
BASIC USAGE OF modcone_gen_2 IN SAGEMATH

Riccardo Zuffetti

Summary

The SageMath program modcone_gen_2 is useful for working with the modular cones introduced
in [Zuf22b]. For fixed k, it provides empirical evidences that the modular cone Ck is polyhe-
dral. For k ≤ 38, such polyhedrality is certified. This note gives a short explanation on how to
use modcone_gen_2.
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1. Notation and background

Let k be an even integer. We denote by Mk
2 , resp. Mk

2 (Q), the space of Siegel modular forms of
genus 2 and weight k, resp. the Q-space of the ones with rational Fourier coefficients. The space
of elliptic modular forms of weight k is denoted by Mk

1 , with analogous meaning for Mk
1 (Q).

Recall that the Fourier coefficients of a Siegel modular form in Mk
2 are indexed over the set Λ2

of symmetric half-integral positive semi-definite matrices of order two, namely

Λ2 =
{
T =

( n r/2
r/2 m

)
: n, r,m ∈ Z and T ≥ 0

}
.

For every F ∈Mk
2 , we write its Fourier expansion as

F (Z) =
∑
T∈Λ2

cT (F ) · e2πi tr(TZ), Z ∈ H2.

The subset of positive definite matrices in Λ2 is denoted by Λ+
2 . We say that a ma-

trix T =
( n r/2
r/2 m

)
∈ Λ2 is reduced1 if |r| ≤ n ≤ m.

The Siegel modular forms with Fourier coefficients supported only on Λ+
2 are called Siegel cusp

forms. We denote by Sk2 (resp. Sk2 (Q)) the subspace of Siegel cusp forms of Mk
2 (resp. Mk

2 (Q)).
The notation Sk1 and Sk1 (Q) is the analog for elliptic cusp forms.

We fix once and for all a basis of Mk
2 (Q) of the form

(1.1) F1, . . . , F`′ , E
k
2,1(f1), . . . , Ek2,1(f`), E

k
2

where F1, . . . , F`′ and f1, . . . , f` are respectively a basis of Sk2 (Q) and Sk1 (Q), and where Ek2
and Ek2,1(f) are respectively the (normalized) Siegel Eisenstein series of weight k and the Klingen
Eisenstein series attached to the cusp form f ∈ Sk1 . The subspace of Klingen Eisenstein series is
denoted by Nk

2 . This space has complex dimension equal to the one of Sk1 .
The dual space Mk

2 (Q) is generated by the so-called coefficient extraction functionals cT ,
defined for every T ∈ Λ2 as

cT : Mk
2 (Q) −→ Q, F 7−→ cT (F ).

1There are several equivalent definitions of reduced matrix in the literature. For instance, it is possible to define
them as the ones satisfying the relation |r| ≤ m ≤ n instead.
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Every functional cT can be rewritten over the basis (1.1) as the tuple of rational numbers

(1.2) cT =
(
cT (F1), . . . , cT (F`′), cT

(
Ek2,1(f1)

)
, . . . , cT

(
Ek2,1(f`)

)
, cT (Ek2 )

)
∈ Q1+`+`′ .

In [Zuf22b] and [Zuf22a], we defined the modular cone Ck as the (convex) cone in Mk
2 (Q)∗

generated by all functionals cT attached to positive definite matrices, namely

(1.3) Ck = 〈cT : T ∈ Λ+
2 〉Q≥0

.

We used such cone to investigate the properties of cones of codimension 2 special cycles on
orthogonal Shimura varieties.

We also classified all accumulation rays of Ck. Among them, there are the rays generated by
the points Vm, where m ∈ Z>0; we refer to [Zuf22b, Section 5.1] for a detailed introduction. Such
rays played a key role to prove that the accumulation cone of Ck is rational and polyhedral.

The program modcone_gen_2 may be used to compute the functionals cT as in (1.2) and the
accumulation rays generated by Vm. It also provides empirical evidences to [Zuf22b, Conjecture 1],
i.e. that the modular cone Ck is polyhedral whenever k ≡ 2 mod 4 and k > 4, and certifies such
polyhedrality for all k ≤ 38. The goal of the following sections is to illustrate the features of such
program.

2. The modular cone in genus 2

The program modcone_gen_2 has been written using SageMath Version 8.1 , released on
December 7, 2017. To use the program, it is necessary to install the SageMath package degree2
from [Tak17]; see [Tak17, Readme file, Installation] for the procedure to do so.

We remark that degree2, hence also modcone_gen_2, may not work for more recent versions
of SageMath. Anyway, it is possible to download Version 8.1 and run it side-by-side with a more
recent one.

The first step to use the program is to launch it as load("modcone_gen_2.sage").

2.1. Basis of Mk
2 (Q).

compute_and_save_bases(k , prec = 30)

This command saves the following two files in the folder on which SageMath is working.
• eisk_prec_30: a dictionary that may be regarded as the Siegel Eisenstein series Ek2 . As
explained in Example 2.1, it is possible to extract the Fourier coefficient of Ek2 associated
to any matrix in Λ2 with diagonal entries at most prec. The value prec is by default
equal to 30.
• basisk_prec_30: it may be regarded as a basis of the space Sk2⊕Nk

2 of Klingen Eisenstein
series and cusp forms, namely F1, . . . , F`, E

k
2,1(f1), . . . , Ek2,1(f`). Each of such modular

forms is represented as a list of matrices in Λ2 with diagonal entries at most prec, together
with their associated Fourier coefficients. The saved file may be summoned as illustrated
in Example 2.2.

Note that any matrix
( n r/2
r/2 m

)
∈ Λ2 must be written as (n,r,m) when extracting the Fourier

coefficients of the modular forms in the basis computed above.

Example 2.1. Let k = 22. We launch compute_and_save_bases(22), obtaining two files
denominated eis22_prec_30 and basis22_prec_30. We load the former as

eis=load("eis22_prec_30")

which may be regarded as the Siegel Eisenstein series E22
2 . We can compute the Fourier coef-

ficient cT (E22
2 ) associated to any matrix T ∈ Λ2 whose diagonal entries are at most 30. For

instance, we may compute the Fourier coefficient associated to the zero matrix and to
( 1 1/2

1/2 1

)
as follows.
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v=eis["fc_dct"]
v[(0,0,0)]
v[(1,1,1)]

We obtain respectively 1 and 21294576422083465536/118085745272487494165444953.

Example 2.2. As in the previous example, we launch compute_and_save_bases(22). We may
summon the saved space S22

2 ⊕N22
2 of Klingen Eisenstein series and Siegel cusp forms as follows.

SN=KlingenEisensteinAndCuspForms(22,30)
SN.load_basis_from("basis22_prec_30")

We compute the dimension of such space.

SN.dimension()
SN.dimension_of_cuspforms()

We obtain as output respectively 5 and 4, deducing that dimS22
2 = 4 and that dimN22

2 = 1. The
basis of S22

2 ⊕N22
2 can be summoned as

b=SN.basis()

The output b is a list of five dictionaries. The first four represent a basis of cusp forms for S22
2 (Q).

The remaining one is a Klingen Eisenstein series generating N22
2 (Q).

2.2. Coefficient extraction functionals in Mk
2 (Q)∗.

c_T(k, n, r, m, prec = 30)

This command loads the files generated by compute_and_save_bases(k,prec=30), and gives
as output a list. The latter is the vector representing the coefficient extraction functional cT ,
where T =

( n r/2
r/2 m

)
∈ Λ+

2 depends on the input, over the basis (1.1) of Mk
2 (Q) computed as

explained in Section 2.1. We remark that both the input n and m must not exceed the value of
precision prec.

2.3. Lists of coefficient extraction functionals.

compute_and_save_coefficient_extraction_functionals(k , prec = 30)

This command loads the files generated by compute_and_save_bases(k,prec=30), and saves a
file named coeff_TOTk_prec_30. The latter is a list containing the following three objects. In
fact, the most important is the last one.

• coeff[0] is a dictionary. Its keys are the determinants of the reduced matrices in Λ+
2 that

have diagonal entries at most prec. To every key, the dictionary associates a maximal list
of reduced matrices in Λ+

2 with diagonal entries at most prec, determinant equal to the
key, and such that the associated coefficient extraction functionals are pairwise different.
• coeff[1] is a list of numbers. The j-th entry is the number of (pairwise different)
coefficient extraction functionals cT associated to matrices T appearing as values attached
to the smallest first j keys of coeff[0].
• coeff[2] is a list. Its entries are the (pairwise different) coefficient extraction function-
als cT ∈ Q1+`+`′ arising from the matrices indexed in coeff[0]. They are ordered with
respect to detT , hence the first entry of coeff[2] is the functional cT associated to the
matrix T =

( 1 1/2
1/2 1

)
.

Example 2.3. Let k = 22. Suppose we have launched compute_and_save_bases(22) once, so
that the files eis22_prec_30 and basis22_prec_30 are already saved in our current folder. We
launch compute_and_save_coefficient_extraction_functionals(22), obtaining a new file
saved as coeff_TOT22_prec_30. We load it as follows.

coeff=load("coeff_TOT22_prec_30")
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The functionals cT are saved in the list coeff[2]. The first entry of such list is the functional

(2.1) (0, 1, 1, 1, 48384, 21294576422083465536/118085745272487494165444953),

namely the functional cT associated to the matrix T =
( 1 1/2

1/2 1

)
, rewritten as a tuple in Q6 with

respect to the basis (1.1) of M22
2 (Q) computed as explained in Section 2.1.

2.4. An algorithm to check empirically whether the modular cone Ck is polyhedral.
Let k > 4 be such that k ≡ 2 mod 4. In [Zuf22b] [Zuf22a] we computed all accumulation
rays of the modular cone Ck with respect to the set of generators used to define it. In [Zuf22b,
Theorem 7.5], we provided a sufficient condition for the polyhedrality of Ck, conjecturing that it
is always satisfied.

The program modcone_gen_2 can be used to provide empirical evidences to the polyhedrality
of Ck. We illustrate here the idea of such empirical checks, postponing to Section 2.5 the technical
explanation of the program. To do so, we need to introduce the following auxiliary cones
in Mk

2 (Q)∗.

Definition 2.4. Let D be the determinant of some matrix in Λ+
2 , and let d be a positive integer.

We denote by Ck(D, d) the polyhedral cone in Mk
2 (Q)∗ generated by all functionals cT associated

to reduced matrices T ∈ Λ+
2 with determinant at most D and diagonal entries at most d, in short

Ck(D, d) =
〈
cT : T =

( n r/2
r/2 m

)
∈ Λ+

2 such that |r| ≤ n ≤ m ≤ d and detT ≤ D
〉
Q≥0

.

Saying that Ck can be generated by a finite number of functionals cT is equivalent of saying
that

(2.2) if D and d are sufficiently large, then Ck(D, d) = Ck.
For k and d fixed, the program modcone_gen_2 may be used to compute Ck(D, d) for ev-

ery D ≤ d2. It also checks whether the sequence of cones

Ck(3/4, d), Ck(1, d), . . . , Ck(d2, d),

stabilizes, i.e. whether there exists a D0 such that Ck(D0, d) = Ck(D, d) for every D0 ≤ D ≤ d2.
We refer to Section 2.5 and Example 2.5 for an explicit output in the case of k = 22.

2.5. Modular cones in Mk
2 (Q)∗.

compute_and_save_cone(k , prec = 30)

This command loads the file saved as coeff_TOTk_prec_30, see Section 2.3, and produces the
following outputs.

• It saves a file named coneCk_prec_30. It is Ck(prec2, prec), i.e. the cone in Mk
2 (Q)∗

generated by all coefficient extraction functionals cT associated to matrices with diagonal
entries at most prec, where the latter is by default 30. The cone is computed using the
SageMath command Polyhedron; see Example 2.6 for the properties that one can extract
from the saved file.
• It runs an algorithm to provide empirical evidences to (2.2), as follows. For every
determinant D of some reduced matrix in Λ+

2 with diagonal entries at most prec, it
computes the cone Ck(D, prec) introduced in Section 2.4. The latter is then printed on the
SageMath console. The program also checks whether Ck(D, prec) equals the analogous
cone associated to the subsequent determinant; see Example 2.5.

Example 2.5. Let k = 22. We launch compute_and_save_cone(22), obtaining the following
printed text. We explain it piece by piece.

CASE OF WEIGHT k=22.
With just the first determinant, we get: A 1-dimensional polyhedron in QQˆ6 defined as
the convex hull of 1 vertex and 1 ray.
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Here the program computes the cone generated by the functionals cT , where T ∈ Λ+
2 are reduced

matrices with diagonal entries at most 30 and with minimal determinant. The minimal determinant
is D = 3/4, and the only T as above is T =

( 1 1/2
1/2 1

)
. The resulting cone is Ck(3/4, 30), which is

made only of one ray. It lies in Q6, since dimMk
2 (Q)∗ = 6.

Now we begin to increase the determinants.
Different cone! We get: A 2-dimensional polyhedron in QQˆ6 defined as the convex hull
of 1 vertex and 2 rays.
Number of determinants considered: 2.

The program computes the cone generated by the functionals cT , where T ∈ Λ+
2 are reduced

matrices with diagonal entries at most prec= 30 and with determinant at most the second
smallest one. The resulting cone is 2-dimensional with two extremal rays.

Different cone! We get: A 3-dimensional polyhedron in QQˆ6 defined as the convex hull
of 1 vertex and 3 rays.
Number of determinants considered: 3.
Different cone! We get: A 4-dimensional polyhedron in QQˆ6 defined as the convex hull
of 1 vertex and 4 rays.
Number of determinants considered: 4.

The program iterates the previous construction twice, increasing the determinants D considered.
At every iteration, the arising cone is different from the previous one. Its dimension and number
of extremal rays grow.

Same cone as above.
Number of determinants considered: 5.

At this iteration, the program tells us that the arising cone is the same as the one of the
previous iteration.

Different cone! We get: A 5-dimensional polyhedron in QQˆ6 defined as the convex hull
of 1 vertex and 5 rays.
Number of determinants considered: 6.
Different cone! We get: A 6-dimensional polyhedron in QQˆ6 defined as the convex hull
of 1 vertex and 6 rays.
Number of determinants considered: 7.
Different cone! We get: A 6-dimensional polyhedron in QQˆ6 defined as the convex hull
of 1 vertex and 7 rays.
Number of determinants considered: 8.

The program iterates the previous construction again. At every iteration, it finds a different
cone. We can observe that at the 7-th iteration the cone become full-dimensional. Still, the
number of extremal rays grows.

Same cone as above.
Number of determinants considered: 1545.
A 6-dimensional polyhedron in QQˆ6 defined as the convex hull of 1 vertex and 7 rays

The program iterates the construction, and tells us that the arising cone is the same as the
previous one. In fact, it remains the same even when it adds all remaining functionals available,
i.e. until it reaches the last 1545-th determinant saved in coeff_TOT22_prec_30.

Example 2.6. Let k = 22. Suppose we have launched compute_and_save_cone(22) once, so
that the file coneC22_prec_30 is saved in our current folder. We load it as follows.

C=load("coneC22_prec_30")
C
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The output says that C is a 6-dimensional polyhedron in Q6 defined as the convex hull of 1
vertex and 7 rays, meaning that it is a full-dimensional cone in Q6 with 7 extremal rays. A list
of generators of such extremal rays may be extracted with the command C.rays_list(). For
instance, one can see that the functional (2.1) generates one of those rays.

3. Back in genus 1

Let k be a positive integer such that k ≡ 2 mod 4. In [BM19], Bruinier and Möller considered
cones of functionals on the space of elliptic modular forms Mk

1 (Q). In this section we illustrate
how to use modcone_gen_2 to construct such polyhedral cones.

We denote the Fourier expansion of any modular form f ∈Mk
1 (Q) by

f(τ) =
∑
n≥0

cn(f) · e2πinτ .

In this setting, the coefficient extraction functionals cn ∈Mk
1 (Q)∗ are defined as the linear maps

cn : Mk
1 (Q) −→ Q, f 7−→ cn(f).

We may represent such functional over a basis of the form

(3.1) f1, . . . , f`, E
k
1 ,

where f1, . . . , f` is a basis of Sk1 (Q) and Ek1 is the (normalized) elliptic Eisenstein series of weight k.
In this way the functional cn may be considered as the tuple of rational numbers

cn =
(
cn(f1), . . . , cn(f`), cn(Ek1 )

)
∈ Q1+`.

The modular cone of genus 1 is the cone C1,k defined in Mk
1 (Q)∗ as

(3.2) C1,k := 〈cn : n ≥ 1〉Q≥0
.

By [BM19, Theorem 3.4], such cone is polyhedral. This is deduced by showing that the dual
of Ek1 , represented over the basis (3.1) as the vector (0, . . . , 0, 1), generates the only accumulation
ray of C1,k, and that such ray is internal in C1,k.

Let C1,k(m) be the polyhedral cone in Mk
1 (Q)∗ defined as the convex span of the first m

coefficient extraction functionals used to define C1,k, namely

C1,k(m) = 〈cn : 1 ≤ n ≤ m〉Q≥0
.

Since the modular cone of genus 1 is polyhedral, there exists a value n0 = n0(k) such that C1,k

equals C1,k(n0).

3.1. Coefficient extraction functionals.

gen1_c_n(k, n)

This command returns the coefficient extraction functional cn ∈ Mk
1 (Q) rewritten over the

basis (3.1) computed by SageMath via ModularForms(1,k).basis()

3.2. Modular cones of genus 1.

gen1_compute_and_save_cone(k, max = 100)

This command computes the cone C1,k(max), producing the following output.
• It saves a file named coneCk_max_100. It is C1,k(max), represented over the basis (3.1)
computed by SageMath via ModularForms(1,k).basis(). Such convex cone is also given
as output. The value max is by default 100. The cone is computed using the SageMath
command Polyhedron.
• It checks whether the dual of Ek1 , namely the vector (0, . . . , 0, 1), is either contained in
the interior, contained on the boundary, on not contained in C1,k(max)
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There are other two functions defined analogously. The first is

gen1_compute_and_save_cone_Hecke(k, max = 100),

which is as gen1_compute_and_save_cone, but the cone is rewritten with respect to the basis of
(normalized) Hecke forms Mk

1 (R) extracted using CuspForms(1,k).newforms(names="a"). The
cone is saved as coneCk_max_100_Hecke.

The second one is

gen1_compute_cone_step_by_step(k, max = 100),

which is as gen1_compute_and_save_cone, but it does not return and save any cone. Instead, it
computes the cone C1,k(n) for every n ≤ max, comparing it with the subsequent one.

3.3. How to certify the computation of modular cones of genus 1.

gen1_check_if_internal_Hecke(k, m, max = 100, accumulation = False)

The entry m must be at most max. This command loads the polyhedral cone C1,k(max) written
with respect to a basis of Hecke forms, previously saved as coneCk_max_100_Hecke, and certifies
whether C1,k(m) equals C1,k, i.e. whether the weight k modular cone of genus 1 is generated by
the first m coefficient extraction functionals. The optional input accumulation will be relevant
in Section 4.3.

The idea of the algorithm is as follows. Suppose that the basis f1, . . . , f` of Sk1 (R) is made of
(normalized) Hecke forms. We denote by σs(n) the sum of the s-th powers of the positive divisors
of n. By [Del74, Théorème 18] and the trivial inequality σ0(n) ≤ 2

√
n, the Fourier coefficients of

the Hecke forms may be bounded as

|cn(fj)| ≤ σ0(n) · n(k−1)/2 ≤ 2nk/2, for every n ∈ N.

Recall that we may rewrite the normalized functional cn/cn(Ek1 ) over the chosen basis of Hecke
forms as

cn

cn(Ek1 )
=
( cn(f1)

cn(Ek1 )
, . . . ,

cn(f`)

cn(Ek1 )
, 1
)
.

Since cn(Ek1 ) = 2σk−1(n)/ζ(1 − k) and σk−1(n) ≥ nk−1 for every n ≥ 1, we may bound the
distance between cn/cn(Ek1 ) and the dual (0, . . . , 0, 1) of the Eisenstein series Ek1 as

(3.3)
∥∥∥( cn(f1)

cn(Ek1 )
, . . . ,

cn(f`)

cn(Ek1 )
, 0
)∥∥∥ =

|ζ(1− k)|
2σk−1(n)

(∑̀
j=1

cn(fj)
2

)1/2

≤
(
` · ζ(1− k)2

nk−2

)1/2

.

Let r(k, n) be the number appearing on the right-hand side of (3.3). Note that r(k, n) → 0
when n diverges. We have just shown that the normalized functional cn/cn(Ek1 ) lies in the
ball B(k, n) of radius r(k, n) centered in the dual (0, . . . , 0, 1) of the Eisenstein series Ek1 , for
every n ≥ 1, in short

cn

cn(Ek1 )
∈ B(k, n) =

{
P : d

(
P, (0, . . . , 0, 1)

)
≤ r(k, n)

}
⊂Mk

1 (R)∗.

The command gen1_check_if_internal_Hecke checks whether the ball B(k,m) is contained
in the interior of C1,k(max). Whenever this happens, since m < max, the cone C1,k(max) equals
the whole modular cone C1,k.

Example 3.1. Let k = 50. Suppose that we have already computed the truncated modular
cone C1,50(100) once. We summon it as

PP=load("coneC50_max_100_Hecke")

We certify that such cone equals the weight 50 modular cone of genus 1, i.e. C1,50. To do so, we
launch

gen1_check_if_internal_Hecke(50, 11)
7



obtaining as output

Yes, all functionals c_n, where n >= 11, are contained in the *interior* of the
saved cone!

4. The accumulation cones

From now on, we fix an integer k > 4 such that k ≡ 2 mod 4, and work over R and Q
interchangeably. In fact, every accumulation ray is generated by some element of Mk

2 (Q)∗.
As proved in [Zuf22b], the accumulation cone Ak of the modular cone Ck may be generated as

Ak = 〈Vm : m > 0〉R≥0
.

The points Vm written over the basis (1.1) of Mk
2 (R) are

Vm =

(
0, . . . , 0,

ζ(1− k)

2
αm(1, f1), . . . ,

ζ(1− k)

2
αm(1, f`), 1

)
,

where αm(1, fj) is defined as in [Zuf22b, Proposition 3.23]. If we forget about the first dimSk2 (R)

entries, the points Vm may be written over the associated basis (3.1) of Mk
1 (R). We may

furthermore assume that the chosen basis f1, . . . , f` of Sk1 (R) is made of Hecke forms.
We denote by Ak(t) the truncated accumulation cone generated by the first t points Vm, in

short
Ak(t) = 〈Vm : 1 ≤ m ≤ t〉R≥0

.

4.1. The accumulation rays generated by Vm.

V_m(k, m, prec = 30)

This command loads the file saved as basisk_prec_30, see Section 2.1, and produces as output
the vector Vm written with respect to the basis (1.1). The value m must be at most prec, which
is by default 30.

Example 4.1. Let k = 22. Suppose we have launched compute_and_save_basis(22) once, so
that the file basis22_prec_30 is saved in our current folder. We compute the vectors V1 and V2

as follows.

V1=V_m(22,1)
V2=V_m(22,2)

We may check whether V1 and V2 are contained in the truncated cone C22(900, 30) as follows.

C=load("coneC22_prec_30")
C.contains(V1)
C.contains(V2)

We obtain for both vectors the output True, meaning that V1, V2 ∈ C22(900, 30).
We may check whether V1 and V2 are contained in the interior of C22(900, 30) as follows.

C.interior_contains(V1)
C.interior_contains(V2)

As output, we obtain False for V1 and True for V2.

4.2. The computation of accumulation cones.

accumulation_cone_Hecke(k, max = 100)

This command computes the truncated accumulation cone Ak(max), rewritten with respect to
the basis (3.1) of Hecke forms of Mk

1 (R)∗, as illustrated at the beginning of Section 4. The basis
of Sk1 (R) is extracted using CuspForms(1,k).newforms(names="a"). The output is a convex
cone computed via the command Polyhedron, and is saved as coneCk_100_Hecke_with_Vm.
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Example 4.2. Let k = 50. We write

P=accumulation_cone_Hecke(50)

obtaining the truncated accumulation cone A50(100). If we print P, we see that such cone is
full-dimensional in M50

1 (R)∗, of dimension 4 and with 4 extremal rays.
Suppose that we have already computed the truncated modular cone C1,50(100) once, over a

basis of Hecke forms, as explained in Section 3.2. We summon it as

PP=load("coneC50_max_100_Hecke")

This is in fact the whole weight 50 modular cone of genus 1, as we certified in Example 3.1.
In [Zuf22b], we proved that the accumulation cone Ak contains always the rank one modular

cone −C′k. In this setting, i.e. with k = 50 and over a basis of M50
1 (R) instead of M50

2 (R), the
previous sentence is implied by the inclusion −C1,50(100) ⊆ A50(100). The latter can be checked
as follows.

We construct the cone −C1,50(100) as

v=[]
for r in PP.rays_list():

v=v+[list(-vector(r))]
minusPP=Polyhedron(rays=v)

We may then check that −C1,50(100) ⊆ A50(100) writing

minusPP.intersection(P)==minusPP

which gives True as output.
Note that the accumulation cone A50 is strictly larger than −C1,50(100), i.e. −C1,50(100) is not

equal to A50. We check this by writing

P.intersection(minusPP)==minusPP
P==minusPP

which gives respectively True and False as output.

4.3. How to certify the computation of accumulation cones.

gen1_check_if_internal_Hecke(k, m, max = 100, accumulation = True)

The entry m must be at most max. This command loads the truncated accumulation cone Ak(max)
written with respect to a basis of Hecke forms, saved as coneCk_max_100_Hecke_with_Vm, and
certifies whether Ak(m) = Ak, i.e. whether Ak is generated by the points Vs with s ≤ m.

Since the idea of the implemented algorithm is the same as in Section 3.3, we skip many details.
Recall that we may rewrite the point Vm over the chosen basis of Hecke forms as

Vm =
(ζ(1− k)

2
αm(1, f1), . . . ,

ζ(1− k)

2
αm(1, f`), 1

)
.

By [Zuf22b, Lemma 5.9], the points Vm converge to P∞ := (0, . . . , 0, 1) when m diverges. We
may bound the distance between Vm and P∞ as

(4.1)

∥∥∥(ζ(1− k)

2
αm(1, f1), . . . ,

ζ(1− k)

2
αm(1, f`), 0

)∥∥∥ =
|ζ(1− k)|

2

(∑̀
j=1

αm(1, fj)
2

)1/2

=

=
|ζ(1− k)|
2gk(m)

(∑̀
j=1

g(fj ,m)2

)1/2

≤ |ζ(1− k)|
mk−1

(
`mk

(∑
g2|m

1
)2
)1/2

≤
(
` · ζ(1− k)2

mk−3

)1/2

.

Let r′(k,m) be the number appearing on the right-hand side of (4.1). Note that r′(k,m)→ 0
when m diverges. We have just shown that the point Vm lies in the ball B(k,m) of radius r′(k,m)
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centered in P∞, for every m ≥ 1, in short

Vm ∈ B(k,m) =
{
P : d(P, P∞) ≤ r′(k,m)

}
⊂Mk

1 (R)∗.

The command gen1_check_if_internal_Hecke checks whether the ball B(k,m) is contained
in the interior of Ak(max). Whenever this happens, since m ≤ max, the cone Ak(max) equals the
whole accumulation cone Ak.

5. Some results and some empirical evidences

We suppose that k > 4 and k ≡ 2 mod 4. In this section we certify the polyhedrality of Ck
for k small enough. Moreover, we collect some of the empirical evidences on the polyhedrality
of Ck for larger values of k.

5.1. How to certify the polyhedrality of Ck when k is small. In [Zuf22b], we proved the
following result.

Proposition 5.1 (Zuffetti). If k ≤ 38, then the cone Ck is polyhedral.

The proof of it relies on SageMath computations that may be achieved via modcone_genus_2,
as we briefly illustrate.

The computation of the truncated cone Ck(900, 30) and of Vm for all m ≤ 30 is made as
explained respectively in Section 2.5 and Section 4.1.

The check whether Vm lies on the boundary of Ck(900, 30) can be made using the com-
mand Polyhedron already implemented in SageMath following the same pattern of Example 4.1.

The check whether the points Vm with m ≤ 30 generate the whole accumulation cone Ak is
made as explained in Section 4.3.

In the following table we summarize the outputs computed as above. We discard the trivial
case of k = 6, since dimM6

2 = 1. The cases of k = 10, 14 are the easiest, since there is no non-zero
elliptic cusp form of such weight, hence there is no non-zero Klingen Eisenstein series in Mk

2 .
With “minimum number of determinants to have a stable cone”, we mean the minimum number

of D’s needed from compute_and_save_cone to reach a determinant D0 such that Ck(D0, 30)
equals Ck(900, 30).

k dim Ck(900, 30)
Minimum num. of det.
to have a stable cone

Number of
extremal rays

m ≤ 30 such that
Vm ∈ ∂Ck(900, 30)

m such that
Ak(m) = Ak

10 2 2 2 none 1
14 2 2 2 none 1
18 4 8 6 V1 3
22 6 8 7 V1, V2 3
26 7 10 8 V1, V2 4
30 11 18 16 V1, V2 5
34 14 18 16 V1, V2, V3 6
38 16 24 21 V1, V2, V3 7

5.2. Certain interesting subcones of Ck. We proved in [Zuf22b, Lemma 7.6] that if m is
squarefree, then the subcone Rm of Ck defined as

(5.1) Rm = 〈cT : T ∈ Λ+
2 with m as bottom-right entry〉Q≥0

contains Vm in its interior. This discards Vm from being an extremal ray that gives roundness
to Ck.

In [Zuf22b, Example 7.8], we illustrated how such construction does not seem to be valid if m
is non square-free. We conjectured that the correct way to construct Rm, so that Vm is internal
in it, is

(5.2) Rm =
〈
cT : T =

( n r/2
r/2 m

)
∈ Λ+

2 such that if t2|m with t 6= 1, then t - r
〉
Q≥0

.
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Note that the latter coincide with (5.1) if m is square-free.
The command

subcone_for_V_m(k, m, prec = 30)
loads the basis of Mk

2 (Q) constructed as in Section 2.1, and provides as output the truncation
of the cone Rm constructed using only those generators whose matrix T has diagonal entries at
most prec. Such cone is then saved as subconeRk_prec_30_for_V_m.

The command
subcone_for_V_m_enlarged(k, m, prec = 30)

works in a similar way, but whenever m is non square-free, it computes the truncation of the
cone (5.1) instead of (5.2). These are the commands used to construct the table in [Zuf22b,
Example 7.8].
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