eine Besonderheit. Es ist das einzige k−SAT Problem, in welchem es komplexi-
tätstheoretisch einfach ist, eine erfüllende Belegung zu finden (sofern eine solche existiert) [120]. Auch

1Wir definieren G (n, p) wie Gilbert [90], das heißt, jede Kante ist existent mit Wahrscheinlichkeit p unabhängig von allem
anderen Zufall.
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der Erfüllbarkeits-Schwellenwert des zufälligen 2−SAT Problems ist seit den frühen 1990er Jahren be-
kannt [40, 91] und hängt eng mit dem Perkulationsphasenübergang im zufälligen Graphen zusammen
[30]. Dennoch blieb eine sehr unschuldig vermutende, aber zentrale Frage offen [78]: Falls eine zufällige
Formel erfüllbar ist, wie viele erfüllbare Belegungen gibt es? Es stellt sich heraus, dass dies schwer zu
beantworten ist, insbesondere ist im (nicht-zufälligen) 2−SAT das Zählen der Lösungen komplexitäts-
theoretisch schwierig, es liegt in #P [165]. Die in der vorliegenden Dissertation enthaltene Publikation

The number of satisfying assignments of random 2-SAT formulas [2]

beantwortet diese Frage vollständig. Dies gelingt, indem wir zeigen, dass im Falle des zufälligen 2−SAT
Problems bestimmte Heuristiken der statistischen Physik in einen rigorosen mathematischen Beweis
verwandelt werden können. Genauer gesagt zeigen wir, dass die durch Belief Propagation berechnete
Lösung der Marginale der zugehörigen Boltzmann-Verteilung korrekt ist.

Die Cut-Distanz Dies führt uns zum nächsten, in dieser Dissertation enthaltenen Beitrag mit dem
Titel

The cut metric for probability distributions [47].

Die Boltzmann-Verteilung ist eine diskrete Wahrscheinlichkeitsverteilung auf Ωn und in vielen zu stu-
dierenden Problemen betrachten wir den sogenannten thermodynamischen Grenzwert n →∞. Es liegt
daher nahe, kontinuierliche Grenzobjekte von solchen diskreten Wahrscheinlichkeitsverteilungen zu
betrachten. DieΩ−laws, ursprünglich eingeführt durch Coja-Oghlan, Perkins und Skubch [42] beschrei-
ben solche Grenzobjekte. Genauer gesagt verwandeln wir eine Konfiguration σ ∈Ωn in eine messbare
Funktion σ̂ von [0,1) in die Menge der Wahrscheinlichkeitsmaße über Ω, wobei diese Menge als P (Ω)
bezeichnet wird. Es sei ferner ΣΩ der Raum aller messbaren Funktionen f : [0,1) →P (Ω) bis auf Gleich-
heit fast überall. Nun definieren wir σ̂ als

σ̂ : [0,1) →P (Ω) , sodass x 7→
n∑

i=1
δσi 1

{
x ∈

[
i −1

n
,

i

n

)}
.

Das zugehörige Wahrscheinlichkeitsmaßµ ∈P (Ωn) wird nun in den Raum der Wahrscheinlichkeitsma-
ße P (ΣΩ) wie folgt eingebettet. Wir definieren

µ̂= ∑
σ∈Ωn

µ(σ)δσ̂, sodass µ̂ ∈P (ΣΩ) .

Offenbar besteht eine 1-zu-1-Beziehung zwischen µ und µ̂. Es ist weiterhin möglich eine sehr schwache
Metrik, die Cut-Distanz, auf P (ΣΩ) zu definieren. Dazu bezeichnen wir mit S[0,1) die Menge der ma-
ßerhaltenden, invertierbaren Bijektionen auf [0,1) sowie mit Γ(µ,ν) die Menge der Couplings von µ,ν,
also gemeinsamen Wahrscheinlichkeitsverteilungen mit Marginalen µ und ν. Die Cut-Distanz ist nun
definiert als

D�(µ,ν) = inf
γ∈Γ(µ,ν),
ϕ∈S[0,1)

sup
B⊂Σ2

Ω,
U⊂[0,1),
ω∈Ω

∣∣∣∣∫
B

∫
U
σx (ω)−τϕ(x)(ω)dxdγ(σ,τ)

∣∣∣∣
und ist als eine Art 2-Spieler Spiel zu verstehen. Spieler 1 wählt ein mögliches Coupling von zwei Wahr-
scheinlichkeitsverteilungen, unter welchem sich die Verteilungen möglichst ähnlich sehen. Nun wählt
Spieler 2 eine Menge von (verallgemeinerten) Koordinaten und (verallgemeinerten) Konfigurationen,
an denen sich µ und ν stark unterscheiden. Selbstverständlich gibt es von der Cut-Distanz auch eine
diskrete Variante, nämlich

∆�
(
µ,ν

)= inf
γ∈Γ(µ,ν),
φ∈Sn

sup
S⊂Ωn×Ωn ,

X⊂[n],
ω∈Ω

∣∣∣∣∣∣∣
∑

(σ,τ)∈S,
x∈X

γ(σ,τ)
(
1 {σx =ω}−1

{
τφ(x) =ω

})∣∣∣∣∣∣∣ .
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Hierbei bezeichnet Sn die Menge der Permutationen von [n]. In der o.g. Publikation zeigen wir unter
anderem, dass für Maße µ,ν ∈ P (Ωn) die Abstände ∆�(µ,ν) und D�(µ̂, ν̂) eng zusammenhängen, wie
man es intuitiv auch erwarten sollte.

Mit Hilfe der Cut-Distanz können wir P (ΣΩ) in einen kompakten metrischen Raum verwandeln. Ge-
nauer gesagt müssen wir Maße mit Cut-Distanz 0 identifizieren und definieren den Raum der Ω−laws
L (Ω) als den Raum der Äquivalenzklassen unter dieser Identifikation.

Während L (Ω), wie bereits erwähnt, durch Coja-Oghlan, Perkins und Skubch [42] eingeführt wurde,
etablieren wir eine komplette und in sich konsistente Grenzwerttheorie für diskrete Wahrscheinlich-
keitsmaße, die an die Theorie der Graph-Grenzwerte [31, 32, 128] angelehnt ist. Unter anderem bewei-
sen wir, dass (L (Ω),D�(·, ·)) ein kompakter metrischer Raum ist, und geben eine Art schwaches Regu-
laritätslemma [84] für Ω−laws, was ein zuvor bekanntes Resultat auf diskreten Maßen verallgemeinert
[49]. Besonders elegant hierbei ist, dass das Regularitätslemma nicht nur eine Existenzaussage umfasst,
sondern auch einen einfachen Algorithmus, das sogenannte Pinning, liefert, mit welchem eine entspre-
chende Partition des PhasenraumsΣΩ bzw.Ωn gefunden wird. Ohne zu sehr ins Detail zu gehen, verste-
hen wir hierbei unter Regularität, dass das Wahrscheinlichkeitsmaß - eingeschränkt auf die Partition -
unter der Cut-Distanz sehr ähnlich wie das Produktmaß mit denselben Marginalen aussieht. Wir zeigen
unter anderem, dass diese Eigenschaft, welche wir Extremität nennen, mit der schwachen Regularität
der Graphentheorie eng verknüpft ist. Ferner zeigen wir, dass verschiedene wesentliche Operationen
der statistischen Physik (wie zum Beispiel das Bilden von Overlaps) unter der Cut-Distanz stetig sind.

Insgesamt hilft die rigorose Analyse der Cut-Distanz in Spezialfällen dabei, Heuristiken der statisti-
schen Physik in mathematische Beweise zu verwandeln. An dieser Stelle kehren wir zurück zur direkten
Analyse von CSPs. Bislang haben wir Faktorgraphen von (zufälligen) CSPs betrachtet und uns deren
Phasenraum angeschaut. Dieser Lösungsraum ändert sich drastisch, wenn wir die sogenannte planted-
Version von CSPs betrachten.

Planted-Modelle und statistische Inferenz Wir betrachten dazu zunächst ein Beispiel. Nehmen
wir an, wir haben n Variablenknoten gegeben sowie eine Färbung σ der Knoten mit q Farben. Nun
erzeugen wir einen zufälligen Graphen derart, dass jede Kante i j mit Wahrscheinlichkeit p1 existiert,
fallsσi =σ j (das heißt, i j ist monochromatisch) beziehungsweise mit Wahrscheinlichkeit p2, fallsσi 6=
σ j . Nach dem Einfügen der Kanten vergessen wir die zugrunde liegende Färbung σ. Je nach Wahl von
p1 und p2 sieht der Graph sehr unterschiedlich aus. Ist p1 = p2, so kann der entstandene Graph nicht
von einem rein zufälligen G (n, p1) unterschieden werden, ist hingegen p1 ¿ p2 oder p1 À p2, so sollten
wir - gegeben der zufällige Graph - in der Lage sein, eine Färbung σ̃ zu finden, die σ ähnelt.

Etwas formaler erklärt dieses Vorgehen das Lehrer-Schüler-Modell der statistischen Inferenz [168].
Im einfachsten Fall erzeugt ein Lehrer eine Grundwahrheit σ, ein planted-Modell basierend auf dieser
Grundwahrheit, und übermittelt einem Schüler das Modell und die Information, wie σ und das Modell
erzeugt wurden. Die Aufgabe des Schülers ist es nun, eine Vermutung σ̃ zu formulieren, die möglichst
nah an der Grundwahrheit liegt. Im obigen Beispiel, was eine simple Form des stochastischen Blockmo-
dells [62, 85, 95] darstellt, muss der Schüler die Färbungσmöglichst genau aus dem zufälligen Graphen
rekonstruieren.

Es stellt sich heraus, dass solche Inferenzprobleme als physikalisches Modell wie zuvor ausgedrückt
werden können und sich somit Heuristiken zur Lösung von CSPs auch auf statistische Inferenzproble-
me übertragen [168]. Daher ist es nicht überraschend, dass wir auch hier Phasenübergänge untersuchen
können. Wir betrachten im Wesentlichen zwei Phasenübergänge. Sei I die Information, die der Schüler
erhält (z.B. der zufällige Graph sowie p1 und p2). Die Menge der Information sei durchα parametrisiert.
Beispielsweise kann α die Differenz von p1 und p2 sein oder die Anzahl von Messungen eines kompri-
mierten Signals.

• Der informationstheoretische Schwellenwert bezeichnet den Moment, ab welchem der Schüler σ
aus I (α) rekonstruieren kann.

• Der algorithmische Schwellenwert bezeichnet die Menge an Information, die notwendig ist, damit
ein effizienter Algorithmus bekannt ist, welcher σ aus I (α) rekonstruieren kann.
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In dieser Disseration betrachten wir ein spezielles Inferenzproblem – das Group-Testing – und studie-
ren sowohl informationstheoretische Schwellenwerte als auch algorithmische Schwellenwerte.

Group Testing Das Group-Testing Problem fand in den 1940er Jahren den Weg in die mathematische
Literatur [68] und wurde über die Jahrzehnte hinweg stetig untersucht [8, 9, 58, 59, 73, 80, 86, 98, 108,
132, 133, 154, 164]. In einer Population von n À 1 Individuen sind k mit einer Krankheit infiziert. Es
ist möglich mehrere Individuen auf einmal zu testen und das Ergebnis eines solchen Gruppentests ist
positiv, genau dann wenn mindestens ein infiziertes Individuum in dem Test enthalten ist. Gesucht
ist nun eine Strategie, die möglichst wenige Tests benötigt um die infizierten Individuen (mit hoher
Wahrscheinlichkeit) korrekt zu identifizieren. Eine Visualisierung findet sich in Abbildung 4.3.

x1 x2 x3 x4 x5 x6 x7

0 1 1 0 1

Abbildung 4.3.: Faktorgraph-Darstellung einer Group-Testing Strategie mit n = 7 Individuen von denen
k = 2 infiziert sind. Blaue Individuen sind nicht infiziert und rote Individuen sind infi-
ziert.

Das Group-Testing Problem kann unter vielen verschiedenen Modellen studiert werden. Beispiels-
weise können wir annehmen, dass jedes Individuum mit Wahrscheinlichkeit k/n infiziert ist oder dass
es exakt k Infizierte gibt. Ferner können wir die Teststrategien insofern beschränken, als dass nur ei-
ne, zwei oder drei Runden Tests durchgeführt werden können, oder derart, dass Individuen nicht öfter
als ∆mal getestet werden dürfen bzw. ein Gruppentest eine Maximalkapazität aufweist. Schlussendlich
können die Tests immer ein korrektes Ergebnis liefern oder aber mit einer bestimmten Wahrscheinlich-
keit ein falsches Ergebnis liefern. Die hier aufgelisteten Varianten sind weit entfernt davon vollständig
zu sein und wir verweisen interessierte Leser auf einen Übersichtsartikel von Aldridge, Johnson und
Scarlett [10].

In dieser Disseration beschäftigen wir uns mit dem sogenannten hypergeometrischen sublinearen pro-
babilistischen Group-Testing. Das heißt, wir nehmen an, dass wir die Anzahl der infizierten Individuen
k exakt kennen und sich k sublinear in n verhält, also k = nθ(θ ∈ (0,1)). Ferner möchten wir die in-
fizierten Individuen mit hoher Wahrscheinlichkeit rekonstruieren. Hierbei betrachten wir sowohl das
uneingeschränkte Group-Testing Problem, in welchem Individuen beliebig oft getestet werden können
und Tests beliebig groß werden dürfen, als auch das eingeschränkte Group-Testing Problem, in wel-
chem dies nicht der Fall ist. Insbesondere sind wir an Schwellenwerten interessiert, welche die Anzahl
der Tests m = m(n,k) beschreiben, die notwendig bzw. hinreichend sind, um den Infektionsstatus aller
Individuen zu rekonstruieren. Genauer gesagt enthält diese Dissertation drei Prublikationen, in denen
wir uns mit dem Group-Testing Problem auseinandersetzen, nämlich

Information-Theoretic and Algorithmic Thresholds for Group Testing [41]

und sowohl

Optimal group testing [46]

als auch

Near optimal sparsity-constrained group testing: improved bounds and algorithms [88].
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Im nicht-adaptiven Fall, das heißt, dass alle betrachteten Teststrategien alle Tests parallel ausführen
müssen, war vor den Beiträgen der Dissertation die beste bekannte Strategie das sogenannte zufällige
reguläre Modell [9]. In diesem Modell wählt jedes Individuum ∆=Θ (lnn) Tests zufällig aus und nimmt
an ihnen teil. Zudem war der beste bekannte Algorithmus der DD-Algorithmus, in welchem zunächst al-
le Individuen in negativen Tests als gesund deklariert werden und alle Individuen, die nun alleine in ei-
nem positiven Test vorkommen, als infiziert. Alle übrigen Individuen werden ebenfalls als nicht-infiziert
deklariert [108]. In Abbildung 4.4 sind die Ergebnisse der Publikationen [41, 46] zusammengefasst.

0 ln2
1+ln2

1
2

1

ln−2 2

ln−1 2

(2ln2 2)−1

((1+ ln2) ln2)−1

Prävalenz gegeben durch θ

m̃non-ada

m̃DD

m̃inf

Abbildung 4.4.: Die Phasenübergänge im hypergeometrischen probabilistischen Group-Testing. Die
Abbildung ist modifiziert nach [46, Abbildung 1]. Wir definieren m̃ = m · (k ln(n))−1.

Beginnen wir mit den bereits zuvor bekannten Tatsachen. Im dunkelroten Bereich, unter minf, ist es
weder nicht-adaptiv noch adaptiv (in mehreren Runden) möglich, die infizierten Individuen zu identi-
fizieren, wie aus dem Zählargument folgt, dass die Anzahl der möglichen Testergebnisse 2m mindestens
der Anzahl der Konfigurationen mit k infizierten Individuen

(n
k

)
entsprechen muss. Überhalb dieser

Schwellenwertfunktion gibt es Algorithmen, die in mehreren Runden die infizierten Individuen rekon-
struieren können [13, 60, 98, 153]. Ferner beschreibt die dunkelblaue Fläche (über mDD) den Bereich,
in welchem der DD-Algorithmus auf dem zufälligen regulären Modell funktioniert [108]. Es war ferner
bekannt, dass es informationstheoretisch auf selbigem Modell unterhalb von mnon−ada unmöglich ist,
die Infizierten zu rekonstruieren [8]. Unsere Beiträge lassen sich wie folgt zusammenfassen, wobei alle
angegebenen Schwellenwertfunktionen strikte Phasenübergänge ausdrücken.

• Unterhalb von mDD ist keine Inferenz durch den DD-Algorithmus möglich.

• Unterhalb von mnon−ada kann es keine nicht-adaptive Teststrategie geben, welche die Inferenz
der infizierten Individuen ermöglicht. Das heißt, dass die hellrote Fläche einen Bereich darstellt,
in welchem adaptive Algorithmen bekannt sind und funktionieren, während nicht-adaptive Stra-
tegien keinen Erfolg haben.

• Das zufällige reguläre Modell ermöglicht informationstheoretisch die Inferenz ab mnon−ada, ist
also informationstheoretisch optimal.

• Wir definieren basierend auf Ideen der Coding-Theorie eine neuartige nicht-adaptive, spatially-
coupled Teststrategie und einen effizienten Algorithmus, der ab mnon−ada, also auch bereits im
hellblauen Bereich, funktioniert.

• Die Inferenz von allen bis auf o(k) Individuen ist ab minf durch das eben genannte Modell mit
demselben Algorithmus möglich. Ebenso kann der Algorithmus leicht zu einem zweistufigen Al-
gorithmus verändert werden, der die Inferenz aller Individuen ab minf ermöglicht.

Zusammenfassend ist somit das hypergeometrische probabilistische Group-Testing im sublinearen Fall
vollständig verstanden. Schränken wir die zulässige Anzahl an Tests pro Individuum ein, das heißt, je-

des Individuum ist nur in maximal ∆ = O
(
ln1−δn

)
(δ ∈ (0,1]) Tests enthalten, so ist das Problem noch
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nicht vollständig erforscht. Bekannte Resultate sowie unsere erzielten Ergebnisse sind in Abbildung 4.5
dargestellt.

0 1
2 − ∆

2lnn
1
2

1

1+ 1
∆

Prävalenz gegeben durch θ

m̃inf(∆)
m̃ada-alg(∆)

m̃DD(∆)
m̃non-ada(∆)
m̃COMP, G(∆)

Abbildung 4.5.: Wichtige Phasenübergänge im hypergeometrischen probabilistischen Group-Testing
Problem, falls jedes Individuum höchstens ∆-mal getestet werden darf mit ∆ =
O

(
ln1−δn

)
für ein δ ∈ (0,1]. Die Abbildung zeigt die Phasenübergänge für die Wahl∆= 5

und n = 105. Wir parametrisieren die eigentliche Schwellenwertfunktion als m =∆km̃ .

Die relevantesten zuvor bekannten Resultate gehen auf Gandikota et al. [86] zurück. Insbesondere
analysieren die Autoren das zufällige reguläre Modell und einen einfachen Algorithmus COMP, der im
dunkelblauen Bereich die Inferenz ermöglicht. Dieser sehr einfache Algorithmus deklariert alle Indivi-
duen, die in einem negativen Test vorkommen, als uninfiziert während alle weiteren Individuen als infi-
ziert deklariert werden. Dieselben Autoren zeigen, dass jede nicht-adaptive Teststrategie mit höchstens
(eminf(∆))1−ε Tests scheitert. Wir erweitern diese Resultate wie folgt und nehmen wiederum implizit an,
dass Schwellenwertfunktionen zu strikten Phasenübergängen korrespondieren.

• Der DD-Algorithmus auf dem zufälligen regulären Modell ermöglicht Inferenz im blauen Bereich,
ist also strikt besser als COMP. Außerdem ermöglicht der DD-Algorithmus unterhalb von m̃DD mit
hoher Wahrscheinlichkeit keine Inferenz auf dem zufälligen regulären Modell.

• Unterhalb von minf(∆) kann keine – auch keine adaptive – Teststrategie erfolgreich sein.

• Unterhalb von mnon−ada(∆) kann keine nicht-adaptive Teststrategie die Inferenz der infizierten
Individuen ermöglichen.

• Überhalb von madap−alg(∆) existiert ein effizienter adaptiver Algorithmus, der die Inferenz mit ho-
her Wahrscheinlichkeit ermöglicht. Das heißt insbesondere, dass adaptive Algorithmen im hell-
roten Bereich wie zuvor eine bessere Performance als nicht-adaptive Strategien liefern.

In diesem Setting bleibt somit offen, wo der informationstheoretische Phasenübergang für adaptive
Algorithmen stattfindet (orangener Bereich) und ob es nicht-adaptive Teststrategien (ggf. mit effizienten
Algorithmen) gibt, welche Inferenz im gelben Bereich ermöglichen.

Zuletzt haben wir uns ebenfalls mit einer anderen Art der Einschränkung im Group-Testing Problem
beschäftigt. Falls jeder Test nur Γ=Θ(1) Individuen beinhalten darf, so war vor dem Beitrag der Disser-
tation nur wenig bekannt. Die Ergebnisse sind in Abbildung 4.6 visualisiert.

Gandikota et al. [86] analysieren wiederum den COMP-Algorithmus auf dem zufälligen regulären Mo-
dell, welcher ab der blauen Linie Inferenz ermöglicht. Ferner zeigt eine einfache Zählschranke, dass
mindestens n/Γ Tests in jeder (adaptiven) Teststrategie benötigt werden (schwarze Linie). Wir erzielen
die folgenden Resultate.

• Wir etablieren eine universelle informationstheoretische Schranke für alle nicht-adaptiven Test-
strategien, das heißt, jede nicht-adaptive Teststrategie kann unterhalb der roten Linie mit hoher
Wahrscheinlichkeit nicht die infizierten Individuen rekonstruieren.
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Abbildung 4.6.: Übersicht über die Phasenübergänge im hypergeometrischen probabilistischen Group-
Testing, sofern jeder Test höchstens Γ= 4 Individuen beinhalten darf. Wir parametrisie-
ren die Anzahl der Tests m = m̃ n

Γ und nehmen implizit an, dass n/Γ ∈Z.

• Wir definieren eine neue nicht-adaptive Teststrategie, die bei niedriger Prävalenz (θ < 1/2) vom
regulären Modell abweicht, und zeigen, dass der DD-Algorithmus für alle Werte von θ außerhalb
einer Nullmenge auf diesem Modell ab der roten Linie die Infizierten mit hoher Wahrscheinlich-
keit rekonstruiert. Dieses Modell mit dem DD-Algorithmus ist also optimal.

• Es existiert ein effizienter adaptiver Algorithmus, der – bis auf Rundung – oberhalb der schwarzen
Linie die Infizierten erfolgreich rekonstruiert.

Entsprechend ist dieser Fall des Group-Testings auch nahezu vollständig verstanden. Es bleibt allerdings
offen, ob ähnliche Analysen auch für ω(1) = Γ= o(n/k) durchgeführt werden können.

Schlussendlich befasst sich die vorliegende Dissertation mit sogenannten zufällig perturbierten Gra-
phmodellen.

Zufällig perturbierte Graphen Ursprünglich stammt die Idee der zufälligen Perturbation determi-
nistischer Systeme aus der smooth analysis of algorithms, also der stufenlosen Analyse von Algorithmen
[159]. Während viele Algorithmen eine exponentielle Laufzeit im schlimmsten Fall (Worst-Case-Analyse)
aufweisen, so zeigt sich in realen Anwendungen, dass sie meistens sehr effizient funktionieren. Das be-
kannteste Beispiel ist vermutlich der Simplex-Algorithmus [61] zum Lösen linearer Optimierungspro-
bleme. In Anwendungen scheinen somit oft die Worst-Case-Bedingungen nicht einzutreten, allerdings
ist es wichtig zu verstehen, wie hoch die Laufzeit auf einer anwendungsspezifischen Eingabe vermutlich
werden kann. Die Analyse der typischen Laufzeit auf einer zufälligen Eingabe (Average-Case-Analyse)
beantwortet diese Frage nur ungenügend, da in einer Anwendung durchaus Konstellationen auftreten
können, die weit entfernt von einer durchschnittlichen Eingabe sind. Allerdings ist es ebenso unwahr-
scheinlich, eine Worst-Case-Konfiguration zu beobachten. Aus diesem Grund werden perturbierte Mo-
delle untersucht. Wir beginnen bei einer Worst-Case-Konfiguration, fügen (ein wenig) Zufall hinzu und
möchten die Laufzeit des Algorithmus in Abhängigkeit der Menge des hinzugefügten Zufalls untersu-
chen [159].

Kurz nach Einführung dieser Betrachtungsweise von Algorithmen wurde das Prinzip auf die Existenz
aufspannender Strukturen in Graphen übertragen. Eine zentrale aufspannende Struktur ist beispielwei-
se der Hamiltonkreis, also ein Rundweg, der jeden Knoten exakt einmal besucht. Es sind zahlreiche hin-
reichende Bedingungen, wie Diracs Theorem [65] bekannt, welche zum Beispiel durch Minimalgradbe-
dingungen die Existenz eines Hamiltonkreises in einem beliebigen deterministischen Graphen garan-
tieren. Diese Art von Theoremen kann mit der Worst-Case-Analyse verglichen werden. Auf der anderen
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Seite ist der exakte Schwellenwert p = p(n) bekannt, ab welchem der zufällige Graph G (n.p) mit hoher
Wahrscheinlichkeit einen solchen aufspannenden Kreis besitzt (Average-Case-Analyse) [116, 117, 147].
Selbstverständlich existieren solche Analysen nicht nur für Hamiltonkreise, sondern auch unter ande-
rem für Spannbäume, Matchings, Potenzen von Hamiltonkreisen sowie für allgemeine aufspannende
Graphen mit beschränktem Maximalgrad, sowohl in deterministischen Graphen [36, 94, 113, 114, 115]
als auch in zufälligen Graphen [14, 33, 72, 76, 107, 118, 125, 139, 141, 150].

Das Modell der zufälligen perturbierten Graphen ist nun wie folgt zu verstehen. Gegeben sei ein be-
liebiger Graph Gα mit Minimalgrad αn sowie ein zufälliger Graph G (n, p) mit p = p(α). Nun stellt sich
die Frage, wann Gα ∪G (n, p) mit hoher Wahrscheinlichkeit einen Hamiltonkreis besitzt. Offenbar ist
der Schwellenwert nicht nur abhängig vonα, sondern auch von dem gegebenen Graphen Gα, das heißt,
wir suchen einen Schwellenwert p∗ im folgenden Sinne. Sofern p > p∗, so enthält Gα∪G (n, p) einen
Hamiltonkreis mit hoher Wahrscheinlichkeit unabhängig von der Wahl von Gα. Ist andererseits p < p∗,
so existiert mindestens ein Graph Gα mit Minimalgrad αn, sodass die Vereinigung mit dem zufälligen
Graphen keinen Hamiltonkreis besitzt.

Dieses Modell wurde erstmalig von Bohman, Frieze und Martin [28] diskutiert. Es folgten mehrere
Publikationen, welche hinreichende Bedingungen für die Existenz verschiedener aufspannender Struk-
turen in Gα∪G (n, p) geben [20, 26, 35, 34, 119], allerdings liegt all diesen Beiträgen zu Grunde, dass der
betrachtete deterministische Graph ein dichter Graph ist, das heißt, dass α = Θ(1) eine Konstante ist.
Das letzte in dieser Dissertation enthaltene Manuskript,

Random perturbation of sparse graphs [93],

beschäftigt sich mit dem Fall α = o(1), also mit dem Fall, dass der zugrunde liegende deterministische
Graph dünn ist. In diesem Beitrag geben wir hinreichende Bedingungen für die Existenz von Matchings
und Hamiltonkreisen sowie für die Existenz aufspannender Bäume mit beschränktem Maximalgrad,
indem wir die Frage nach der Existenz einer aufspannenden Struktur in Gα∪G (n, p) auf die Existenz
nahezu-aufspannender Strukturen in G (n, p) zurückführen.
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[141] R. Nenadov and N. Škorić. ‘Powers of Hamilton cycles in random graphs and tight Hamilton
cycles in random hypergraphs’. In: Random Structures & Algorithms 54.1 (2019), pp. 187–208.

[142] D. Panchenko and M. Talagrand. ‘Bounds for diluted mean-fields spin glass models’. In: Probab-
ility Theory and Related Fields 130.3 (2004), pp. 319–336.

[143] G. Parisi. ‘A sequence of approximated solutions to the S-K model for spin glasses’. In: Journal of
Physics A: Mathematical and General 13.4 (1980), pp. L115–L121.

[144] G. Parisi, F. Ricci-Tersenghi and T. Rizzo. ‘Diluted Mean-Field Spin-Glass Models at Criticality’.
In: Journal of Statistical Mechanics: Theory and Experiment 2014 (2014).

[145] J. Pearl. ‘Reverend Bayes on Inference Engines: A Distributed Hierarchical Approach’. In: Pro-
ceedings of the Second AAAI Conference on Artificial Intelligence. AAAI’82. Pittsburgh, Pennsylvania:
AAAI Press, 1982, pp. 133–136.

[146] J. Pearl. ‘Chapter 4 - Belief Updating by Network Propagation’. In: Probabilistic Reasoning in In-
telligent Systems. Ed. by J. Pearl. San Francisco (CA): Morgan Kaufmann, 1988, pp. 143–237.

[147] L. Pósa. ‘Hamiltonian circuits in random graphs’. In: Discrete Mathematics 14.4 (1976), pp. 359–
364.



References 101

[148] P. Raghavendra and N. Tan. ‘Approximating CSPs with Global Cardinality Constraints Using SDP
Hierarchies’. In: Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (2011).

[149] L. Riccio and C. J. Colbourn. ‘Sharper Bounds in Adaptive Group Testing’. In: Taiwanese Journal
of Mathematics 4.4 (2000), pp. 669–673.

[150] O. Riordan. ‘Spanning subgraphs of random graphs’. In: Combinatorics, Probability and Com-
puting 9.2 (2000), pp. 125–148.

[151] V. Rödl and M. Schacht. ‘Regularity Lemmas for Graphs’. In: Fete of Combinatorics and Computer
Science. Springer Berlin Heidelberg, 2010, pp. 287–325.

[152] J. Scarlett and V. Cevher. ‘Limits on support recovery with probabilistic models: An information-
theoretic framework’. In: 2015 IEEE International Symposium on Information Theory (ISIT). 2015,
pp. 2331–2335.

[153] J. Scarlett. ‘Noisy Adaptive Group Testing: Bounds and Algorithms’. In: IEEE Transactions on In-
formation Theory 65.6 (2019), pp. 3646–3661.

[154] J. Scarlett and V. Cevher. ‘Phase Transitions in Group Testing’. In: Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Ap-
plied Mathematics, 2015.

[155] J. Scarlett and V. Cevher. ‘Phase Transitions in the Pooled Data Problem’. In: Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information Processing Systems.
2017, pp. 376–384.

[156] G. Semerjian and R. Monasson. ‘A Study of Pure Random Walk on Random Satisfiability Prob-
lems with “Physical” Methods’. In: Theory and Applications of Satisfiability Testing. Springer Ber-
lin Heidelberg, 2004, pp. 120–134.

[157] J. M. L. Sengers. ‘Mean-field theories, their weaknesses and strength’. In: Fluid Phase Equilibria
158-160 (1999), pp. 3–17.

[158] D. Sherrington and S. Kirkpatrick. ‘Solvable Model of a Spin-Glass’. In: Phys. Rev. Lett. 35 (26
1975), pp. 1792–1796.

[159] D. A. Spielman and S.-H. Teng. ‘Smoothed Analysis of Algorithms: Why the Simplex Algorithm
Usually Takes Polynomial Time’. In: J. ACM 51.3 (2004), pp. 385–463.

[160] E. Szemerédi. ‘On sets of integers containing no k elements in arithmetic progression.’ In: Acta
Arithmetica 27 (1975), pp. 199–245.

[161] M. Talagrand. ‘Multiple levels of symmetry breaking’. In: Probability Theory and Related Fields
117.4 (2000), pp. 449–466.

[162] M. Talagrand. ‘The Parisi Formula’. In: Annals of Mathematics 163.1 (2006), pp. 221–263.

[163] T. Tao. Szemeredi’s regularity lemma via random partitions. 2019. URL: https://terrytao.
wordpress.com/2009/04/26/szemeredis-regularity-lemma-via-random-partitions/
(visited on 30/11/2020).

[164] P. Ungar. ‘The cutoff point for group testing’. In: Communications on Pure and Applied Mathem-
atics 13.1 (1960), pp. 49–54.

[165] L. G. Valiant. ‘The Complexity of Enumeration and Reliability Problems’. In: SIAM Journal on
Computing 8.3 (1979), pp. 410–421.

[166] L. Viana and A. J. Bray. ‘Phase diagrams for dilute spin glasses’. In: Journal of Physics C: Solid
State Physics 18.15 (1985), pp. 3037–3051.

[167] E. Vincent and V. Dupuis. ‘Spin Glasses: Experimental Signatures and Salient Outcomes’. In:
Frustrated Materials and Ferroic Glasses. Springer International Publishing, 2018, pp. 31–56.

[168] L. Zdeborová and F. Krzakala. ‘Statistical physics of inference: thresholds and algorithms’. In:
Advances in Physics 65.5 (2016), pp. 453–552.

https://terrytao.wordpress.com/2009/04/26/szemeredis-regularity-lemma-via-random-partitions/
https://terrytao.wordpress.com/2009/04/26/szemeredis-regularity-lemma-via-random-partitions/


References 102

[169] L. Zdeborová and M. Mézard. ‘Constraint satisfaction problems with isolated solutions are hard’.
In: Journal of Statistical Mechanics: Theory and Experiment 2008.12 (2008), P12004.

[170] Y. Zhang. Phase Transitions of Random Constraints Satisfaction Problem. UC Berkley, 2017.



Contained publications and the author’s contributions A-1

A. Contained publications and the author’s
contributions

This section provides a detailed overview about the author’s contributions as well as the publication
status of each of those manuscripts. We will explicitly only state the contributions of this thesis’s author
(MHK). Therefore, the papers might contain results achieved by different authors whose contributions
are not discussed below. For the sake of readability, we will abbreviate all author’s names to their initials.

Information-theoretic and algorithmic thresholds for group testing This manuscript by A. Coja-
Oghlan, O. Gebhard, M. Hahn-Klimroth and P. Loick appeared in the IEEE Transactions on Information
Theory [41] and a short version appeared in the Proceedings of the 46th ICALP [44].

While the idea of this paper was found during the master’s thesis of OG (supervised by MHK and PL),
the further main contributions of MHK are the development and formalisation of Theorem 1.1 and its
proof in joint work with PL as well as the formalisation of the proof of Theorem 1.2 based on an idea of
PL.

Optimal Group Testing A short version of this article by A. Coja-Oghlan, O. Gebhard, M. Hahn-
Klimroth and P. Loick appeared in the Proceedings of 33rd Conference on Learning Theory (COLT) [45]
and the full version is accepted for publication at Combinatorics, Probability and Computing.

The algorithmic achievability result with respect to adaptive group testing (Theorem 1.3) was formally
proven by MHK and PL while the corresponding non-adaptive result (Theorem 1.2) is joint work of all
authors. The main technical contribution to Theorem 1.2, thus the derivation of the correct weights as
well as the formal proof are due to ACO, MHK and PL. Furthermore, the proof idea of Theorem 1.1 based
on a generalised argument of Aldridge was discussed by MHK and PL while the formal derivation, i.e.
the reduction on a different prevalence is due to ACO, MHK and PL. Finally, all authors contributed to
the writing of the manuscript.

Near-Optimal Sparsity-Constrained Group Testing: Improved Bounds and Algorithms This
paper by O. Gebhard, M. Hahn-Klimroth, O. Parczyk, M. Penschuck, M. Rolvien, J. Scarlett and N. Tan is
under review at IEEE Transactions on Information Theory.

To be more precise, OG, MHK, OP, MP, MR uploaded a draft on non-adaptive sparsity constrained
group testing to arXiv and contemporaneously JS and NT published a preprint on adaptive methods. As
those contributions could be perfectly merged all authors decided to extend their results and combine
them.

While the writing of the manuscript was led by OG, MHK and JS, the development and formal elabor-
ation of the non-adaptive converse bounds with respect to information theory (Theorem 3.2 and The-
orem 4.1) are joint equal work of MHK and OP. A further contribution of MHK is the development of the
proof idea of Theorem 3.4 ( DD converse in the ∆−divisible model) and its formal justification was joint
work of MHK and OP. The corresponding achievability statement (Theorem 3.3) is joint work of OG and
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The cut metric for probability distributions This article by A. Coja-Oghlan and M. Hahn-Klimroth
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