Jonathan Zachhuber, jt. w. David Torres-Teigell
zachhuber@math.uni-frankfurt.de

Flat Surfaces \& Teichmüller Curves

A flat surface is a pair (X, ω) where X is a compact Riemann surface of genus g and ω is a non-zero holomorphic differential. Integrating ω endows X (outside of the zeros of ω) with an atlas where all chart changes are (locally) translations. We may therefore picture (X, ω) as a polygon in the plane, whose sides are identified by translations. A flat surface admits a natural $\mathrm{SL}_{2}(\mathbb{R})$-action by affine shearing of the flat structure. Consider now $\Omega \mathcal{M}_{g}$, the moduli space of flat surfaces, which admits a natural projection $\pi: \Omega \mathcal{M}_{g} \rightarrow \mathcal{M}_{g}$ to the moduli space of genus g curves. In the rare case that the projection $\pi\left(\mathrm{SL}_{2}(\mathbb{R})(X, \omega)\right)$ is a curve in \mathcal{M}_{g}, we call this image a Teichmüller curve (generated by (X, ω))
The situation can be summarised by the following commutative diagram (note that $\mathrm{SO}(2)$ acts holomorphically):

$$
\begin{aligned}
& \mathcal{C}=\mathbb{H} / \Gamma \longrightarrow \mathcal{M}_{g}
\end{aligned}
$$

where the map F is given by the action $A \mapsto A \cdot(X, \omega)$. Note that a Teichmüller curve is never compact, but always admits a finite number of cusps.

Orbifold Points

An orbifold point of an orbifold \mathbb{H} / Γ is the projection of a fixed point of the action of Γ, i.e. a point $s \in \mathbb{H}$ such that $\operatorname{PStab}_{\Gamma}(s) \leq \operatorname{PSL}_{2}(\mathbb{R})$ is non-trivial. We call the cardinality of $\operatorname{PStab}_{\Gamma}(s)$ the (orbifold) order of s. For a Teichmüller curve, this can be expressed in terms of the flat structure:
Lemma. Let $\mathcal{C}=\mathbb{H} / \Gamma$ be a Teichmüller curve. Then (X, ω) corresponds to an orbifold point on \mathcal{C} if and only if X admits a holomorphic automorphism σ such that
$\sigma^{*} \omega=\lambda \omega$ with $\lambda \in \mathbb{C}^{*} \backslash\{ \pm 1\}$
For a curve \mathcal{C}, denote by χ the orbifold Euler characteristic, by h_{0} the number of connected components, by C the number of cusps and by e_{d} the number of points of order d. Then this determines the genus g :

$$
2 h_{0}-2 g=\chi+C+\sum_{d} e_{d}\left(1-\frac{1}{d}\right)
$$

McMullen's Prym Construction

Not many infinite families of (primitive) Teichmüller curves are known. For low genus, the following construction by McMullen gives a rich set of examples. Let D be a (real) discriminant, i.e. $D>0$ is not a square and $D \equiv 0$ or $1 \bmod 4$, and denote by \mathcal{O}_{D} the unique quadratic order of discriminant D in $\mathbb{Q}(\sqrt{D})$.
Let $A=\mathbb{C}^{2} / \Lambda$ be a (polarised) abelian surface. Then we say that A admits real multiplication by \mathcal{O}_{D} if there is an embedding $\iota: \mathcal{O}_{D} \hookrightarrow \operatorname{End}(A)$ that is self-adjoint with respect to the polarisation of A. Moreover, we say that real multiplication is proper if it cannot be extended to any larger order in $\mathbb{Q}(\sqrt{D})$.
Now, let (X, ω) be a flat surface admitting a holomorphic Prym involution $\rho: X \rightarrow X$ such that the quotient X / ρ has genus 2. Then $\Omega(X)$, the space of differentials on X, splits into ρ-eigenspaces $\Omega(X)^{ \pm}$. We call
$\mathcal{P}(X, \rho)=\operatorname{ker}(\operatorname{Jac}(X) \rightarrow \operatorname{Jac}(X / \rho))=\frac{\left(\Omega(X)^{*}\right)^{-}}{\mathrm{H}_{1}(X, \mathbb{Z})^{-}}$
the associated Prym variety.
Theorem ([McM03; McM06]). Let X be of genus 2,3 or 4 admitting a Prym involution ρ and differential ω such that

- ω has only one zero,
- $\rho^{*} \omega=-\omega$, and
- $\mathcal{P}(X, \rho)$ admits real multiplication by some \mathcal{O}_{D} with ω as an eigenform.
Then (X, ω) generates a Teichmüller curve $W_{D}(2 g-2)$. The curves $W_{D}(2 g-2)$ are known as Prym-Teichmüller or Prym-Weierstraß curves and are non-empty for every discriminant D unless $g=3$ and $D \equiv 5 \bmod 8$.
Remark. For the curves $W_{D}(2)$ in \mathcal{M}_{2}, the cusps were described by McMullen [McM05], the orbifold points by Mukamel [Muk14], and the Euler characteristic was computed by Bainbridge [Bai07].

Main Result

Theorem ([TTZ16a|). For any non-square discriminant $D>12$, the Prym-Teichmüller curves $W_{D}(4)$ in \mathcal{M}_{3} have orbifold points only of order 2 and 3. More precisely:

- if D is odd, there are no points of order 2; otherwise

$$
e_{2}(D)=\#\left\{a, b, c \in \mathbb{Z}: a^{2}+b^{2}+c^{2}=D\right\} / 24 ;
$$

- the number of orbifold points of order 3 is

$$
e_{3}(D)=\#\left\{a, b, c \in \mathbb{Z}: 2 a^{2}-3 b^{2}-c^{2}=2 D,(*)\right\}
$$

where $h(-D)$ is the class number of \mathcal{O}_{-D};

- the number of orbifold points of order 3 is
where condition (*) restricts the set to those $a, b, c \in \mathbb{Z}$
- $W_{8}(4)$ has one point of order 3 and one point of order 4; - $W_{12}(4)$ has a single orbifold point of order 12.

Moreover, let $D=f_{0}^{2} D_{0}$ where D_{0} is a fundamental discrimant. Then the above sets are all subject to the condition $\operatorname{gcd}\left(a, b, c, f_{0}\right)=1$.
Remark. By [LN14] and [Möl14], $W_{D}(4)$ is empty for $D \equiv 5 \bmod 8$. Moreover, by [LN14], $W_{D}(4)$ has two components iff $D \equiv 1 \bmod 8$.
Theorem ([Zac16]). If $D \equiv 1 \bmod 8$ and D is not a square, the two components of $W_{D}(4)$ are homeomorphic.

Theorem ([TTZ16b]). For any non-square discriminant $D>12$, the Prym-Teichmüller curves $W_{D}(6)$ in \mathcal{M}_{4} have orbifold points only of order 2 and 3. More precisely: - if D is odd, there are no points of order 2; otherwise

$$
e_{2}(D)= \begin{cases}h(-D)+h\left(-\frac{D}{4}\right), & \text { if } D \equiv 12 \bmod 16, \\ h(-D), & \text { if } D \equiv 0,4,8 \bmod 16,\end{cases}
$$

again subject to the condition that $\operatorname{gcd}(a, b, c)=1$;

- $W_{5}(6)$ has one point of order 3 and one point of order 5 ;
- $W_{8}(6)$ has one point of order 2 and one point of order 3 ,
- $W_{12}(6)$ has one point of order 2 and one point of order 6

Remark. The cusps and connected components of $W_{D}(4)$ and $W_{D}(6)$ are described in [LN14], while the Euler characteristics are computed in [Möl14]. Thus, this completes the topological classification of the Prym-Teichmüller curves. Theorem ([TTZ16b]). There exist constants $C_{1}, C_{2}>0$, independent of D, such that the genus satisfies
$C_{1} \cdot D^{3 / 2}<g\left(W_{D}(6)\right)<C_{2} \cdot D^{3 / 2}$
Remark. By Mukamel [Muk14], the genus of the curves
$W_{D}(2)$ in \mathcal{M}_{2} is also asymptotically $D^{3 / 2}$

$g=4$: Choosing the side d as a complex parameter yields differential
with a $\mathbb{Z} / 6$ - and $\mathbb{Z} / 4$-action, respectively, and a single 6 -fold zero.

Idea of Proof

Let (X, ω) be an orbifold point of order $2 d$. Then X admits a holomorphic automorphism σ of order $2 d$ that fixes the (single) zero of ω and descends to X / ρ.
Idea: study families of curves with such an automorphism admitting an eigenform with a single zero and check when the Prym part of such a curve admits real multiplication, i.e. count intersections with the Teichmüller curve For any such family \mathcal{X}, consider therefore the PrymTorelli image $\operatorname{PT}(\mathcal{X})$, i.e. the family of abelian surfaces with fibres $\mathcal{P}\left(\mathcal{X}_{t}, \sigma^{d}\right)$. We must check these fibres for real multiplication. A sketch of the situation in \mathcal{M}_{3}

More precisely, we obtain:

- For $g(X)=3$, we have $g(X / \rho)=1$, hence $\bar{\sigma}$ is of order $d=2,3,4$ or 6 and $g(X / \sigma)=0$. We thus obtain families of cyclic covers of \mathbb{P}^{1} and in these cases the σ eigenspace decomposition of $\Omega(X)$ is understood. In fact, all orders occur ($d=4$ and 6 give 0 -dimensional families).
- For $g(X)=4$, we have $g(X / \rho)=1$, hence $\bar{\sigma}$ is of order $d=2,3,4,5,6,8$ or 10. Using Riemann-Hurwitz, one can show that only $d=2,3,5$ and 6 occur. The case $d=2$ is special, because in this case the quotient is an elliptic curve. But this family can be constructed as a fibreproduct of the quotient elliptic curves. Again, $d=5$ and 6 give 0 -dimensional families.
As the curves have many automorphisms, one can use Bolza's method and other tricks to calculate the endomorphism rings of the Prym part explicitly.
The following positive-dimensional families occur:

$g\left(\mathcal{X}_{t}\right)$	d	$\operatorname{dim} \mathcal{X}$	$\operatorname{dim} \operatorname{PT}(\mathcal{X})$	$\operatorname{Aut}\left(\mathcal{X}_{t}\right)$	$\operatorname{End}\left(\mathcal{P}\left(\mathcal{X}_{t}, \sigma^{d}\right)\right)$
3	2	1	0	G	order in $M_{2}(\mathbb{Q}[i])$
3	3	1	1	$\mathbb{Z} / 6$	order in $\left(\frac{2,-3}{\mathbb{Q}}\right)$
4	2	$2(1)$	1	D_{8}	$M_{2}\left(\operatorname{End}\left(E_{t}\right)\right)$
4	3	1	0	$\mathbb{Z} / 6 \times \mathbb{Z} / 2$	$M_{2}\left(\mathbb{Z}\left[\zeta_{6}\right]\right)$

Here, $G=\mathbb{Z} / 2 \ltimes(\mathbb{Z} / 2 \times \mathbb{Z} / 4), E_{t}: y^{2}=x(x-1)(x-t)$, and $\left(\frac{2,-3}{\mathbb{Q}}\right)$ denotes the quaternion algebra over \mathbb{Q}.
Remark. Note that $g=3=d$ gives the Shimura curve uniformised by $\Delta(2,6,6)$, explaining the hyperbolic triangle in the theorem.
Remark. Observe that for $g=4, d=2$, the D_{8}-family is 2-dimensional. However, restricting to curves that admit an eigendifferential with a sixfold zero reduces the dimension.

Bibliography

$\begin{array}{ll}\text { [Bai07] } & \text { M. Bainbridge. "Euler characteristics of Teichmüller curves in genus two". Geom. Topol. } 11 \text { (2007), pp. 1887-2073. } \\ \text { [LN14] } & \text { E. Lanneau and D.-M. Nguyen. "Teichmüller curves generated by Weierstrass Prym eigenforms in gens } 3\end{array}$
MLN
[LN14] E. Lanneau and D.--M. Nguyen. "Teichmüller curves generated by Weierstrass Prym eigenforms in genus 3 and genus 4". J. Topol. 7.21 (2007), pp. 1887-2073.
E. $\begin{array}{cl} & \text { (2014) pp. 475-522. } \\ \text { McM03] } & \text { C. T. McMullen. "Billiards and Teichmüller curves on Hilbert modular surfaces". Journal of the AMS } 16.4 \text { (2003) }\end{array}$
$\begin{array}{ll}{[M c M 03]} & \text { C. T. McMullen. "Billiards and Teichmüller curves on Hilbert modular surfaces". Journal of the AMS 16.4 (2003), } \\ \text { [McM05] } \\ \text { C. T. McMullen. "Teichmüller curves in genus two: discriminant and spin". Math. Ann. } 333.1 \text { (2005), pp. 87-130. }\end{array}$ $\begin{array}{ll}\text { [McM05] } & \text { C. T. McMullen. "Teichmüller curves in genus two: discriminant and spin". Math. Ann. } 333.1 \text { (2005), pp. } \\ \text { [McM06] } & \text { C. T. McMullen. "Prym varieties and Teichmüller curves". Duke Math. J. } 133.3 \text { (2006), pp. 569-590. }\end{array}$
[Muk14] R. E. Mukamel. "Orbifold points on Teichmüller curves and Jacobians with complex multiplication". Geom. Topol. 18.2 (2014)
[Möl14] M. Möller. "Prym covers, theta functions and Kobayashi geodesics in Hilbert modular surfaces". Amer. Journal. of Math. 135 (2014) [TTZ16a] D. Torres-Te.
[TTZ16a] D. Torres-Teigell and J. Zachhuber. "Orbifold Points on Prym-Teichmüller Curves in Genus 3", IMRN (2016). To appear
[TTZ16b] D. Torres-Teigell and J. Zachhuber "Orbifold Points on Prym-Teichmïller Curves in Genus 4" ("016)
TTZ16b] D. Torres-Teigell and J. Zachhuber. "Orbifold Points on Prym-Teichmüller Curves in Genus 4" (2016). arXiv: 160900144.
[Zac16]

