Vorlesung
Numerik partieller Differentialgleichungen
Prof. Dr. Bastian von Harrach
M.Sc. Andrej Brojatsch
Wintersemester 2021/22

Aktuelles - Inhalt und Ziele - Personen - Termine - Materialien - Literatur - Modulzuordnung




Aktuelles

  • Für jedwede Fragen wenden Sie sich bitte an den Übungsleiter.




Inhalt und Ziele

Viele Vorgänge in den Natur- und Wirtschaftswissenschaften lassen sich durch Differentialgleichungen beschreiben, deren Lösung die Vorhersage des Verhaltens eines Systems bei vollständiger Kenntnis aller dazu nötigen Parameter ermöglicht. Ziel dieser Vorlesung ist die Entwicklung moderner Finite-Elemente-Verfahren zur numerischen Lösung partieller Differentialgleichungen. Im Rahmen der Vorlesung wird auch eine Einführung in die variationelle Theorie partieller Differentialgleichungen gegeben.

Die Vorlesung richtet sich an Bachelor-Studenten ab dem 4. Semester und an Master-Studenten. Sie ergänzt die Vorlesung "Numerik von Differentialgleichungen" aus dem Sommersemester 2021.

   

Wärmeverteilung in einem L-förmigen Gebiet mit zeitlich variierender Wärmequelle




Personen




Termine

Vorlesung

      • Mittwoch, 14-16 Uhr, Robert-Mayer-Str. 10, Raum 107

Übungen

      Die Übungen finden im zweiwöchigen Rythmus statt.

          • Dienstag, 14-16 Uhr, Robert-Mayer-Str. 10, Raum 107, erster Termin am 26.10.2021

      Prüfung

      • Nach §25(4) der Prüfungsordnung erfolgt die offizielle Meldung zur Modulprüfung durch Antritt. Bitte beachten Sie aber, dass bei Nicht-Antritt ohne triftigen Grund nicht an der Wiederholungsprüfung zu Beginn des Sommersemesters 22 teilgenommen werden darf.
      • Für die Zulassung zur Modulprüfung sind keine Studienleistungen erforderlich. Wir empfehlen jedoch die Modulprüfung nur dann abzulegen, wenn in den Übungen:
        • 50% der Punkte der bewerteten Aufgaben erreicht,
        • 50% der freiwilligen Aufgaben votiert,
        • und drei mal vorgerechnet wurde.



      Materialien




    Übungen




    Literatur

    • Martin Hanke-Bourgeois, Grundlagen der numerischen Mathematik und des wissenschaftlichen Rechnens, Teubner Verlag, Wiesbaden, 2009.
    • Lawrence C. Evans, Partial Differential Equations, 2010.



    Modulzuordnung