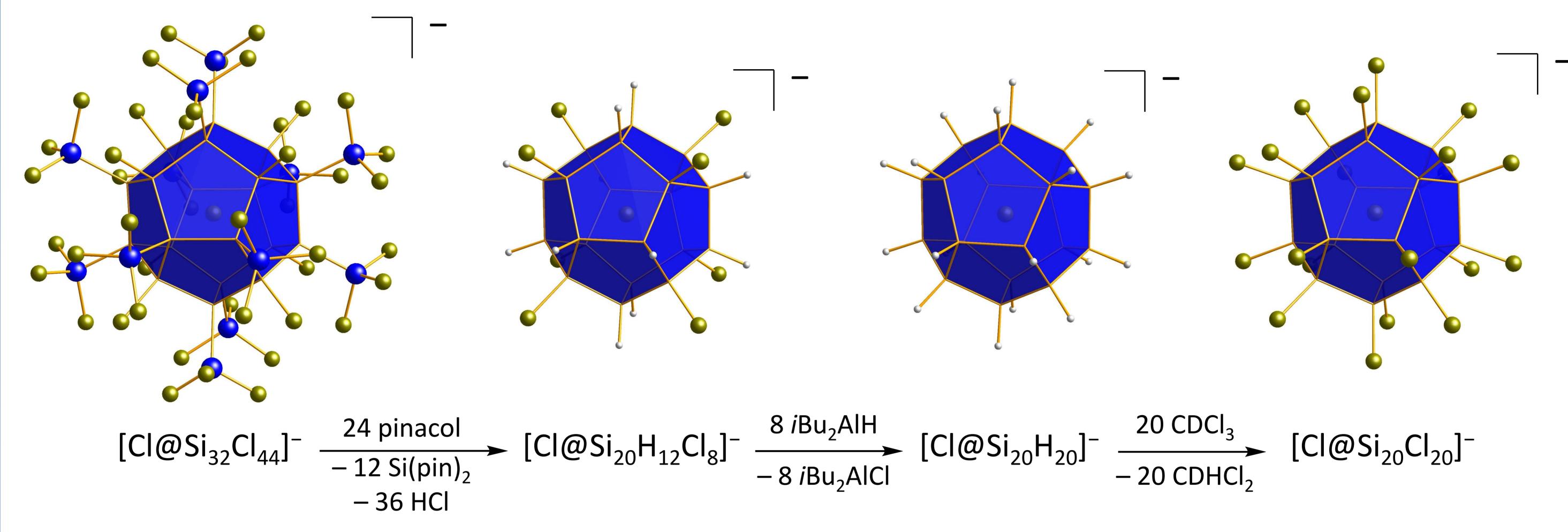
Siladodecahedrane [Cl@Si₂₀H₂₀]⁻ and its Chlorinated Derivatives

UNIVERSITÄT FRANKFURT AM MAIN

Marcel Bamberg^[a], Markus Bursch^[b], Andreas Hansen^[b], Lukas Kunze^[b], Michael Bolte^[a],

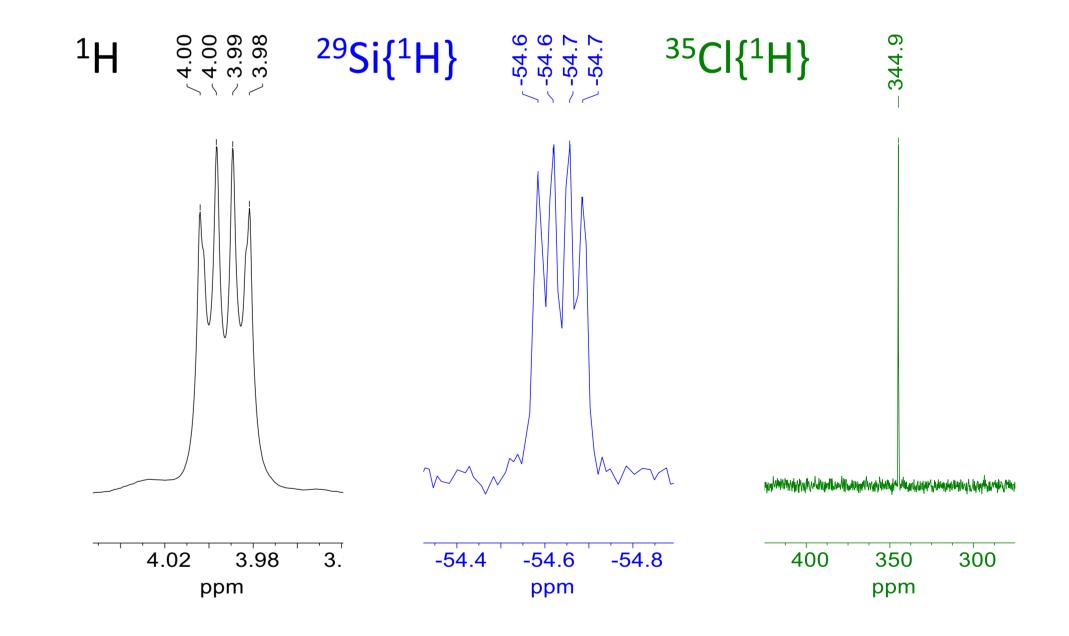

Hans-Wolfram Lerner^[a], Stefan Grimme^[b], Matthias Wagner^[a]*

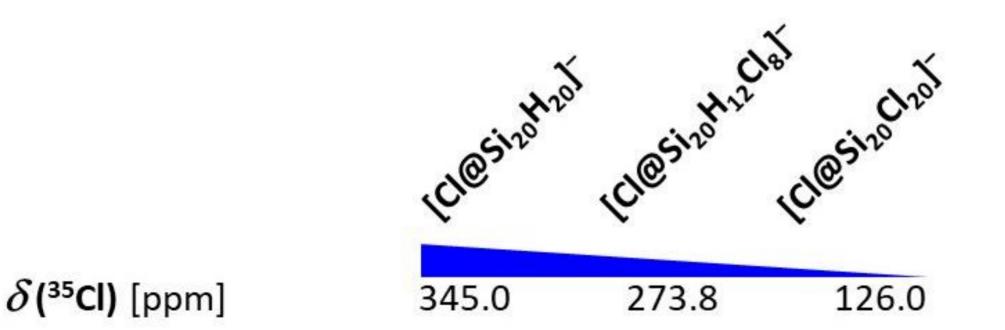
[a] Institute for Inorganic and Analytical Chemistry, Goethe-University Frankfurt am Main, Max-von-Laue Str. 7, 60438 Frankfurt am Main, Germany [b] Mulliken Center for Theoretical Chemistry, Institute of Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4, 53115 Bonn, Germany

Introduction

Compared to their carbonaceous analogues, silafullerenes (Si_n) and their saturated derivatives, silafulleranes (Si_nH_n), represent an almost untouched area of synthetic chemistry. Nevertheless, the smallest possible silafullerane cage, Si₂₀H₂₀, has been considered an attractive subject for quantum-chemical research over decades. Just recently, we have proven its existence by the synthesis of salts containing the endohedrally chloride-doped cluster [Cl@Si₂₀H₂₀]⁻. Our efficient protocol builds on the previously published synthesis of the T_h -symmetric [20]silafullerane $[Cl@Si_{32}Cl_{44}]^{-}$ as the first of three steps.^[1] [*n*Bu₄N][Cl@Si₃₂Cl₄₄] can be prepared from Si₂Cl₆, [*n*Bu₄N]Cl, and catalytic amounts of *n*Bu₃N in a onepot procedure and crystallizes in yields up to 30%.^[2,3]

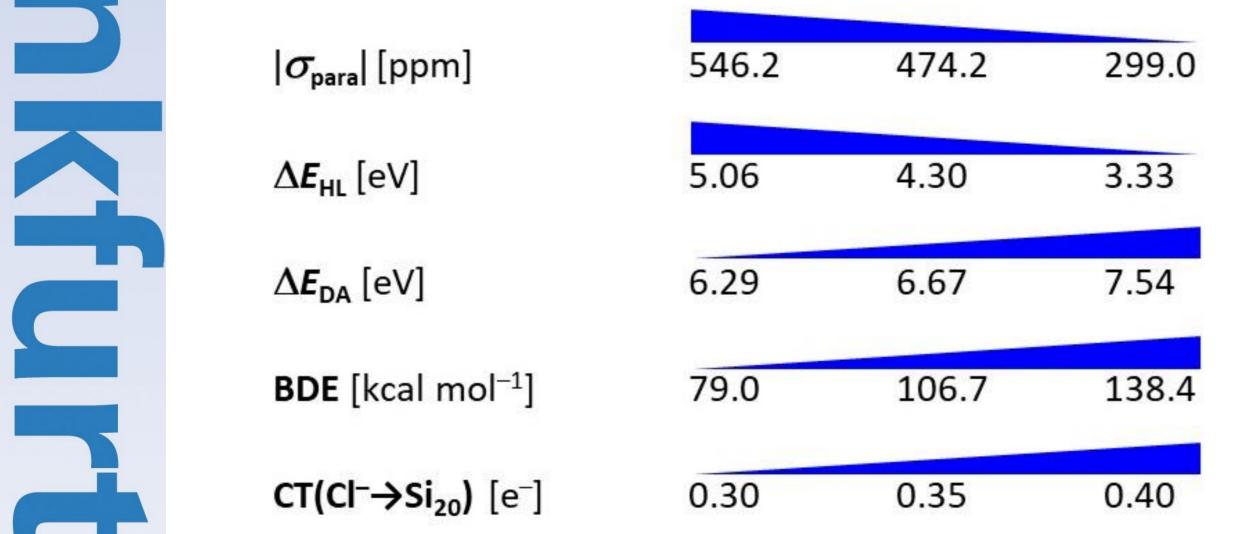
Syntheses and Molecular Structures in the Solid State (SC-XRD)


Note: The cations ($[Et_4N]^+$, $[nBu_4N]^+$, or $[(Ph_3P)_2N]^+$) have been omitted for clarity.


³⁵CI NMR Spectroscopy

³⁵Cl (and ³⁷Cl) NMR experiments ($S(^{35}Cl) = S(^{37}Cl) = ^{3}/_{2}$) normally suffer from extreme line broadening as a result of rapid quadrupolar relaxation.^[4] This is not a problem in the I_h and T_{h} symmetric environments of our endohedral Cl⁻ ions!

Therefore, 1:1:1:1 quartets caused by coupling to the endohedral ³⁵Cl or ³⁷Cl nucleus are observed in the ¹H and ²⁹Si{¹H} NMR spectra of $[(Ph_3P)_2N][Cl@Si_{20}H_{20}]$: J(H,Cl) = 3.3 Hz; J(Si,Cl) = 3.0 Hz.



Probing the Endohedral $Cl^{-} \rightarrow Si_{20}$ Interaction

A higher number of Cl substituents on the Si₂₀ cluster surface...

- ... increases the charge transfer (CT) from the endohedral Cl⁻ ion to its Si₂₀ host. ... leads to a larger bond-dissociation energy (BDE) between host and guest. ... decreases the HOMO-LUMO gap ($\Delta E_{\rm HI}$).
- causes a stronger magnetic shielding of the endohedral Cl⁻ ion!

Major theoretical achievements:

- Application of DLPNO-CCSD(T1)/VeryTightPNO/δ MP2/CBS(aug-cc-pVTZ/aug-cc-pVQZ) for the calculation of accurate BDE and CT values.
- Calculation of NMR-spectroscopic parameters and analysis of shielding components at the SO-ZORA-PBE0/TZP(COSMO(THF))//B3LYP-D4/def2-TZVPP level of theory.
- Rationalization of the inverse correlation between δ (³⁵Cl) and BDE / CT(Cl⁻ \rightarrow Si₂₀) by perturbation theory.

FONDS DER CHEMISCHEN INDUSTRIE

References:

 $(\mathbf{P}$

[1] M. Bamberg, M. Bursch, A. Hansen, M. Brandl, G. Sentis, L. Kunze, M. Bolte, H.-W. Lerner, S. Grimme and M. Wagner, J. Am. Chem. Soc., 2021, 143, 10865-10871.

[2] J. Tillmann, J. H. Wender, U. Bahr, M. Bolte, H.-W. Lerner, M. C. Holthausen and M. Wagner, Angew. Chem. Int. Ed., 2015, 54, 5429–5433. [3] Invited review: J. Teichmann and M. Wagner, Chem. Commun., 2018, 54, 1397–1412. [4] J. W. Akitt, The Quadrupolar Halides. In *Multinuclear NMR*; J. Mason, Ed.; Springer: Boston, 1987, pp. 447–461.

Marcel Bamberg wishes to thank the Fonds der Chemischen Industrie (FCI) for a Kekulé Ph. D. grant. The generous donation of Si₂Cl₆ from Evonik Operations GmbH, Rheinfelden (Germany), is gratefully acknowledged.