BASIC USAGE OF modcone_gen_2 IN SAGEMATH

Riccardo Zuffetti

Abstract

Summary The SageMath program modcone_gen_2 is useful for working with the modular cones introduced in [Zuf22b]. For fixed k, it provides empirical evidences that the modular cone \mathcal{C}_{k} is polyhedral. For $k \leq 38$, such polyhedrality is certified. This note gives a short explanation on how to use modcone_gen_2.

Last update: February 28, 2022.

Contents

1. Notation and background 1
2. The modular cone in genus $2 \quad 2$
3. Back in genus 1 6
4. The accumulation cones 8
5. Some results and some empirical evidences 10

References 11

1. Notation and background

Let k be an even integer. We denote by M_{2}^{k}, resp. $M_{2}^{k}(\mathbb{Q})$, the space of Siegel modular forms of genus 2 and weight k, resp. the \mathbb{Q}-space of the ones with rational Fourier coefficients. The space of elliptic modular forms of weight k is denoted by M_{1}^{k}, with analogous meaning for $M_{1}^{k}(\mathbb{Q})$.

Recall that the Fourier coefficients of a Siegel modular form in M_{2}^{k} are indexed over the set Λ_{2} of symmetric half-integral positive semi-definite matrices of order two, namely

$$
\Lambda_{2}=\left\{T=\left(\begin{array}{c}
n \\
r / 2 \\
r / 2
\end{array}\right): n, r, m \in \mathbb{Z} \text { and } T \geq 0\right\} .
$$

For every $F \in M_{2}^{k}$, we write its Fourier expansion as

$$
F(Z)=\sum_{T \in \Lambda_{2}} c_{T}(F) \cdot e^{2 \pi i \operatorname{tr}(T Z)}, \quad Z \in \mathbb{H}_{2} .
$$

The subset of positive definite matrices in Λ_{2} is denoted by Λ_{2}^{+}. We say that a matrix $T=\left(\begin{array}{c}n \\ r / 2 \\ r / 2\end{array}\right) \in \Lambda_{2}$ is reduced ${ }^{1}$ if $|r| \leq n \leq m$.

The Siegel modular forms with Fourier coefficients supported only on Λ_{2}^{+}are called Siegel cusp forms. We denote by $S_{2}^{k}\left(\operatorname{resp} . S_{2}^{k}(\mathbb{Q})\right)$ the subspace of Siegel cusp forms of $M_{2}^{k}\left(\right.$ resp. $\left.M_{2}^{k}(\mathbb{Q})\right)$. The notation S_{1}^{k} and $S_{1}^{k}(\mathbb{Q})$ is the analog for elliptic cusp forms.

We fix once and for all a basis of $M_{2}^{k}(\mathbb{Q})$ of the form

$$
\begin{equation*}
F_{1}, \ldots, F_{\ell^{\prime}}, E_{2,1}^{k}\left(f_{1}\right), \ldots, E_{2,1}^{k}\left(f_{\ell}\right), E_{2}^{k} \tag{1.1}
\end{equation*}
$$

where $F_{1}, \ldots, F_{\ell^{\prime}}$ and f_{1}, \ldots, f_{ℓ} are respectively a basis of $S_{2}^{k}(\mathbb{Q})$ and $S_{1}^{k}(\mathbb{Q})$, and where E_{2}^{k} and $E_{2,1}^{k}(f)$ are respectively the (normalized) Siegel Eisenstein series of weight k and the Klingen Eisenstein series attached to the cusp form $f \in S_{1}^{k}$. The subspace of Klingen Eisenstein series is denoted by N_{2}^{k}. This space has complex dimension equal to the one of S_{1}^{k}.

The dual space $M_{2}^{k}(\mathbb{Q})$ is generated by the so-called coefficient extraction functionals c_{T}, defined for every $T \in \Lambda_{2}$ as

$$
c_{T}: M_{2}^{k}(\mathbb{Q}) \longrightarrow \mathbb{Q}, \quad F \longmapsto c_{T}(F) .
$$

[^0]Every functional c_{T} can be rewritten over the basis (1.1) as the tuple of rational numbers

$$
\begin{equation*}
c_{T}=\left(c_{T}\left(F_{1}\right), \ldots, c_{T}\left(F_{\ell^{\prime}}\right), c_{T}\left(E_{2,1}^{k}\left(f_{1}\right)\right), \ldots, c_{T}\left(E_{2,1}^{k}\left(f_{\ell}\right)\right), c_{T}\left(E_{2}^{k}\right)\right) \in \mathbb{Q}^{1+\ell+\ell^{\prime}} \tag{1.2}
\end{equation*}
$$

In [Zuf22b] and [Zuf22a], we defined the modular cone \mathcal{C}_{k} as the (convex) cone in $M_{2}^{k}(\mathbb{Q})^{*}$ generated by all functionals c_{T} attached to positive definite matrices, namely

$$
\begin{equation*}
\mathcal{C}_{k}=\left\langle c_{T}: T \in \Lambda_{2}^{+}\right\rangle_{\mathbb{Q} \geq 0} . \tag{1.3}
\end{equation*}
$$

We used such cone to investigate the properties of cones of codimension 2 special cycles on orthogonal Shimura varieties.

We also classified all accumulation rays of \mathcal{C}_{k}. Among them, there are the rays generated by the points V_{m}, where $m \in \mathbb{Z}_{>0}$; we refer to [Zuf22b, Section 5.1] for a detailed introduction. Such rays played a key role to prove that the accumulation cone of \mathcal{C}_{k} is rational and polyhedral.

The program modcone_gen_2 may be used to compute the functionals c_{T} as in (1.2) and the accumulation rays generated by V_{m}. It also provides empirical evidences to [Zuf22b, Conjecture 1], i.e. that the modular cone \mathcal{C}_{k} is polyhedral whenever $k \equiv 2 \bmod 4$ and $k>4$, and certifies such polyhedrality for all $k \leq 38$. The goal of the following sections is to illustrate the features of such program.

2. The modular cone in genus 2

The program modcone_gen_2 has been written using SageMath Version 8.1, released on December 7, 2017. To use the program, it is necessary to install the SageMath package degree2 from [Tak17]; see [Tak17, Readme file, Installation] for the procedure to do so.

We remark that degree2, hence also modcone_gen_2, may not work for more recent versions of SageMath. Anyway, it is possible to download Version 8.1 and run it side-by-side with a more recent one.

The first step to use the program is to launch it as load("modcone_gen_2.sage").

2.1. Basis of $M_{2}^{k}(\mathbb{Q})$.

```
compute_and_save_bases(k , prec = 30)
```

This command saves the following two files in the folder on which SageMath is working.

- eisk_prec_30: a dictionary that may be regarded as the Siegel Eisenstein series E_{2}^{k}. As explained in Example 2.1, it is possible to extract the Fourier coefficient of E_{2}^{k} associated to any matrix in Λ_{2} with diagonal entries at most prec. The value prec is by default equal to 30 .
- basisk_prec_30: it may be regarded as a basis of the space $S_{2}^{k} \oplus N_{2}^{k}$ of Klingen Eisenstein series and cusp forms, namely $F_{1}, \ldots, F_{\ell}, E_{2,1}^{k}\left(f_{1}\right), \ldots, E_{2,1}^{k}\left(f_{\ell}\right)$. Each of such modular forms is represented as a list of matrices in Λ_{2} with diagonal entries at most prec, together with their associated Fourier coefficients. The saved file may be summoned as illustrated in Example 2.2.
Note that any matrix $\left(\begin{array}{cc}n & r / 2 \\ r / 2\end{array}\right) \in \Lambda_{2}$ must be written as ($\mathrm{n}, \mathrm{r}, \mathrm{m}$) when extracting the Fourier coefficients of the modular forms in the basis computed above.
Example 2.1. Let $k=22$. We launch compute_and_save_bases (22), obtaining two files denominated eis22_prec_30 and basis22_prec_30. We load the former as
eis=load("eis22_prec_30")
which may be regarded as the Siegel Eisenstein series E_{2}^{22}. We can compute the Fourier coefficient $c_{T}\left(E_{2}^{22}\right)$ associated to any matrix $T \in \Lambda_{2}$ whose diagonal entries are at most 30 . For instance, we may compute the Fourier coefficient associated to the zero matrix and to $\left(\begin{array}{cc}1 & 1 / 2 \\ 1 / 2 & 1\end{array}\right)$ as follows.

```
v=eis["fc_dct"]
```

$v[(0,0,0)]$
$\mathrm{v}[(1,1,1)]$
We obtain respectively 1 and $21294576422083465536 / 118085745272487494165444953$.
Example 2.2. As in the previous example, we launch compute_and_save_bases (22). We may summon the saved space $S_{2}^{22} \oplus N_{2}^{22}$ of Klingen Eisenstein series and Siegel cusp forms as follows.

```
SN=KlingenEisensteinAndCuspForms (22,30)
SN.load_basis_from("basis22_prec_30")
```

We compute the dimension of such space.

SN.dimension()

SN.dimension_of_cuspforms()
We obtain as output respectively 5 and 4 , deducing that $\operatorname{dim} S_{2}^{22}=4$ and that $\operatorname{dim} N_{2}^{22}=1$. The basis of $S_{2}^{22} \oplus N_{2}^{22}$ can be summoned as

```
b=SN.basis()
```

The output b is a list of five dictionaries. The first four represent a basis of cusp forms for $S_{2}^{22}(\mathbb{Q})$. The remaining one is a Klingen Eisenstein series generating $N_{2}^{22}(\mathbb{Q})$.

2.2. Coefficient extraction functionals in $M_{2}^{k}(\mathbb{Q})^{*}$.

$$
c_{-} \mathrm{T}(k, n, r, m, \operatorname{prec}=30)
$$

This command loads the files generated by compute_and_save_bases (k, prec=30), and gives as output a list. The latter is the vector representing the coefficient extraction functional c_{T}, where $T=\left(\begin{array}{cc}n & r / 2 \\ r / 2 & m\end{array}\right) \in \Lambda_{2}^{+}$depends on the input, over the basis (1.1) of $M_{2}^{k}(\mathbb{Q})$ computed as explained in Section 2.1. We remark that both the input n and m must not exceed the value of precision prec.

2.3. Lists of coefficient extraction functionals.

```
compute_and_save_coefficient_extraction_functionals( }k\mathrm{ , prec = 30)
```

This command loads the files generated by compute_and_save_bases (k, prec $=30$), and saves a file named coeff_TOTk_prec_30. The latter is a list containing the following three objects. In fact, the most important is the last one.

- coeff [0] is a dictionary. Its keys are the determinants of the reduced matrices in Λ_{2}^{+}that have diagonal entries at most prec. To every key, the dictionary associates a maximal list of reduced matrices in Λ_{2}^{+}with diagonal entries at most prec, determinant equal to the key, and such that the associated coefficient extraction functionals are pairwise different.
- coeff [1] is a list of numbers. The j-th entry is the number of (pairwise different) coefficient extraction functionals c_{T} associated to matrices T appearing as values attached to the smallest first j keys of coeff [0].
- coeff [2] is a list. Its entries are the (pairwise different) coefficient extraction functionals $c_{T} \in \mathbb{Q}^{1+\ell+\ell^{\prime}}$ arising from the matrices indexed in coeff [0]. They are ordered with respect to $\operatorname{det} T$, hence the first entry of coeff [2] is the functional c_{T} associated to the matrix $T=\left(\begin{array}{cc}1 & 1 / 2 \\ 1 / 2 & 1\end{array}\right)$.
Example 2.3. Let $k=22$. Suppose we have launched compute_and_save_bases(22) once, so that the files eis22_prec_30 and basis22_prec_30 are already saved in our current folder. We launch compute_and_save_coefficient_extraction_functionals(22), obtaining a new file saved as coeff_TOT22_prec_30. We load it as follows.
coeff=load("coeff_TOT22_prec_30")

The functionals c_{T} are saved in the list coeff [2]. The first entry of such list is the functional

$$
\begin{equation*}
(0,1,1,1,48384,21294576422083465536 / 118085745272487494165444953), \tag{2.1}
\end{equation*}
$$

namely the functional c_{T} associated to the matrix $T=\left(\begin{array}{cc}1 & 1 / 2 \\ 1 / 2 & 1\end{array}\right)$, rewritten as a tuple in \mathbb{Q}^{6} with respect to the basis (1.1) of $M_{2}^{22}(\mathbb{Q})$ computed as explained in Section 2.1.
2.4. An algorithm to check empirically whether the modular cone $\mathcal{C}_{\boldsymbol{k}}$ is polyhedral. Let $k>4$ be such that $k \equiv 2 \bmod 4$. In [Zuf22b] [Zuf22a] we computed all accumulation rays of the modular cone \mathcal{C}_{k} with respect to the set of generators used to define it. In [Zuf22b, Theorem 7.5], we provided a sufficient condition for the polyhedrality of \mathcal{C}_{k}, conjecturing that it is always satisfied.

The program modcone_gen_2 can be used to provide empirical evidences to the polyhedrality of \mathcal{C}_{k}. We illustrate here the idea of such empirical checks, postponing to Section 2.5 the technical explanation of the program. To do so, we need to introduce the following auxiliary cones in $M_{2}^{k}(\mathbb{Q})^{*}$.
Definition 2.4. Let D be the determinant of some matrix in Λ_{2}^{+}, and let d be a positive integer. We denote by $\mathcal{C}_{k}(D, d)$ the polyhedral cone in $M_{2}^{k}(\mathbb{Q})^{*}$ generated by all functionals c_{T} associated to reduced matrices $T \in \Lambda_{2}^{+}$with determinant at most D and diagonal entries at most d, in short

$$
\left.\left.\mathcal{C}_{k}(D, d)=\left\langle c_{T}: T=\left(\begin{array}{cc}
n & r / 2 \\
r / 2 & m
\end{array}\right) \in \Lambda_{2}^{+} \text {such that }\right| r \right\rvert\, \leq n \leq m \leq d \text { and } \operatorname{det} T \leq D\right\rangle_{\mathbb{Q} \geq 0}
$$

Saying that \mathcal{C}_{k} can be generated by a finite number of functionals c_{T} is equivalent of saying that

$$
\begin{equation*}
\text { if } D \text { and } d \text { are sufficiently large, then } \mathcal{C}_{k}(D, d)=\mathcal{C}_{k} . \tag{2.2}
\end{equation*}
$$

For k and d fixed, the program modcone_gen_2 may be used to compute $\mathcal{C}_{k}(D, d)$ for every $D \leq d^{2}$. It also checks whether the sequence of cones

$$
\mathcal{C}_{k}(3 / 4, d), \quad \mathcal{C}_{k}(1, d), \quad \ldots, \quad \mathcal{C}_{k}\left(d^{2}, d\right)
$$

stabilizes, i.e. whether there exists a D_{0} such that $\mathcal{C}_{k}\left(D_{0}, d\right)=\mathcal{C}_{k}(D, d)$ for every $D_{0} \leq D \leq d^{2}$. We refer to Section 2.5 and Example 2.5 for an explicit output in the case of $k=22$.
2.5. Modular cones in $M_{2}^{k}(\mathbb{Q})^{*}$.

```
compute_and_save_cone(k , prec = 30)
```

This command loads the file saved as coeff_TOTk_prec_30, see Section 2.3, and produces the following outputs.

- It saves a file named coneC k_{-}prec_30. It is $\mathcal{C}_{k}\left(\operatorname{prec}^{2}\right.$, prec $)$, i.e. the cone in $M_{2}^{k}(\mathbb{Q})^{*}$ generated by all coefficient extraction functionals c_{T} associated to matrices with diagonal entries at most prec, where the latter is by default 30 . The cone is computed using the SageMath command Polyhedron; see Example 2.6 for the properties that one can extract from the saved file.
- It runs an algorithm to provide empirical evidences to (2.2), as follows. For every determinant D of some reduced matrix in Λ_{2}^{+}with diagonal entries at most prec, it computes the cone $\mathcal{C}_{k}(D$, prec) introduced in Section 2.4. The latter is then printed on the SageMath console. The program also checks whether $\mathcal{C}_{k}(D$, prec $)$ equals the analogous cone associated to the subsequent determinant; see Example 2.5.

Example 2.5. Let $k=22$. We launch compute_and_save_cone(22), obtaining the following printed text. We explain it piece by piece.

CASE OF WEIGHT $\mathrm{k}=22$.
With just the first determinant, we get: A 1-dimensional polyhedron in QQ^6 defined as the convex hull of 1 vertex and 1 ray.

Here the program computes the cone generated by the functionals c_{T}, where $T \in \Lambda_{2}^{+}$are reduced matrices with diagonal entries at most 30 and with minimal determinant. The minimal determinant is $D=3 / 4$, and the only T as above is $T=\left(\begin{array}{cc}1 & 1 / 2 \\ 1 / 2 & 1\end{array}\right)$. The resulting cone is $\mathcal{C}_{k}(3 / 4,30)$, which is made only of one ray. It lies in \mathbb{Q}^{6}, since $\operatorname{dim} M_{2}^{k}(\mathbb{Q})^{*}=6$.

```
Now we begin to increase the determinants.
Different cone! We get: A 2-dimensional polyhedron in QQ^6 defined as the convex hull
of }1\mathrm{ vertex and 2 rays.
Number of determinants considered: 2.
```

The program computes the cone generated by the functionals c_{T}, where $T \in \Lambda_{2}^{+}$are reduced matrices with diagonal entries at most prec $=30$ and with determinant at most the second smallest one. The resulting cone is 2-dimensional with two extremal rays.

```
Different cone! We get: A 3-dimensional polyhedron in QQ^6 defined as the convex hull
of }1\mathrm{ vertex and 3 rays.
Number of determinants considered: }3
Different cone! We get: A 4-dimensional polyhedron in QQ^6 defined as the convex hull
of }1\mathrm{ vertex and 4 rays.
Number of determinants considered: 4.
```

The program iterates the previous construction twice, increasing the determinants D considered. At every iteration, the arising cone is different from the previous one. Its dimension and number of extremal rays grow.

```
Same cone as above.
Number of determinants considered: 5.
```

At this iteration, the program tells us that the arising cone is the same as the one of the previous iteration.

```
Different cone! We get: A 5-dimensional polyhedron in QQ^6 defined as the convex hull
of }1\mathrm{ vertex and 5 rays.
Number of determinants considered: 6.
Different cone! We get: A 6-dimensional polyhedron in QQ^6 defined as the convex hull
of }1\mathrm{ vertex and }6\mathrm{ rays.
Number of determinants considered: 7.
Different cone! We get: A 6-dimensional polyhedron in QQ^6 defined as the convex hull
of }1\mathrm{ vertex and }7\mathrm{ rays.
Number of determinants considered: }8
```

The program iterates the previous construction again. At every iteration, it finds a different cone. We can observe that at the 7-th iteration the cone become full-dimensional. Still, the number of extremal rays grows.

Same cone as above.
Number of determinants considered: 1545.
A 6-dimensional polyhedron in QQ^6 defined as the convex hull of 1 vertex and 7 rays
The program iterates the construction, and tells us that the arising cone is the same as the previous one. In fact, it remains the same even when it adds all remaining functionals available, i.e. until it reaches the last 1545-th determinant saved in coeff_TOT22_prec_30.

Example 2.6. Let $k=22$. Suppose we have launched compute_and_save_cone(22) once, so that the file coneC22_prec_30 is saved in our current folder. We load it as follows.

```
C=load("coneC22_prec_30")
```

C

The output says that C is a 6 -dimensional polyhedron in \mathbb{Q}^{6} defined as the convex hull of 1 vertex and 7 rays, meaning that it is a full-dimensional cone in \mathbb{Q}^{6} with 7 extremal rays. A list of generators of such extremal rays may be extracted with the command C.rays_list(). For instance, one can see that the functional (2.1) generates one of those rays.

3. Back in genus 1

Let k be a positive integer such that $k \equiv 2 \bmod 4$. In [BM19], Bruinier and Möller considered cones of functionals on the space of elliptic modular forms $M_{1}^{k}(\mathbb{Q})$. In this section we illustrate how to use modcone_gen_2 to construct such polyhedral cones.

We denote the Fourier expansion of any modular form $f \in M_{1}^{k}(\mathbb{Q})$ by

$$
f(\tau)=\sum_{n \geq 0} c_{n}(f) \cdot e^{2 \pi i n \tau}
$$

In this setting, the coefficient extraction functionals $c_{n} \in M_{1}^{k}(\mathbb{Q})^{*}$ are defined as the linear maps

$$
c_{n}: M_{1}^{k}(\mathbb{Q}) \longrightarrow \mathbb{Q}, \quad f \longmapsto c_{n}(f)
$$

We may represent such functional over a basis of the form

$$
\begin{equation*}
f_{1}, \ldots, f_{\ell}, E_{1}^{k} \tag{3.1}
\end{equation*}
$$

where f_{1}, \ldots, f_{ℓ} is a basis of $S_{1}^{k}(\mathbb{Q})$ and E_{1}^{k} is the (normalized) elliptic Eisenstein series of weight k. In this way the functional c_{n} may be considered as the tuple of rational numbers

$$
c_{n}=\left(c_{n}\left(f_{1}\right), \ldots, c_{n}\left(f_{\ell}\right), c_{n}\left(E_{1}^{k}\right)\right) \in \mathbb{Q}^{1+\ell}
$$

The modular cone of genus 1 is the cone $\mathcal{C}_{1, k}$ defined in $M_{1}^{k}(\mathbb{Q})^{*}$ as

$$
\begin{equation*}
\mathcal{C}_{1, k}:=\left\langle c_{n}: n \geq 1\right\rangle_{\mathbb{Q}_{\geq 0}} \tag{3.2}
\end{equation*}
$$

By [BM19, Theorem 3.4], such cone is polyhedral. This is deduced by showing that the dual of E_{1}^{k}, represented over the basis (3.1) as the vector $(0, \ldots, 0,1)$, generates the only accumulation ray of $\mathcal{C}_{1, k}$, and that such ray is internal in $\mathcal{C}_{1, k}$.

Let $\mathcal{C}_{1, k}(m)$ be the polyhedral cone in $M_{1}^{k}(\mathbb{Q})^{*}$ defined as the convex span of the first m coefficient extraction functionals used to define $\mathcal{C}_{1, k}$, namely

$$
\mathcal{C}_{1, k}(m)=\left\langle c_{n}: 1 \leq n \leq m\right\rangle_{\mathbb{Q}_{\geq 0}}
$$

Since the modular cone of genus 1 is polyhedral, there exists a value $n_{0}=n_{0}(k)$ such that $\mathcal{C}_{1, k}$ equals $\mathcal{C}_{1, k}\left(n_{0}\right)$.

3.1. Coefficient extraction functionals.

$$
\operatorname{gen} 1 _c _n(k, n)
$$

This command returns the coefficient extraction functional $c_{n} \in M_{1}^{k}(\mathbb{Q})$ rewritten over the basis (3.1) computed by SageMath via ModularForms (1, k).basis ()

3.2. Modular cones of genus 1.

$$
\text { gen1_compute_and_save_cone }(k, \max =100)
$$

This command computes the cone $\mathcal{C}_{1, k}(\max)$, producing the following output.

- It saves a file named coneC $k_{_}$max_100. It is $\mathcal{C}_{1, k}(\max)$, represented over the basis (3.1) computed by SageMath via ModularForms ($1, \mathrm{k}$). basis (). Such convex cone is also given as output. The value max is by default 100. The cone is computed using the SageMath command Polyhedron.
- It checks whether the dual of E_{1}^{k}, namely the vector $(0, \ldots, 0,1)$, is either contained in the interior, contained on the boundary, on not contained in $\mathcal{C}_{1, k}(\max)$

There are other two functions defined analogously. The first is

```
gen1_compute_and_save_cone_Hecke( }k,\operatorname{max = 100),
```

which is as gen1_compute_and_save_cone, but the cone is rewritten with respect to the basis of (normalized) Hecke forms $M_{1}^{k}(\mathbb{R})$ extracted using CuspForms (1, k) .newforms (names="a"). The cone is saved as coneC k _max_100_Hecke.

The second one is

$$
\text { gen1_compute_cone_step_by_step(} k, \max =100 \text {), }
$$

which is as gen1_compute_and_save_cone, but it does not return and save any cone. Instead, it computes the cone $\mathcal{C}_{1, k}(n)$ for every $n \leq \max$, comparing it with the subsequent one.

3.3. How to certify the computation of modular cones of genus 1 .

```
gen1_check_if_internal_Hecke(k, m, max = 100, accumulation = False)
```

The entry m must be at most max. This command loads the polyhedral cone $\mathcal{C}_{1, k}(\max)$ written with respect to a basis of Hecke forms, previously saved as coneC $k_{_}$max_100_Hecke, and certifies whether $\mathcal{C}_{1, k}(m)$ equals $\mathcal{C}_{1, k}$, i.e. whether the weight k modular cone of genus 1 is generated by the first m coefficient extraction functionals. The optional input accumulation will be relevant in Section 4.3.

The idea of the algorithm is as follows. Suppose that the basis f_{1}, \ldots, f_{ℓ} of $S_{1}^{k}(\mathbb{R})$ is made of (normalized) Hecke forms. We denote by $\sigma_{s}(n)$ the sum of the s-th powers of the positive divisors of n. By [Del74, Théorème 18] and the trivial inequality $\sigma_{0}(n) \leq 2 \sqrt{n}$, the Fourier coefficients of the Hecke forms may be bounded as

$$
\left|c_{n}\left(f_{j}\right)\right| \leq \sigma_{0}(n) \cdot n^{(k-1) / 2} \leq 2 n^{k / 2}, \quad \text { for every } n \in \mathbb{N}
$$

Recall that we may rewrite the normalized functional $c_{n} / c_{n}\left(E_{1}^{k}\right)$ over the chosen basis of Hecke forms as

$$
\frac{c_{n}}{c_{n}\left(E_{1}^{k}\right)}=\left(\frac{c_{n}\left(f_{1}\right)}{c_{n}\left(E_{1}^{k}\right)}, \ldots, \frac{c_{n}\left(f_{\ell}\right)}{c_{n}\left(E_{1}^{k}\right)}, 1\right)
$$

Since $c_{n}\left(E_{1}^{k}\right)=2 \sigma_{k-1}(n) / \zeta(1-k)$ and $\sigma_{k-1}(n) \geq n^{k-1}$ for every $n \geq 1$, we may bound the distance between $c_{n} / c_{n}\left(E_{1}^{k}\right)$ and the dual $(0, \ldots, 0,1)$ of the Eisenstein series E_{1}^{k} as

$$
\begin{equation*}
\left\|\left(\frac{c_{n}\left(f_{1}\right)}{c_{n}\left(E_{1}^{k}\right)}, \ldots, \frac{c_{n}\left(f_{\ell}\right)}{c_{n}\left(E_{1}^{k}\right)}, 0\right)\right\|=\frac{|\zeta(1-k)|}{2 \sigma_{k-1}(n)}\left(\sum_{j=1}^{\ell} c_{n}\left(f_{j}\right)^{2}\right)^{1 / 2} \leq\left(\frac{\ell \cdot \zeta(1-k)^{2}}{n^{k-2}}\right)^{1 / 2} \tag{3.3}
\end{equation*}
$$

Let $r(k, n)$ be the number appearing on the right-hand side of (3.3). Note that $r(k, n) \rightarrow 0$ when n diverges. We have just shown that the normalized functional $c_{n} / c_{n}\left(E_{1}^{k}\right)$ lies in the ball $B(k, n)$ of radius $r(k, n)$ centered in the dual $(0, \ldots, 0,1)$ of the Eisenstein series E_{1}^{k}, for every $n \geq 1$, in short

$$
\frac{c_{n}}{c_{n}\left(E_{1}^{k}\right)} \in B(k, n)=\{P: d(P,(0, \ldots, 0,1)) \leq r(k, n)\} \subset M_{1}^{k}(\mathbb{R})^{*}
$$

The command gen1_check_if_internal_Hecke checks whether the ball $B(k, m)$ is contained in the interior of $\mathcal{C}_{1, k}(\max)$. Whenever this happens, since $m<\max$, the cone $\mathcal{C}_{1, k}(\max)$ equals the whole modular cone $\mathcal{C}_{1, k}$.

Example 3.1. Let $k=50$. Suppose that we have already computed the truncated modular cone $\mathcal{C}_{1,50}$ (100) once. We summon it as

```
PP=load("coneC50_max_100_Hecke")
```

We certify that such cone equals the weight 50 modular cone of genus 1 , i.e. $\mathcal{C}_{1,50}$. To do so, we launch
gen1_check_if_internal_Hecke(50, 11)
obtaining as output

```
Yes, all functionals c_n, where n >= 11, are contained in the *interior* of the
saved cone!
```


4. The accumulation cones

From now on, we fix an integer $k>4$ such that $k \equiv 2 \bmod 4$, and work over \mathbb{R} and \mathbb{Q} interchangeably. In fact, every accumulation ray is generated by some element of $M_{2}^{k}(\mathbb{Q})^{*}$.

As proved in [Zuf22b], the accumulation cone \mathcal{A}_{k} of the modular cone \mathcal{C}_{k} may be generated as

$$
\mathcal{A}_{k}=\left\langle V_{m}: m>0\right\rangle_{\mathbb{R}_{\geq 0}}
$$

The points V_{m} written over the basis (1.1) of $M_{2}^{k}(\mathbb{R})$ are

$$
V_{m}=\left(0, \ldots, 0, \frac{\zeta(1-k)}{2} \alpha_{m}\left(1, f_{1}\right), \ldots, \frac{\zeta(1-k)}{2} \alpha_{m}\left(1, f_{\ell}\right), 1\right)
$$

where $\alpha_{m}\left(1, f_{j}\right)$ is defined as in [Zuf22b, Proposition 3.23]. If we forget about the first $\operatorname{dim} S_{2}^{k}(\mathbb{R})$ entries, the points V_{m} may be written over the associated basis (3.1) of $M_{1}^{k}(\mathbb{R})$. We may furthermore assume that the chosen basis f_{1}, \ldots, f_{ℓ} of $S_{1}^{k}(\mathbb{R})$ is made of Hecke forms.

We denote by $\mathcal{A}_{k}(t)$ the truncated accumulation cone generated by the first t points V_{m}, in short

$$
\mathcal{A}_{k}(t)=\left\langle V_{m}: 1 \leq m \leq t\right\rangle_{\mathbb{R}_{\geq 0}}
$$

4.1. The accumulation rays generated by V_{m}.

$$
\text { V_m }(k, m, \text { prec }=30)
$$

This command loads the file saved as basisk_prec_30, see Section 2.1, and produces as output the vector V_{m} written with respect to the basis (1.1). The value m must be at most prec, which is by default 30 .
Example 4.1. Let $k=22$. Suppose we have launched compute_and_save_basis (22) once, so that the file basis22_prec_30 is saved in our current folder. We compute the vectors V_{1} and V_{2} as follows.

```
V1=V_m(22,1)
V2=V_m(22,2)
```

We may check whether V_{1} and V_{2} are contained in the truncated cone $\mathcal{C}_{22}(900,30)$ as follows.

```
C=load("coneC22_prec_30")
C.contains(V1)
C.contains(V2)
```

We obtain for both vectors the output True, meaning that $V_{1}, V_{2} \in \mathcal{C}_{22}(900,30)$.
We may check whether V_{1} and V_{2} are contained in the interior of $\mathcal{C}_{22}(900,30)$ as follows.
C.interior_contains(V1)
C.interior_contains(V2)

As output, we obtain False for V_{1} and True for V_{2}.

4.2. The computation of accumulation cones.

```
accumulation_cone_Hecke( }k,\operatorname{max = 100)
```

This command computes the truncated accumulation cone \mathcal{A}_{k} (max), rewritten with respect to the basis (3.1) of Hecke forms of $M_{1}^{k}(\mathbb{R})^{*}$, as illustrated at the beginning of Section 4 . The basis of $S_{1}^{k}(\mathbb{R})$ is extracted using CuspForms ($1, k$). newforms (names="a"). The output is a convex cone computed via the command Polyhedron, and is saved as coneCk_100_Hecke_with_Vm.

Example 4.2. Let $k=50$. We write
$\mathrm{P}=$ accumulation_cone_Hecke (50)
obtaining the truncated accumulation cone $\mathcal{A}_{50}(100)$. If we print P, we see that such cone is full-dimensional in $M_{1}^{50}(\mathbb{R})^{*}$, of dimension 4 and with 4 extremal rays.

Suppose that we have already computed the truncated modular cone $\mathcal{C}_{1,50}(100)$ once, over a basis of Hecke forms, as explained in Section 3.2. We summon it as

PP=load("coneC50_max_100_Hecke")
This is in fact the whole weight 50 modular cone of genus 1, as we certified in Example 3.1.
In [Zuf22b], we proved that the accumulation cone \mathcal{A}_{k} contains always the rank one modular cone $-\mathcal{C}_{k}^{\prime}$. In this setting, i.e. with $k=50$ and over a basis of $M_{1}^{50}(\mathbb{R})$ instead of $M_{2}^{50}(\mathbb{R})$, the previous sentence is implied by the inclusion $-\mathcal{C}_{1,50}(100) \subseteq \mathcal{A}_{50}(100)$. The latter can be checked as follows.

We construct the cone $-\mathcal{C}_{1,50}(100)$ as

```
v= []
for r in PP.rays_list():
    v=v+[list(-vector(r))]
minusPP=Polyhedron(rays=v)
```

We may then check that $-\mathcal{C}_{1,50}(100) \subseteq \mathcal{A}_{50}(100)$ writing

```
minusPP.intersection(P)==minusPP
```

which gives True as output.
Note that the accumulation cone \mathcal{A}_{50} is strictly larger than $-\mathcal{C}_{1,50}(100)$, i.e. $-\mathcal{C}_{1,50}(100)$ is not equal to \mathcal{A}_{50}. We check this by writing

```
P.intersection(minusPP)==minusPP
P==minusPP
```

which gives respectively True and False as output.

4.3. How to certify the computation of accumulation cones.

```
gen1_check_if_internal_Hecke( }k,m,\operatorname{max}=100, accumulation = True
```

The entry m must be at most max. This command loads the truncated accumulation cone $\mathcal{A}_{k}(\max)$ written with respect to a basis of Hecke forms, saved as coneCk_max_100_Hecke_with_Vm, and certifies whether $\mathcal{A}_{k}(m)=\mathcal{A}_{k}$, i.e. whether \mathcal{A}_{k} is generated by the points V_{s} with $s \leq m$.

Since the idea of the implemented algorithm is the same as in Section 3.3, we skip many details. Recall that we may rewrite the point V_{m} over the chosen basis of Hecke forms as

$$
V_{m}=\left(\frac{\zeta(1-k)}{2} \alpha_{m}\left(1, f_{1}\right), \ldots, \frac{\zeta(1-k)}{2} \alpha_{m}\left(1, f_{\ell}\right), 1\right) .
$$

By [Zuf22b, Lemma 5.9], the points V_{m} converge to $P_{\infty}:=(0, \ldots, 0,1)$ when m diverges. We may bound the distance between V_{m} and P_{∞} as

$$
\begin{align*}
& \left\|\left(\frac{\zeta(1-k)}{2} \alpha_{m}\left(1, f_{1}\right), \ldots, \frac{\zeta(1-k)}{2} \alpha_{m}\left(1, f_{\ell}\right), 0\right)\right\|=\frac{|\zeta(1-k)|}{2}\left(\sum_{j=1}^{\ell} \alpha_{m}\left(1, f_{j}\right)^{2}\right)^{1 / 2}= \tag{4.1}\\
& =\frac{|\zeta(1-k)|}{2 g_{k}(m)}\left(\sum_{j=1}^{\ell} g\left(f_{j}, m\right)^{2}\right)^{1 / 2} \leq \frac{|\zeta(1-k)|}{m^{k-1}}\left(\ell m^{k}\left(\sum_{g^{2} \mid m} 1\right)^{2}\right)^{1 / 2} \leq\left(\frac{\ell \cdot \zeta(1-k)^{2}}{m^{k-3}}\right)^{1 / 2} .
\end{align*}
$$

Let $r^{\prime}(k, m)$ be the number appearing on the right-hand side of (4.1). Note that $r^{\prime}(k, m) \rightarrow 0$ when m diverges. We have just shown that the point V_{m} lies in the ball $B(k, m)$ of radius $r^{\prime}(k, m)$
centered in P_{∞}, for every $m \geq 1$, in short

$$
V_{m} \in B(k, m)=\left\{P: d\left(P, P_{\infty}\right) \leq r^{\prime}(k, m)\right\} \subset M_{1}^{k}(\mathbb{R})^{*} .
$$

The command gen1_check_if_internal_Hecke checks whether the ball $B(k, m)$ is contained in the interior of $\mathcal{A}_{k}(\max)$. Whenever this happens, since $m \leq \max$, the cone $\mathcal{A}_{k}(\max)$ equals the whole accumulation cone \mathcal{A}_{k}.

5. Some results and some empirical evidences

We suppose that $k>4$ and $k \equiv 2 \bmod 4$. In this section we certify the polyhedrality of \mathcal{C}_{k} for k small enough. Moreover, we collect some of the empirical evidences on the polyhedrality of \mathcal{C}_{k} for larger values of k.
5.1. How to certify the polyhedrality of \mathcal{C}_{k} when \boldsymbol{k} is small. In [Zuf22b], we proved the following result.
Proposition 5.1 (Zuffetti). If $k \leq 38$, then the cone \mathcal{C}_{k} is polyhedral.
The proof of it relies on SageMath computations that may be achieved via modcone_genus_2, as we briefly illustrate.

The computation of the truncated cone $\mathcal{C}_{k}(900,30)$ and of V_{m} for all $m \leq 30$ is made as explained respectively in Section 2.5 and Section 4.1.

The check whether V_{m} lies on the boundary of $\mathcal{C}_{k}(900,30)$ can be made using the command Polyhedron already implemented in SageMath following the same pattern of Example 4.1.

The check whether the points V_{m} with $m \leq 30$ generate the whole accumulation cone \mathcal{A}_{k} is made as explained in Section 4.3.

In the following table we summarize the outputs computed as above. We discard the trivial case of $k=6$, since $\operatorname{dim} M_{2}^{6}=1$. The cases of $k=10,14$ are the easiest, since there is no non-zero elliptic cusp form of such weight, hence there is no non-zero Klingen Eisenstein series in M_{2}^{k}.

With "minimum number of determinants to have a stable cone", we mean the minimum number of D 's needed from compute_and_save_cone to reach a determinant D_{0} such that $\mathcal{C}_{k}\left(D_{0}, 30\right)$ equals $\mathcal{C}_{k}(900,30)$.

k	$\operatorname{dim} \mathcal{C}_{k}(900,30)$	Minimum num. of det. to have a stable cone	Number of extremal rays	$m \leq 30$ such that $V_{m} \in \partial \mathcal{C}_{k}(900,30)$	m such that $\mathcal{A}_{k}(m)=\mathcal{A}_{k}$
10	2	2	2	none	1
14	2	2	2	none	1
18	4	8	6	V_{1}	3
22	6	8	7	V_{1}, V_{2}	3
26	7	10	8	V_{1}, V_{2}	4
30	11	18	16	V_{1}, V_{2}	5
34	14	18	16	V_{1}, V_{2}, V_{3}	6
38	16	24	21	V_{1}, V_{2}, V_{3}	7

5.2. Certain interesting subcones of $\mathcal{C}_{\boldsymbol{k}}$. We proved in [Zuf22b, Lemma 7.6] that if m is squarefree, then the subcone \mathcal{R}_{m} of \mathcal{C}_{k} defined as

$$
\begin{equation*}
\mathcal{R}_{m}=\left\langle c_{T}: T \in \Lambda_{2}^{+} \text {with } m \text { as bottom-right entry }\right\rangle_{\mathbb{Q}_{\geq 0}} \tag{5.1}
\end{equation*}
$$

contains V_{m} in its interior. This discards V_{m} from being an extremal ray that gives roundness to \mathcal{C}_{k}.

In [Zuf22b, Example 7.8], we illustrated how such construction does not seem to be valid if m is non square-free. We conjectured that the correct way to construct \mathcal{R}_{m}, so that V_{m} is internal in it, is

$$
\left.\mathcal{R}_{m}=\left\langle c_{T}: T=\left(\begin{array}{cc}
n \tag{5.2}\\
r / 2 & r / 2
\end{array}\right) \in \Lambda_{2}^{+} \text {such that if } t^{2}\right| m \text { with } t \neq 1, \text { then } t \nmid r\right\rangle_{\mathbb{Q} \geq 0} .
$$

Note that the latter coincide with (5.1) if m is square-free.
The command

$$
\text { subcone_for_V_m }(k, m \text {, prec }=30)
$$

loads the basis of $M_{2}^{k}(\mathbb{Q})$ constructed as in Section 2.1, and provides as output the truncation of the cone \mathcal{R}_{m} constructed using only those generators whose matrix T has diagonal entries at most prec. Such cone is then saved as subconeR k_{-}prec_30_for_V_m.

The command

$$
\text { subcone_for_V_m_enlarged }(k, m, \text { prec }=30)
$$

works in a similar way, but whenever m is non square-free, it computes the truncation of the cone (5.1) instead of (5.2). These are the commands used to construct the table in [Zuf22b, Example 7.8].

References

[BM19] J. Bruinier and M. Möller. "Cones of Heegner divisors". In: J. Algebraic Geom. 28.3 (2019).
[Del74] P. Deligne. "La conjecture de Weil. I". In: Inst. Hautes Études Sci. Publ. Math. 43 (1974), pp. 273-307.
[Tak17] S. Takemori. A Sage package for computation of degree 2 Siegel modular forms. https: //github.com/stakemori/degree2/. 2017.
[Zuf22a] R. Zuffetti. Cones of special cycles and unfolding of the Kudla-Millson lift. PhD thesis. 2022.
[Zuf22b] R. Zuffetti. Cones of special cycles of codimension 2 on orthogonal Shimura varieties. Preprint on arXiv. 2022. URL: https://arxiv.org/abs/2202.12610.

[^0]: ${ }^{1}$ There are several equivalent definitions of reduced matrix in the literature. For instance, it is possible to define them as the ones satisfying the relation $|r| \leq m \leq n$ instead.

