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Flat Surfaces & Teichmiiller Curves

A flat surface is a pair (X, w) where X is a compact Rie-
mann surface of genus g and w is a non-zero holomorphic
differential. Integrating w endows X (outside of the zeros
of w) with an atlas where all chart changes are (locally)
translations. We may therefore picture (X, w) as a polygon
in the plane, whose sides are identified by translations.

A flat surface admits a natural SLy(R)-action by affine
shearing of the flat structure. Consider now QM,, the
moduli space of flat surfaces, which admits a natu-
ral projection w: QOM, — M, to the moduli space of
genus g curves. In the rare case that the projection
m(SLa(R)(X,w)) is a curve in M,, we call this image a
Teichmiiller curve (generated by (X,w)).

The situation can be summarised by the following commu-
tative diagram (note that SO(2) acts holomorphically):

SLy (R) L aM,

1 o

l "

C = H/T . M,

where the map F' is given by the action A — A - (X, w).
Note that a Teichmiiller curve is never compact, but always
admits a finite number of cusps.

Orbifold Points

An orbifold point of an orbifold H/I' is the projection
of a fixed point of the action of I', i.e. a point s € H
such that PStabp(s) < PSLy(R) is non-trivial. We call
the cardinality of PStabr(s) the (orbifold) order of s.
For a Teichmiiller curve, this can be expressed in terms of
the flat structure:

Lemma. Let C = H/T" be a Teichmiiller curve. Then
(X,w) corresponds to an orbifold point on C if and only
of X admits a holomorphic automorphism o such that

o w = w with A € C* \ {£1}.

For a curve C, denote by x the orbifold Euler charac-
teristic, by hg the number of connected components, by
C' the number of cusps and by e; the number of points of
order d. Then this determines the genus g:

Y e (1-5).
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McMullen’s Prym Construction

Not many infinite families of (primitive) Teichmdiiller
curves are known. For low genus, the following construc-
tion by McMullen gives a rich set of examples.

Let D be a (real) discriminant, i.e. D > 0 is not a
square and D = 0 or 1 mod 4, and denote by Op the unique
quadratic order of discriminant D in Q(v/D).

Let A = C?/A be a (polarised) abelian surface. Then we
say that A admits real multiplication by Op if there is
an embedding ¢: Op — End(A) that is self-adjoint with
respect to the polarisation of A. Moreover, we say that
real multiplication is proper if it cannot be extended to
any larger order in Q(v/D).

Now, let (X,w) be a flat surface admitting a holomorphic
Prym involution p: X — X such that the quotient X/p
has genus 2. Then (X)), the space of differentials on X,
splits into p-eigenspaces Q(X)*. We call

((X)*)™

Hl (X ? Z) B

P(X,p) = ker(Jac(X) — JaC(X/P)) —

the associated Prym variety.

Theorem (|[McMO03; McMO06|). Let X be of genus 2, 3 or 4

admaitting a Prym involution p and differential w such that

e w has only one zero,

e p'w = —w, and

o P(X,p) admits real multiplication by some Op with w
as an eigenform.

Then (X,w) generates a Teichmiiller curve Wp(2g — 2).

The curves Wp(2g —2) are known as Prym-Teichmiiller
or Prym-Weierstrals curves and are non-empty for ev-
ery discriminant D unless ¢ = 3 and D = 5mod38&.

Remark. For the curves Wp(2) in My, the cusps were
described by McMullen [McMO05/, the orbifold points by
Mukamel [Muk14/, and the Euler characteristic was com-
puted by Bainbridge [Bai07].
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Main Result

Theorem (|TTZ16al). For any mon-square discriminant
D > 12, the Prym-Teichmdiller curves Wp(4) in Ms have
orbifold points only of order 2 and 3. More precisely:

e if D 1s odd, there are no points of order 2; otherwise

ea(D) = #{a,b,c € Z : a® + b° + c* = D}/24;
e the number of orbifold points of order 3 s
e3(D) = #{a,b,c € Z : 2a* — 3b° — c* = 2D, (*)},

where condition (x) restricts the set to those a,b,c € Z
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that satisfy f = € e /i C C;
2(a — \/E) y
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e Ws(4) has one point of order 3 and one point of order 4;
e Wi2(4) has a single orbifold point of order 12.

Moreover, let D = f&Dqg where Dy is a fundamental disc-
rimant. Then the above sets are all subject to the condition
ng(CL, ba C, fO) = 1.

Remark. By [LN14] and [Mél1j], Wp(4) is empty for
D = 5mod8. Moreover, by [LN14/, Wp(4) has two compo-
nents iff D = 1 mod 8.

Theorem (|Zacl6|). If D = 1mod 8 and D is not a square,
the two components of Wp(4) are homeomorphic.

Theorem (|TTZ16b|). For any non-square discriminant
D > 12, the Prym-Teichmiiller curves Wp(6) in My have
orbifold points only of order 2 and 3. More precisely:

e if D is odd, there are no points of order 2; otherwise

’

h(—D)+ h(—%£), if D=12mod 16,

D) = <
2(D) h(—D), if D = 0,4, 8 mod 16,

\

where h(—D) is the class number of O_p;
e the number of orbifold points of order 3 is

e3(D) = #{a,b,c € Z : a® + 3b° + (2c — b)* = D}/12,

again subject to the condition that ged(a, b, c) = 1;
e W5(6) has one point of order 3 and one point of order 5;
o Ws(6) has one point of order 2 and one point of order 3;
o W15(6) has one point of order 2 and one point of order 6.

Remark. The cusps and connected components of Wp(4)
and Wp(6) are described in [LN14/, while the Euler charac-
teristics are computed in [Mdél14[. Thus, this completes the
topological classification of the Prym-Teichmiiller curves.

Theorem (|TTZ16b|). There exist constants C1,Cy > 0,
independent of D, such that the genus satisfies

C, - D32 < g(Wp(6)) < Cy - D3/2.

Remark. By Mukamel [Muk14/, the genus of the curves
Wp(2) in Ms is also asymptotically D3/2,

Flat Pictures

g = 3: Choosing the side a as a complex parameter yields differentials
with a Z/6- and Z/4-action, respectively, and a single 4-fold zero.

g = 4: Choosing the side d as a complex parameter yields differentials
with a Z/6- and Z/4-action, respectively, and a single 6-fold zero.

Idea of Proof

Let (X, w) be an orbifold point of order 2d. Then X admits
a holomorphic automorphism o of order 2d that fixes the
(single) zero of w and descends to X/p.

Idea: study families of curves with such an automorphism
admitting an eigenform with a single zero and check when
the Prym part of such a curve admits real multiplication,
i.e. count intersections with the Teichmiiller curve.
For any such family A, consider therefore the Prym-
Torelli image PT(X), i.e. the family of abelian surfaces

with fibres P(X;, c?). We must check these fibres for real
multiplication. A sketch of the situation in Msj:

More precisely, we obtain:

e For g(X) = 3, we have g(X/p) = 1, hence & is of or-
der d = 2,3,4 or 6 and g(X/o) = 0. We thus obtain
families of cyclic covers of P! and in these cases the o-
eigenspace decomposition of 2(X) is understood. In fact,
all orders occur (d = 4 and 6 give O-dimensional families).

e For g(X) = 4, we have g(X/p) = 1, hence 7 is of order
d=2,3,4,5,6,8 or 10. Using Riemann-Hurwitz, one can
show that only d = 2,3,5 and 6 occur. The case d = 2
1s special, because in this case the quotient is an elliptic
curve. But this family can be constructed as a fibre-
product of the quotient elliptic curves. Again,d = 5
and 6 give 0O-dimensional families.

As the curves have many automorphisms, one can use

Bolza’s method and other tricks to calculate the endo-

morphism rings of the Prym part explicitly.

The following positive-dimensional families occur:

g(X) d dimX dimPT(X) Aut(X;) End(P(X;,c?))

3 2 1 0 G order in My (Ql7])
3 3 1 1 7/6  order in (252)
4 2 2(1) 1 Dsg M>(End(E;))
4 3 1 0 76 x Z/2  Ma(Z[Cs))

Here, G = Z/2 % (Z/2x Z/4), E;: y* = x(x—1)(z —t), and

(2’@ 3) denotes the quaternion algebra over Q.

Remark. Note that g = 3 = d gives the Shimura curve
uniformised by A(2,6,6), explaining the hyperbolic triangle
in the theorem.

Remark. Observe that for g = 4, d = 2, the Dg-famaly is
2-dimensional. However, restricting to curves that admit an
ergendifferential with a sizfold zero reduces the dimension.
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