Seminar zur Numerik

Inhalt und Ziele

Viele Vorgänge in den Natur- und Wirtschaftswissenschaften lassen sich durch Differentialgleichungen beschreiben, deren Lösung die Vorhersage des Verhaltens eines Systems bei vollständiger Kenntnis aller dazu nötigen Parameter ermöglicht. In diesem Seminar wird an ausgewählten Themen die Entwicklung fortgeschrittener numerischer Verfahren zur Lösung von Differentialgleichungen untersucht, sowie Probleme der Parameteroptimierung und -identifikation (inverse Probleme) untersucht.

Das Seminar richtet sich an Bachelor-Studenten ab dem 4. Semester und an Master-Studenten. Es ergänzt die Vorlesung "Numerik von Differentialgleichungen" aus dem Sommersemester 2021 (oder alternativ die Vorlesung "Optimierung und inverse Probleme" aus dem Wintersemester 2020/21) und bildet mit dieser zusammen das Modul BaM-NUM-gs bzw. MaM-FN-gs.

Ort und Zeit

Das Seminar findet Mittwochs, 16-18 Uhr, im Raum 107 (Robert Mayer Str. 10) statt. Im Seminar ist ein 60-minütiger Vortrag zum Thema zu halten (plus 30min Diskussion und Nachbesprechung). Eine zusätzliche schriftliche Ausarbeitung wird nicht verlangt.

Themen und Termine:

  • 27.10.21, L.B.: Differential-Algebraische Gleichungen (Literatur: [HW II, Abschnitt VI.I.])
  • 03.11.21, F.S.: Lineare semidefinite Optimierung (Literatur: eigene Recherche)
  • 10.11.21, D.R.: Globale Newton Konvergenz für konvexe invers-monotone Funktionen (Literatur: [OR, Theorem 13.3.4])
  • 17.11.21, P.B.: Globale Newton Konvergenz für konvexe vorwärts-monotone Funktionen I (Literatur: [H1, Abschnitt 2.2])
  • 24.11.21, R.D.: Globale Newton Konvergenz für konvexe vorwärts-monotone Funktionen II (Literatur: [H1, Abschnitt 2.3])
  • 01.12.21, S.P.: Fréchet und Gâteaux-Ableitungen und Minimierung von Funktionalen (Literatur: [AH, Abschnitt 4.3])
  • 08.12.21, N.N.: N.N
  • 15.12.21, A.F.: Mathematische Grundlagen adiabatischer Quantenrechner (Literatur: [McG])
  • 12.01.22, M.H.: Von inversen Problemen zu semidefiniter Optimierung (Literatur: [H2, Abschnitt 2])
  • 19.01.22, A.D.: Inverse Koeffizientenprobleme in elliptischen PDGL (Literatur: [H3, Abschnitt 3])
  • 26.01.22, L.S.: FEM-Lösung inverser Koeffizientenprobleme (Literatur: [H3, Abschnitt 4])

Literatur

Modulzuordnung:

  • Modulkürzel: BaM-NUM-gs, MaM-FN-gs
  • Veranstaltungsseite im Vorlesungsverzeichnis: Seminar zur Numerik