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Soutenu le 24 juin 1997
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1 Introduction

The present work deals with some aspects of Real Algebraic Geometry. This recent
branch of mathematics can be seen as the real counterpart of Algebraic Geometry
and indeed there are many similarities. However, Real Algebra and Real Algebraic
Geometry require special methods and techniques. For instance, in Real Algebraic
Geometry one uses succesfully model-theoretic arguments, quadratic forms, general
valuation rings, whereas these notions are less important in Algebraic Geometry.
Some other notions or tools, like variety, blowing up, divisors or Zariski–Spectrum
carry over to the real case where they have real counterparts.

We want to give some indications, what Real Algebra and Real Algebraic Geometry
means. In Real Algebra, one investigates the laws of ordered structures, like ordered
fields or ordered rings. It can be seen as the real counterpart of Commutative
Algebra. The name is deduced from the best known example of an ordered field,

namely IR. Stimulated by Hilbert’s 17th problem, Artin and Schreier were the first
to consider ordered fields more generally. This has lead to the solution of this famous
problem. Later, M.-F. Roy and M. Coste have found the real analogy to the Zariski–
Spectrum. This discovery was the starting point of many further investigations in
Real Algebra. On the other hand, Real Algebraic Geometry is concerned not only
with systems of algebraic equations, but with systems of inequalities, where one
uses an ordering of the base field. This geometry has a very rich structure, there are
many theorems of finiteness, triviality or local structure.

One of the most surprising theorems gives information about the way of describing a
certain kind of semialgebraic sets, the so-called basic open sets. For each real variety,
we have an invariant, called the stability index, which contains much information
about the variety. There are several characterizations of the stability index, for our
purpose we need the following: Every set of the form

{x ∈ V : f1(x) > 0, . . . , fn(x) > 0}

with V a real variety and f1, . . . , fn ∈ R[V ] can be described in the same way with
only s(V ) functions g1, . . . , gs(V ). For exact definitions of these notions the reader
is refered to Chapter 2.

In many cases, the stability index can be computed. The first one to give bounds of
this invariant was Bröcker, who used tricky pasting techniques. However, it turned
out that his bounds were not the best possible. The exact value of the stability
index was found independently by Bröcker and Scheiderer in 1989. Meanwhile,
various other proofs of this theorem are known, interesting bounds for the degrees
of the gi’s have been found and similar questions in semianalytic geometry have
been solved. But so far, no elementary and geometric proof is known. Here, we
will use elementary means to show some weaker versions of the Theorem of Bröcker-
Scheiderer.

This work is divided into four parts, each of them is more or less independent of the
others, with the exception of the first chapter, which is underlying to all the others,
since basic definitions and tools like real variety, the Tarski–Seidenberg–Priciple or
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semialgebraic set are introduced. The content of the first chapter is well-known,
whereas the results of the other chapters are new (if not otherwise specified).

The second chapter can be considered as an application of Analysis to Real Alge-
braic Geometry. Based on an idea about Convex Interpolation in [12], we show
an interesting and general theorem which could have other applications in different
branches of mathematics. Here we point out how to use it for the problem of re-
ducing inequalities. We solve completely the first interesting case of the Theorem of
Bröcker-Scheiderer. Although this is naturally a consequence of the general theorem,
no direct proof was known. The proof we give here is simple and understandable.

In the third chapter we generalize some of the ideas arising from the proof in the
second chapter. Unfortunately, we don’t know how to apply the Theorem of Convex
Interpolation to higher-dimensional cases. But the structure of the solutions found
in the two-dimensional case gives useful hints for the higher-dimensional case. To
begin with, we show a generalization of the theorem in the two-dimensional case.
Afterwards, with the help of a very important tool (the value set), we give a proof of
a weak version of the Theorem of Bröcker–Scheiderer. The advantage of our proof
is to yield to an algorithm and to be very geometrical.

The last chapter gives some new results about the reduction of semialgebraic sets.
We show that in different situations, special kinds of reductions, which we call
polynomial reductions, can be found. This gives information about the way the
functions gi depend on the functions fi of the given description of a basic open
set. It is shown that one can choose them by starting with the functions fi and
finitely many additions and multiplications. This result is not trivial, even in the
one-dimensional case it is not obvious.
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2 Real Algebra

In this chapter we collect some basic facts from Real Algebra. As all of this can
be found in the references [1],[2] and [3], we don’t give any proof. We begin with
the introduction of the notions of ordered field, real closed field, archimedean field
and real variety. Afterwards, the central objects of Semialgebraic Geometry, the
semialgebraic sets and semialgebraic functions are defined and the most important
properties are listed. In the end of this chapter, we define the Real Spectrum of a
ring, which is a very strong tool in Real Algebraic Geometry. However, we won’t
use it very often in the sequel, since our proofs work on the semialgebraic level. It
should not be very hard to generalize some of the constructions to the real spectrum,
we don’t want to do this.

2.1 Ordered fields and real closed fields

The theory of ordered fields was developed by Artin and Schreier in the 20’s in order
to give a solution to Hilbert’s 17th problem. Their work is the foundation of modern
real algebra.

Definition 2.1.1 A preordering of a field F is a subset P of F satisfying

a) P + P ⊆ P and P ∗ P ⊆ P

b) P ∩ (−P ) = {0}

c) F 2 ⊆ P

Definition 2.1.2 An ordering of a field F is a preordering P such that
P ∪ (−P ) = F .

Let
∑

F 2 = {a2
1 + . . . + a2

n : n ∈ IN, a1, . . . , an ∈ F}.

Proposition 2.1.3 Let F be a field. Then:

a)
∑

F 2 is contained in every preordering.

b)
∑

F 2 is a preordering if and only if −1 /∈ ∑F 2.

c) Every preordering is contained in an ordering.

d) Every preordering P is the intersection of the orderings containing P .

Definition 2.1.4 The field F is called formally real, if −1 /∈ ∑

F 2, that is, if
it can be ordered. An ordered field is a formally real field F equipped with an
ordering P .
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Given an ordered field (F, P ), we write a ≤P b or just a ≤ b instead of b − a ∈ P .
This defines a total ordering on F which is compatible with + and · (the operations
of F ).

Examples 2.1.5

a) IR has a unique ordering, which is given by the squares.

b) Q has a unique ordering.

c) Q(
√

2) has exactly two orderings which come from the two embeddings
Q(

√
2) ↪→ IR.

Definition 2.1.6 A real closed field is a formally real field F which admits no
proper algebraic formally real extension.

Proposition 2.1.7 For a field F , the following conditions are equivalent:

a) F is real closed.

b) There is an ordering P on F which cannot be extended to an algebraic extension
of F .

c)
∑

F 2 is an ordering and any polynomial of odd degree has a root in F .

d) F is not algebraically closed, but F (
√
−1) is algebraically closed.

If this is the case, then
∑

F 2 is the only ordering of F .

Examples 2.1.8

a) IR is a real closed field, since every positive real number has a square root and
every polynomial of odd degree admits a root.

b) Q is not real closed, since for instance x3 − 2 has no root inQ.

Proposition and Definition 2.1.9 Let (F, P ) be an ordered field with algebraic
closure F . Then there exists a real closed field R with F ⊆ R ⊆ F such that the
unique ordering of R extends P and any two real closed fields with that property are
conjugate in F over F . The field R is called the real closure of (F, P ).

Example 2.1.10 The real closure ofQ is the set of real algebraic numbers, denoted
by IRalg.

Proposition 2.1.11 (Descartes’ Rule) Let R be a real closed field and let
f(t) = c0t

n + c1t
n−1 + . . . + cn be a real polynomial with n ≥ 1 and c0 6= 0. If cn 6= 0

and all the roots of f are real, then the number of positive roots of f equals the
number of variations of signs in the sequence c0, . . . , cn and the number of negative
roots of f equals the number of sign changes in the sequence c0,−c1, . . . , (−1)ncn.

See [1] for a proof. It is surprising, but this Proposition will play an essential role
in the proof of one of the main theorems of this work (Theorem 4.3.5).

7



2.2 Archimedean fields

The real closed fields have a behaviour which is very similar to that of the field of
real numbers IR. More precisely, any first order formula defined with coefficients in
IR, which is true over IR remains true over any real closed field containing IR. (see
2.4.11). Nevertheless, there are important properties which cannot be formulated
with the help of a first order formula. Another class of fields, which shares many
properties with IR, is the class of archimedean fields.

Definition 2.2.1 An ordered field (F, P ) is called archimedean if every element
of F is bounded by a natural number, that is

x ∈ F ⇒ ∃n ∈ IN : |x| ≤P n (1)

Remark 2.2.2 We stress the fact that the notion of archimedean field depends on
the given ordering. In general, a given field can have at the same time orderings for
which it is archimedean and orderings for which it is not archimedean.

The next proposition gives a classification of archimedean fields.

Proposition 2.2.3 Let (F, P ) be an archimedean field. Then there is a unique
injective homomorphism of rings φ : F 7→ IR which respects the orderings.

In other words, the archimedean fields are the subfields of IR with the induced
orderings.

Corollary 2.2.4 Archimedean fields are dense in IR.

This follows from the fact that every archimedean field has characteristic 0, so it
contains the field of rational numbers which is dense in IR.

We will need the following proposition:

Proposition 2.2.5 Let (F, P ) be an archimedean field. Let ε > 0 be a rational
number and x ∈ F with 0 < x < 1. Then there exists a natural number M > 0 such
that xM < ε.

2.3 Real varieties

We come to the important definition of a real variety. In contrary to the situation
in Algebraic Geometric, in Real Algebraic Geometry questions of reducibility play
a less important role. Similarly, it is sufficient to handle affine varieties, since real
projective varieties are less needed in Real Algebraic Geometry. So we will define
affine real varieties. We follow the presentation in [1].

Let k be a field with algebraic closure k. Let K be a field with k ⊆ K ⊆ k. For any
subset T of k[t1, . . . , tn] and any subset V of Kn we set

ZK(T ) := {x ∈ Kn : ∀f ∈ T f(x) = 0}

Ik(V ) := {f ∈ k[t1, . . . , tn] : ∀x ∈ V f(x) = 0} (2)
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Definition 2.3.1 An affine k-variety is a subset V of k
n

which has the form
V = Z

k
(I) for an ideal I ⊆ k[t1, . . . , tn]. For an intermediate field k ⊆ K ⊆ k we

call V (K) := V ∩ Kn the K-rational points. If k = K = R is a real closed field,
we call V (R) a real affine variety.

Remark 2.3.2

a) It is possible to define real affine varieties in a more intrinsic way. This is
done in [2] using sheaves and regular functions. This more general definition
is compatible with our definition but will not be needed here.

b) The real affine varieties are exactly the algebraic subsets of the spaces Rn. In
the following sections, we will denote a real affine variety by V . Since we do
not consider other varieties, this should not yield to confusions.

Definition 2.3.3 Let V ⊆ k
n

be an affine k-variety. The affine algebra k[V ] is
the finitely generated, reduced algebra k[V ] = k[t1, . . . , tn]/Ik(V ). It is also called
the coordinate ring of V .

If R is a real closed field, then R has a unique ordering which induces a topology
on R and hence on Rn. If V ⊆ Rn is a real affine variety, then the topology of
Rn induces a topology on V (R). This is a canonical topology and in the sequel all
topological notions relate to it.

The second topology we will consider is the Zariski-topology on a real affine variety.
It is defined in the usual way.

2.4 Semialgebraic sets

We will give the definition of a semialgebraic set. These sets are the central object in
semialgebraic geometry and have a very rich structure and nice properties. One can
see semialgebraic sets as the semialgebraic counterpart to algebraic sets in Algebraic
Geometry.

We fix a real closed field R and a positive integer n.

Notation 2.4.1 Let {f > 0} denote the set {x ∈ Rn : f(x) > 0}, where
f ∈ R[t1, . . . , tn]. The sets {f = 0}, {f ≥ 0}, {f1 > 0, . . . , fn > 0}, . . . are defined in
an analogous way.

Definition 2.4.2 A semialgebraic set S ⊆ Rn is a finite boolean combination of
sets of the form {f > 0} where f ∈ R[t1, . . . , tn] is a polynomial with n variables.

With other words, semialgebraic sets arise from sets of the form {x ∈ Rn : f(x) > 0}
by taking finitely many intersections, unions and complements. It is easy to show
that every semialgebraic S set can be written as a finite union of sets of the form

{f = 0, g1 > 0, . . . , gn > 0}
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More generally, we can define semialgebraic sets in a real affine variety. Let V be a
real affine variety. Given f ∈ R[V ] and x ∈ V , the value f(x) ∈ R is well defined.
Now semialgebraic sets of V are boolean combinations of sets of the form {f > 0}
where f ∈ R[V ]. Note that this definition coincides with the definition above in the
case V = Rn and that the semialgebraic sets of V are the restrictions of those of Rn

to V .

The most important properties of semialgebraic sets are given in the following propo-
sition:

Proposition 2.4.3 Let S ∈ Rn be a semialgebraic set. Then

a) The interior, the closure and the border of S are semialgebraic.

b) The image of S under the projection π : Rn 7→ Rn−1,
π(x1, . . . , xn) = (x1, . . . , xn−1) is semialgebraic. (Quantifier elimination or
Tarski–Seidenberg–Principle)

See [2] for proofs.

Remark 2.4.4

a) The semialgebraic subsets of R are the finite unions of intervals and points.

b) Semialgebraic sets can be very difficult sets, however there are many properties
of finiteness or triviality. See [8] for details.

Definition 2.4.5 Let V be a real affine variety over R. A semialgebraic set S ⊆ V
is called basic open if it can be written as

S = {x ∈ V : f1(x) > 0, . . . , fm(x) > 0} (3)

for a natural number m and functions f1, . . . , fm ∈ R[V ]. The notion of basic
closed set is defined in an analogous way by relaxing the inequalities.

Now we have to give an important notion from model theory. The reader is referred
to [7] for details.

Definition 2.4.6 Let A be a commutative ring with unit. A formula Φ(x) with
parameters in A (in the language of ordered fields with parameters in A) is an ex-
pression which is built up by a finite number of conjunctions, disjunctions, negations,
universal and existential quantifiers on the variables starting from atomic formulae,
which are the expressions f(x) > 0 where f ∈ A[x], x = (x1, . . . , xn). A sentence
is a formula without free variables.

The part b) of the Proposition 2.4.3 is an equivalent version of the following propo-
sition:
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Proposition 2.4.7 A subset S ⊆ Rn is semialgebraic if and only if there exists a
formula Φ(x) with parameters in R and free variables x = (x1, . . . , xn) such that
S = {x ∈ Rn : Φ(x)}.

This proposition can be very useful to show that a given set is semialgebraic.

Definition 2.4.8 Let S ⊆ Rn and T ⊆ Rm be semialgebraic subsets. A function
f : S 7→ T is called a semialgebraic function if the graph

Γ = {(x, y) ∈ S × Rm : y = f(x)}

is a semialgebraic subset of Rn × Rm.

Example 2.4.9 If f : Rn 7→ Rm is a polynomial function, then f is a semialgebraic
function.

Proposition 2.4.10 Let S ⊆ Rn and T ⊆ Rm be semialgebraic subsets and let
f : S 7→ T be a semialgebraic function. Then the image f(S) is a semialgebraic
subset of T .

There is another useful interpretation of the Tarski–Seidenberg–Principle:

Proposition 2.4.11 (Model Completeness) Let Φ be a formula over R without
free variables and let K be a real closed extension of R. Then Φ is true in R if and
only if it is true in K.

See [2] for the proofs of these two propositions.

There is an important inequality found by Hörmander and  Lojasiewicz (see [10], [2]
or [1]) in order to attack questions arising from the theory of distributions. This
inequality is very often used in Real Geometry to glue together different functions.

Proposition 2.4.12 ( Lojasiewicz’ Inequality) Let S be a semialgebraic, boun-
ded and closed subset of a real affine R-variety; let f and g be two semialgebraic
continuous functions f, g : S 7→ R such that the zeros of f are zeros of g too. Then
there exist an integer N > 0 and a constant c ∈ R such that

|g|N ≤ c ∗ |f | (4)

holds on S. In addition,we can achieve that this inequality is strict on the set
{f 6= 0}.
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2.5 The real spectrum of a ring

Now, let us consider a commutativ ring A with unit 1.

Definition 2.5.1 An ideal I is called real if for all a1, . . . , an ∈ A with
a2

1 + . . . + a2
n ∈ I we have a1, . . . , an ∈ I.

Example 2.5.2 If ∅ 6= V ⊆ Rn is a real affine variety, then the ideal IR(V ) is real.

Definition 2.5.3 The real spectrum of A is the set of paires α = (℘, T ) where ℘
is a real prime ideal of A and T is an ordering of the residue field QuotA/℘.

Notation 2.5.4 We will denote by SpecrA the real spectrum of A. k(α) denotes
the real closure of QuotA/℘ with regard to the ordering T .

There are other interpretations of the real spectrum of a ring. For our purposes the
next definition is important:

Definition 2.5.5 Let A be a commutative ring with unit. A prime cone of A is a
subset P ⊆ A such that

a) P + P ⊆ P

b) P · P ⊆ P

c) P ∪ (−P ) = A

d) supp P := P ∩ (−P ) is a prime ideal of A.

We can consider the real spectrum of a ring as the set of prime cones. The identi-
fication is as follows: if α = (℘, T ) ∈ SpecrA, then P := {a ∈ A : a ∈ T} (where a
denotes the image of a in QuotA/℘) is a prime cone. If P is a prime cone, then P
induces an ordering P on QuotA/supp P and hence a point (supp P, P ) ∈ SpecrA.
We will use in the sequel the two interpretations, with the identification above all
the results stated for prime cones can be reformulated in terms of prime ideals with
orderings on the residue fields and vice versa. We remark that there is actually a
third interpretation of the real spectrum as the set of non-trivial homomorphisms
from A into some real closed field modulo an equivalence relation. This will be less
important for us. See [2] for details.

As a set, the real spectrum is not very interesting, so we have to provide it with
the structure of a topological space. To begin with, we can see the elements of A
as functions on SpecrA. We have a canonical morphism (by abuse of notation also
denoted by α)

α : A 7→ QuotA/℘ ↪→ k(α)

If α ∈ SpecrA, f ∈ A, then f(α) := α(f). So f is a function on SpecrA, but the
value fields varie with α. Formally, we can say that f is an application

f : SpecrA 7→
∏

α∈Spec
r
A

k(α)
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such that f(α) ∈ k(α). The reader who is familiar with the (Zariski–) Spectrum of
a ring should note the similarity with the real spectrum.

Notation 2.5.6 Let f ∈ A. By {f > 0} (resp. {f ≥ 0}, . . .) we denote the set
{α ∈ SpecrA : f(α) > 0} (resp. {α ∈ SpecrA : f(α) ≥ 0}, . . .).

Definition 2.5.7 The spectral topology is the topology on SpecrA which has
{{f > 0} : f ∈ A} as a subbasis of open sets. It follows that a basis of open sets is
given by {{f1 > 0, . . . , fn > 0} : n ∈ IN ; f1, . . . , fn ∈ A}.

Remark 2.5.8 The spectral topology on SpecrA is also called Harrison-
Topology.

Later on, we will establish a relation between real affine varieties with semialgebraic
sets and real spectra with a certain kind of sets, called constructible. They can
be seen as the generalization of semialgebraic sets and there is a deep connection
between these two notions.

Definition 2.5.9 A constructible set is a finite boolean combination of sets of
the form {f > 0} whith f ∈ A. The constructible topology on SpecrA is the
topology which has the set of constructible sets as an open basis.

Remark 2.5.10

a) If not mentioned otherwise, any topological notion like open, closure etc. will
always refer to the spectral topology on SpecrA. The constructible topology
has many advantages in some proofs, but the more natural and interesting
topology is the spectral one.

b) It is clear that the constructible topology is finer than the spectral one.

Proposition 2.5.11 Let A be any commutative ring with unit.

a) SpecrA is compact with respect to the constructible topology.

b) The sets which are open and closed for the constructible topology are exactly
the constructible sets.

c) The spectral topology is quasicompact, but in general not Hausdorff.

d) SpecrA is a T0-space, that is, if x, y ∈ SpecrA, x ∈ {y} and y ∈ {x} then
x = y.

Notation 2.5.12 For x, y ∈ SpecrA with y ∈ {x} we write x → y. In this case, y
is called a specialization of x and x a generalization of y.

Proposition 2.5.13 Let φ : A 7→ B be a homomorphism of commutative rings with
unit, then we have an induced map φ∗ : SpecrB 7→ SpecrA defined by

P ∈ SpecrB 7→ φ−1(P ) ∈ SpecrA

This map is continuous with respect to both the Harrison- and the constructible
topology.
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In other words, Specr is a contravariant functor from the category of commutative
rings with unit to the category of topologic spaces.

Next, we consider an affine real variety ∅ 6= V ⊆ Rn. We set

A := R[V ] = R[t1, . . . , tn]/IR(V ) (5)

We want to establish a relation between V (equipped with the induced topology)
and the topological space SpecrA with the spectral topology.

Let x ∈ V . Then we have an application evx : A 7→→ R defined by evx(f) := f(x). If
℘ denotes the kernel of this map, we have QuotA/℘ = R and R is equipped with a
unique ordering T . So (℘, T ) ∈ SpecrA. This defines an application φ : V 7→ SpecrA.

Proposition 2.5.14 φ is an injective and continuous map.

We can view V as a subspace of SpecrA, the topology of V being induced by the
spectral topology of SpecrA. The main interest in considering SpecrA instead of V
is that on the one hand, SpecrA reflects the properties of V , on the other, it has a
certain number of advantages, e.g. it is quasicompact. As a first, very important
result in this direction, we have:

Proposition 2.5.15 The boolean algebra of semialgebraic sets of V and the boolean
algebra of constructible sets of SpecrA are isomorphic.

We will describe this isomorphism more explicitely. If C ⊆ SpecrA is a constructible
set, then the corresponding semialgebraic set of V is the set V ∩ C. For a semial-
gebraic set S ⊆ V , the corresponding constructible set is S̃, the closure of S in the
constructible topology.

If a semialgebraic set S ⊆ V is given by a boolean combination of sets {f > 0} ⊆ V
where f ∈ A, then the corresponding set in the real spectrum is the same combina-
tion of {f > 0} ⊆ SpecrA and vice versa.

2.6 Dimension

Definition 2.6.1 Let S ⊆ Rn be a semialgebraic set and V its Zariski-closure. The
dimension of S is by definition the (Krull-) dimension of the ring R[V ], that is
the maximal length of a chain of prime ideals in R[V ]. We denote it by dim S

This definition is a generalization of the notion of dimension on a variety, which we
can consider as a semialgebraic set defined by some equations.

Proposition 2.6.2 Let S ⊆ Rn be a semialgebraic set. Then

dim S = dim(adh S) = dim(adhZ(S)) (6)

where adh denotes the closure for the topology induced by the one of Rn and adhZ

the closure for the Zariski–topology.
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Proposition 2.6.3 Let S be a semialgebraic set and let f : S 7→ Rp be a semialge-
braic function. Then dim S ≥ dim f(S).

Definition 2.6.4 Let A be a commutative ring and C ⊆ SpecrA a constructible set.
The dimension of C is the maximal length n of a chain αn ⊂ αn−1 ⊂ . . . ⊂ α0 which
is contained in C. We denote it by dimc C.

Proposition 2.6.5 Let R be a real closed field and let S ⊆ Rn be a semialgebraic
set. Then

dim S = dimc S̃ (7)

See [2] for a proof.

Definition 2.6.6 Let A be a commutative ring. For α ∈ SpecrA, the dimension of
α, denoted by dimr α is by definition the (Krull-) dimension of the ring A/supp (α).
The dimension of a constructible set ∅ 6= C ⊆ SpecrA is the maximum of the dimen-
sions dim α with α ∈ C. We denote it by dimr C. The real dimension of the ring A
(dimr A) is the dimension of SpecrA.

Proposition 2.6.7 Let A be a commutative ring and let C ⊆ SpecrA be a con-
structible set. Then

dimc C ≤ dimr C (8)

Definition 2.6.8 Let k be a field and let A be a k-algebra. Then the (transcen-
dental-) dimension of A, denoted by dimt A, is the maximal number n of elements
a1, . . . , an of A such that there is no polynomial 0 6= p ∈ k[t1, . . . , tn] with
p(a1, . . . , an) = 0.

Proposition 2.6.9 Let R be a real closed field and let A be a R-algebra. Then

dimr A ≤ dimt A (9)

2.7 The main results

The central subject of this work is the following theorem:

Theorem 2.7.1 (Bröcker-Scheiderer) Let R be a real closed field and let V be a
real affine R-variety of dimension d > 0. Given n ≥ d functions f1, . . . , fn ∈ R[V ]
then there are functions g1, . . . , gm ∈ R[V ] with m ≤ d such that

{x ∈ V : f1(x) > 0, . . . , fn(x) > 0} = {x ∈ V : g1(x) > 0, . . . , gm(x) > 0} (10)
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Remark 2.7.2 One defines an invariant s(V ), which depends only on V : s(V ) is
the smallest natural number (or ∞) such that every basic open set can be written
with only s(V ) functions. Theorem 2.7.1 states that s(V ) ≤ dim V for a R-variety
over a real closed field R (one even has equality). The number s(V ) is called the
stability index of V .

In the proofs of Theorem 2.7.1, one uses much theoretical machinery, like

• quadratic forms and the theorem of Tsen-Lang (see [15])

• theory of fans, spaces of signs and spaces of orderings (see [3])

• theory of real valuations and real places (see [4],[5],[6])

These approaches have the inconvenient that they are not very constructive (apart
from Mahé’s proof where the solution of algebraic equations over function fields is
necessary which could be difficile in practice).

The aim of this work is to present theorems in two directions:

• Obtaining some constructions for special cases (see chapter 3 and 4).

• Obtaining information about the dependance of the functions gi from the func-
tions fi (see chapter 5)

For the first purpose we don’t admit Theorem 2.7.1, whereas we use it for the second
purpose.

Let us state Theorem 2.7.1 in the real spectrum of a ring.

Theorem 2.7.3 Let A be any R-algebra of transcendence degree d > 0 over the real
closed field R, then any basic open set in the real spectrum of A can be written with
only d inequalities.

See [15] for a proof.

Theorem 2.7.4 (The ”t-invariant”) Let R be a real closed field and let V be a
real affine variety of dimension d > 0 over R. Then there exists an invariant t(V )
which depends only on V , such that every open semialgebraic set of V can be written
as the union of at most t(V ) basic open sets. This invariant is bounded by

t(V ) ≤ (d + 1) ∗ τ(s(V )) (11)

where the function τ is defined by

τ(s) =











s for s ≤ 2
(

4s−1 − 2s−1 + 1
2 ∗ 4s−2 − 2s−2 + 1

)

for s ≥ 3
(12)

16



Theorem 2.7.5 Let R be a real closed field and let V be a real affine variety of
dimension d > 0 over R. Then every semialgebraic set of V can be written in the
form

S =
t
⋃

i=1

{gi = 0, gi,1 > 0, . . . , gi,s > 0} (13)

with gi, gi,j ∈ R[V ], t ≤ (d + 1) ∗ τ(d) and s ≤ d.

Theorem 2.7.6 Let R be a real closed field and let V be a real affine variety of
dimension d > 0 over R. Then every semialgebraic basic closed set of V can be
written in the form

S = {g1 ≥ 0, . . . , gs ≥ 0} (14)

with gi ∈ R[V ] and s ≤ d(d+1)
2 .

Theorem 2.7.7 Let R be a real closed field and let V be a real affine variety of
dimension d > 0 over R. Then every closed semialgebraic set of V can be written
in the form

S =
t
⋃

i=1

{gi,1 ≥ 0, . . . , gi,s ≥ 0} (15)

with gi ∈ R[V ], t ≤ d(d+1)τ(d) and s ≤ d(d+1)
2 .

For a proof of these theorems, see [3].

17



3 Convex Interpolation

In [9] it is shown in which way some methods of interpolation and approximation
can be used to reduce the number of inequalities in the description of bounded
convex polygons of IR2. The result is a constructive proof of the fact that every such
polygon can be described by 3 inequalities. With the help of a generalization of the
used arguments we will give a similar proof which leads to a description with only
2 instead of 3 inequalities.

3.1 Theorem of Convex Interpolation

In this chapter, we will show a useful theorem which will give us some information
about the two-dimensional case of the Bröcker-Scheiderer-Theorem. Since the Con-
vex Interpolation could be useful for other applications than Real Geometry, we give
the proof in the general case, although we only use a special case, namely n = 2.

Definition 3.1.1 Given m points y1, . . . , ym ∈ IRn, we will say that they lie in a
convex position, if no point lies in the convex hull of the others.

Theorem 3.1.2 Given m points y1, . . . , ym ∈ IRn in convex position, there is a
polynomial p ∈ IR[x1, ..., xn] with the following properties:

• The sets {x ∈ IRn : p(x) ≥ 0} and {x ∈ IRn : p(x) > 0} are convex.

• The points y1, . . . , ym lie on the border of this set.

Remark 3.1.3 In [12], a similar theorem is given in the one-dimensional case.
Our case is in some sense the multi-dimensional generalization of this theorem.

For the proof, we need the following lemma:

Lemma 3.1.4 For a given ε > 0, y1, . . . , ym ∈ IRn in convex position and
i ∈ {1, . . . ,m} there is a polynomial pi ∈ IR[x1, . . . , xn] with:

• pi(yi) = 1

• | pi(yj) |< ε for j 6= i

• The function pi on IRn is convex.

Proof: Using the convex position of the points y1, . . . , ym, we find a linear function
g : IRn 7→ IR such that g(yi) > 0 and g(yj) < 0 for j 6= i. With the help of a linear
transformation we can assume that g(yi) = 1 and −1 < g(yj) < 1 for j 6= i. For a
suitable exponent 2s, all the values g(yj)2s for j 6= i are of absolute value < ε and
the function pi(x) := g(x)2s is convex, so the Lemma is proven. 2
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Let ε > 0 be a real number that will be fixed later on. For each yi we choose a
polynomial pi as in the Lemma. We write

p = 1 −
(

m
∑

i=1

cipi

)

(16)

where the ci are positive real numbers which are to be found. The conditions
p(yj) = 0 for j = 1, . . . ,m yield to the system of equations:

m
∑

i=1

cipi(yj) = 1 (17)

With the help of matrices this can be written as







p1(y1) . . . pm(y1)
...

...
...

p1(ym) . . . pm(ym)





















c1
...
...

cm















=















1
...
...
1















(18)

If we write C for















c1
...
...

cm















,1 for















1
...
...
1















and I for the matrix unity, the condition is

(I + A)C = 1 (19)

where A is a matrix of which the entries on the diagonal are zero and the others of
absolute value smaller than ε. We consider in IRm the maximum norm, that is

∥

∥

∥

∥

∥

∥

∥







a1
...

am







∥

∥

∥

∥

∥

∥

∥

=
m

max
i=1

| ai | (20)

We also consider the associated matrix norm. Is A = (aij)i=1,...,m;j=1,...,m so

‖ A ‖=
m

max
j=1

m
∑

i=1

| aij |≤ (m − 1)ε (21)

We choose 0 < ε < 1
2(m−1) , consequently we have ‖ A ‖< 1

2 . Now, we consider the
equation

(I + A)C = 1 (22)
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For ‖ A ‖< 1
2 < 1, (I + A) is invertible, hence there is a unique vector C that fulfils

this equation. An elementary calculation shows that

‖ C − 1 ‖≤ ‖ A ‖
1− ‖ A ‖ < 1 (23)

From the definition of the norm we conclude that | ci − 1 |< 1, hence that ci > 0 for
i = 1, . . . ,m.

The function p constructed in this way is the function we sought in Theorem 3.1.2:
It vanishes on the yi by construction and it is a linear combination with negative
coefficients of convex functions, hence it is a concave function. Consequently, the
sets {x ∈ IRn : p(x) ≥ 0} and {x ∈ IRn : p(x) > 0} are convex. This finishes the
proof. 2

3.2 Application to the Bröcker-Scheiderer-Theorem

In this section we want to apply Theorem 3.1.2 to the reduction of inequalities in 2
variables. More precisely, we want to handle a special case of Theorem 2.7.1, namely
V = IR2 and all the functions fi are linear functions. Theorem 2.7.1 states that we
can describe every basic open set in IR2 with only two functions, but it gives no
information on how to find them. With the help of the preceding section, we can
give a construction.

For this, we consider m linear polynomials f1, . . . , fm ∈ IR[x, y]. The set described
by these functions, that is the set S := {x ∈ IR2 : f1(x) > 0, . . . , fn(x) > 0}, is
the intersection of open convex sets (namely the halfplanes {fi(x) > 0}) and hence
convex. If S is the empty set or IR2, then it can be described by a single inequality,
we suppose henceforth that this is not the case. We have to consider two cases:
Case 1: S is bounded.
Case 2: S is unbounded.

Case 1: We suppose S is bounded. Then S is a convex polygon whose sides are
given by some of the functions fi. Without loss of generality, we can assume that
in the description S = {x ∈ IR2 : f1(x) > 0, . . . , fn(x) > 0} the sides of the polygon
S are exactly the lines defined by the equations fi = 0. We set f :=

∏

i fi. To
find the second function, we apply Theorem 3.1.2 to the polygon S. Hence, we find
a polynomial function g ∈ IR[x, y] such that g vanishes on the vertices of S and
is positive in the interior of S and such that the set {(x, y) ∈ IR2 : g(x, y) > 0}
is convex. Now we will show that S = {(x, y) ∈ IR2 : f(x, y) > 0, g(x, y) > 0}.
Consider (x, y) ∈ IR2. If (x, y) is in the interior of S, then all the values fi(x, y) and
hence f(x, y) is positive and g(x, y) > 0 too. If (x, y) lies on a line defined by the
functions fi, then f(x, y) = 0. If an odd number of the values fi(x, y) is negative,
then f(x, y) < 0. So it remains the case that an even number of the values fi(x, y)
is negative. See the figure.

Consider a point (x′, y′) in the interior of S such that the line segment passing
through (x, y) and (x′, y′) does not meet any point of intersection of two or more
lines defined by the functions fi. This is possible since the number of such points
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Figure 1: Case 1

(x,y)

(x’,y’)

(x”,y”)(x”’,y”’)

L

of intersection is finite. Then the line segment intersects an even number of times a
zero-set of one of the functions fi. We consider the point of intersection which is the
nearest to (x, y), we call it (x′′, y′′) and the corresponding line L. Since at least two
of the values fi(x, y) are negative, at least one of the values fi(x

′′, y′′) is negative
and (x′′, y′′) is not on the border of S. Assume that g(x, y) > 0. Then, by convexity
of the set {g > 0} and the fact that g(x′, y′) > 0 and (x′′, y′′) is between these two
points, g(x′′, y′′) > 0. The restriction of g to L gives a polynomial function on L,
g|L, which has two zeros, namely the two vertices L passes through. On the other
hand, g|L(x′′, y′′) = g(x′′, y′′) > 0, hence g|L is not identically 0. So we can choose a
point (x′′′, y′′′) between the two vertices on L such that g(x′′′, y′′′) 6= 0. Since g > 0
in the interior of S, g(x′′′, y′′′) > 0. But one of the two vertices on L lies between
(x′′, y′′) and (x′′′, y′′′) and the set g|L > 0 is a convex set on this line, this gives a
contradiction to the fact that g = 0 on this vertice.
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Case 2: S is unbounded. In this case, we can choose a line L which does not
intersect the closure of S. We consider for the moment IR2 as a subspace of P 2, the
projective space of dimension 2. P 2 can be considered as IR3/ ∼ where (x, y, z) ∼
(x′, y′, z′) ⇔ ∃λ 6= 0 : (x, y, z) = λ(x′, y′, z′). The identification is then

(x, y) ∈ IR2 7→ (x, y, 1) ∈ P 2

The line at infinity is the line z = 0. We denote by A the intersection of the line
L with the line at infinity. We choose a point B 6= A on L and a point C 6= A at
the line at infinity. These three points do not lie on a line, so we find a projective
change of coordinates T : P 2 7→ P 2 which satisfy the following conditions:

a) T (A) = A

b) T (B) = C

c) T (C) = B

T is induced by a bijective map T : IR3 7→ IR3 of the form

T (x, y, z) = (a1x + b1y + c1z, a2x + b2y + c2z, a3x + b3y + c3z) (24)

where the ai, bi, ci are in IR. The proof of this basic fact can be found in any book
on Projective Geometry.

We return to the original situation, that is IR2. If we remove the line L, then T
induces a map T : IR2 − L 7→ IR2 − L. Since L does not intersect the closure of S,
the line at infinity does not intersect the closure of T (S) which means that T (S) is
bounded. The set S contains no point at infinity, so T (S) and L are disjoint sets.
But T maps lines into lines, so T (S) is a bounded, open, convex polygon of IR2.

By case 1, we can describe T (S) with two polynomial functions f, g ∈ IR[x, y]. We
have for (x, y) ∈ S

T (x, y, 1) = (a1x + b1y + c1, a2x + b2y + c2, a3x + b3y + c3)

∼ (
a1x + b1y + c1

a3x + b3y + c3
,
a2x + b2y + c2

a3x + b3y + c3
, 1) (25)

We conclude that

S = {(x, y) ∈ IR2 − L : f

(

a1x + b1y + c1

a3x + b3y + c3
,
a2x + b2y + c2

a3x + b3y + c3

)

> 0,

g

(

a1x + b1y + c1

a3x + b3y + c3
,
a2x + b2y + c2

a3x + b3y + c3

)

> 0} (26)

Note that the line a3x + b3y + c3 is exactly our line L. Multiplying f and g by
sufficiently large even powers of a3x + b3y + c3 we find polynomials f ′, g′ ∈ IR[x, y]
such that

S = {(x, y) ∈ IR2 : f ′(x, y) > 0, g′(x, y) > 0} (27)

This finishes the case 2. 2
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Hence we have proven directly the following theorem:

Theorem 3.2.1 Given linear polynomials f1, . . . , fn ∈ IR[x, y], then there are two
polynomials f, g ∈ IR[x, y] such that

{(x, y) ∈ IR2 : f1(x, y) > 0, . . . , fn(x, y) > 0}

= {(x, y) ∈ IR2 : f(x, y) > 0, g(x, y) > 0}

Remark 3.2.2 This theorem is only a very special case of the Theorem of Bröcker-
Scheiderer (Theorem 2.7.1). However, until now no direct proof of this simple case
was known. In addition, our proof gives an algorithm for the reduction of linear
inequalities. One may ask if with the help of the same techniques one can deal with
convex polygons in higher dimensions. It turns out that other means are necessary,
see Chapter 4.

23



4 Special cases of the Theorem of Bröcker-Scheiderer

4.1 Reductions with the help of power sums

Let V ⊆ IRp be a real affine variety, equipped with the induced topology. We set
x = (x1, . . . , xp).

Theorem 4.1.1 Given n functions fi ∈ IR[x], i = 1, . . . , n. We set

P = {x ∈ V : fi(x) < 0 for all i} (28)

We suppose, that the following three conditions hold:

• P is bounded.

• In a point on the border of P there are exactly one or exactly two among the
functions fi which are 0, in the latter case we call this point a vertex.

• There are only finitely many vertices.

Then there is an equivalent system of only two functions f, g ∈ IR[x] i.e.

{x ∈ V : fi(x) < 0 for all i}

= {x ∈ V : f(x) < 0, g(x) < 0} (29)

Remark 4.1.2 The idea behind the proof is the following: let x1, . . . , xn be positive
real numbers, then the power sum xM

1 + . . . + xM
n with M very large will be large if

one of the xi’s is greater than 1 and small if all the xi’s are smaller than 1.

Proof of Theorem 4.1.1:

Step 1:
We will show that we can replace the system by an equivalent one for which the
following property (*) holds:

In the interior of P , all functions are between −1 (including) and 0 and if a function
is not 0 in a vertex, then it is −1. (*)

Since P is bounded, there is for each function fi a constant M < 0, such that fi

is bounded from below by M on P . Replacing fi by fi

−M
yields to an equivalent

system for which the first part of the statement (*) holds.

Now we use the following lemma:

Lemma 4.1.3 Given s real numbers 0 < εi < 1, i = 1, . . . , s there is a polynomial
p ∈ IR[x] with the following properties:

• x < 0 =⇒ p(x) < 0, x > 0 =⇒ p(x) > 0, p(0) = 0
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• −1 ≤ x < 0 =⇒ −1 ≤ p(x) < 0

• For i = 1, . . . , s we have p(−εi) = −1.

• p(−1) = −1

Proof: We set

p(x) :=

∏

i(x + εi)
2 ∗ (x + 1)2m+1

∏

i ε
2
i

− 1 (30)

where m is a natural number which we will fix later on.

• For x ≥ 0, p is strictly increasing, hence for all x > 0 we have f(x) > f(0) = 0.

• Obviously p(−εi) = −1.

• For −1 ≤ x < 0 we have p(x) > −1

The only condition to be verified is −1 < x < 0 =⇒ p(x) < 0. We show that this is
the case for m sufficiently large.

First of all let m = 0. A simple calculation shows that p′(0) =
∑

i
2
εi

+ 1 > 0.
Consequently there is an ε with 0 < ε < 1, such that for −ε < x < 0 the inequality

p(x) < p(0) = 0 holds. Let M be the maximum of the continuous function

∏

i
(x+εi)2
∏

i
ε2
i

on the intervall [−1,−ε]. Obviously M > 0.

Now we choose m sufficiently large such that

(1 − ε)2m+1 <
1

M
(31)

This is possible since 0 < 1 − ε < 1. The polynomial p corresponding to this m
satisfies the assertion −1 < x < 0 =⇒ p(x) < 0: If x ∈ [−1,−ε], then

p(x) =

∏

i(x + εi)
2 ∗ (x + 1)2m+1

∏

i ε2
i

− 1 ≤ M ∗ (1 − ε)2m+1 − 1

< M ∗ 1

M
− 1 = 0 (32)

On the other hand, if −ε < x < 0, then p(x) < 0 already for m = 0 and since
0 < 1 + x < 1 this also remains true for a bigger m. 2

Now, we consider one of the function, e.g. fi. In the vertices of P , fi takes the
value 0 or −1 or a value between −1 and 0. Let us denote the negative values 6= −1
of fi in the vertices by −ε1, . . . ,−εs. By the Lemma 4.1.3 there is a polynomial
p ∈ IR[x], which takes for all the −εi the value −1. We replace fi by p(fi). This
does not change the described set because fi and p(fi) have always the same sign.
Since fi takes on P values between −1 (including) and 0, p(fi) also takes on P values
between −1 (including) and 0. We execute this replacement for each function and
consequently we get an equivalent system for which the statement (*) holds. 2
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Step 2:
We show a general proposition which could be also interesting for other applications.

Proposition 4.1.4 Let S ⊆ IRp be a bounded semi-algebraic subset of IRp with clo-
sure X, let m,n be natural numbers with 1 ≤ m ≤ n and let
g1, . . . , gn ∈ IR[x1, . . . , xp] be polynomials in p indeterminates. Suppose that the
following conditions hold:

• If x ∈ S then 0 ≤ gi(x) < 1 for i = 1, . . . ,m.

• If x ∈ ∂S = X − S then at most m of the values gi(x) equal 1 and if this is
the case, the other values in this point are 0.

• There are only finitely many points on the border of S where exactly m of the
functions take the value 1.

Then there is a natural number M such that for all x ∈ S we have:

g1(x)M + . . . + gn(x)M < m (33)

Proof: We show first, that for each point x on the border of S, for which ex-
actly m of the values g1(x), . . . , gn(x) are 1, there is a natural number M and a
neighbourhood in S such that the inequation 33 is fulfilled in this neighbourhood.

Lemma 4.1.5 Let A > 0 be a real number, m ≥ 1 a natural number and

h(z1, . . . , zm) := z1 + . . . + zm + A ∗ ((1 − z1)2 + . . . + (1 − zm)2)2

Then there is a real number ε > 0, such that:

∀i 1 − ε < zi < 1 =⇒ h(z1, . . . , zm) < m (34)

Proof: h(1, . . . , 1) = m and ∂h
∂zi

(1, . . . , 1) = 1 > 0 for all i, with the standard
methods of analysis (mean value theorem) the assertion is straightforward. 2

Lemma 4.1.6 Let S be as in Proposition 4.1.4 and let x0 be a point on the border ∂S
such that exactly m of the functions g1, . . . , gn are 1 on x0. Then there is a number
M and an open subset U ⊆ IRp with x0 ∈ U such that g1(x)M + . . . + gn(x)M < m
for all x ∈ U ∩ S.

Proof: We may suppose that g1(x0) = . . . = gm(x0) = 1 and gm+1(x0) = . . . =
gn(x0) = 0. Let g := (1 − g1)2 + . . . + (1 − gm)2. By assumption, for every x ∈ X
with g(x) = 0 we also have gi(x) = 0 for any i ∈ {m + 1, . . . , n}. From  Lojasiewicz’s
inequality (2.4.12) it follows that for every i ∈ {m + 1, . . . , n} there is a natural
number Mi and a real positive constant Ai such that

gi(x)Mi ≤ Aig(x)2 (35)

for all x ∈ X. Let M be the maximum of the Mi and A the sum of the Ai. Then
for all x ∈ S
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gm+1(x)M + . . . + gn(x)M ≤ gm+1(x)Mm+1 + . . . + gn(x)Mn

≤ Am+1g(x)2 + . . . + Ang(x)2 = Ag(x)2 (36)

It follows from Lemma 4.1.5 that there is a real number ε > 0 such that if
1 − ε < gi(x) < 1 for all i = 1, . . . ,m then

g1(x) + . . . + gm(x) + A ∗ ((1 − g1(x))2 + . . . + (1 − gm(x))2)2 < m (37)

We set

U := {x ∈ Rp : 1 − ε < gi(x) < 1 + ε for all i = 1, . . . ,m} (38)

Then M and U satisfy the assertion of the Lemma:

• U is open since the functions g1, . . . , gm are continuous.

• Since g1(x0) = . . . = gm(x0) = 1, x0 ∈ U .

• If x ∈ U ∩ S, then 1 − ε < gi(x) < 1 for i = 1, . . . ,m, hence

g1(x)M + . . . + gm(x)M + gm+1(x)M + . . . + gn(x)M

≤ g1(x) + . . . + gm(x) + A ∗ ((1 − g1(x))2 + . . . + (1 − gm(x))2)2

< m (39)

Continuation of the proof of Proposition 4.1.4: Let z1, . . . , zs be the points
on the border of S, for which exactly m of the functions take the value 1. By the
Lemma there are natural numbers M1, . . . ,Ms and open subsets of Rp, U1, . . . , Us,
such that for x ∈ Ui∩S we have g1(x)Mi + . . .+gn(x)Mi < m Now let Y := X−∪iUi.
Then Y is a closed and bounded subset of IRp, hence compact.

By construction, in each point of Y there are at most m−1 of the functions g1, . . . , gn

which equal 1 on this point and all the other functions are smaller than 1. Since Y
is compact, we find a real number 0 < δ < 1 such that in each point x ∈ Y there
are at least n − m + 1 among the values g1(x), . . . , gn(x) which are smaller than δ.

We choose a natural number MY such that

(n − m + 1) ∗ δMY < 1 (40)

For x ∈ Y we have

g1(x)MY + . . . + gn(x)MY < m (41)

since a sum of n−m+1 summands is smaller than 1 and the other m−1 summands
are less or equal 1.
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Now let M be the maximum of the Mi and MY . Then for x ∈ S

g1(x)M + . . . + gn(x)M < m (42)

since if x ∈ Ui for a i = 1, . . . , s, then

g1(x)M + . . . + gn(x)M ≤ g1(x)Mi + . . . + gn(x)Mi < m (43)

whereas if x is in none of the Ui, then x ∈ Y , hence

g1(x)M + . . . + gn(x)M ≤ g1(x)MY + . . . + gn(x)MY < m (44)

This completes the proof of Proposition 4.1.4. 2

Remark 4.1.7 Obviously, we can increase the M of the Proposition 4.1.4 and
assume, for instance, that M is even.

We apply this proposition with S := P , m := 2 and gi := fi + 1. Then the
assumptions are satisfied: By (*) we have 0 ≤ gi < 1 on S. Since in a point on the
border of S = P there are at most two of the functions fi that take the value 0,
in each point of this border at most two of the functions gi are 1. The points on
the border where exactly two of the functions gi take the value 1 correspond to the
vertices of S and their number is finite by assumption. Also by Step 1 the other
n − 2 functions among the gi take in such a vertex the value 0.

Proposition 4.1.4 gives us a natural number M such that:

x ∈ P =⇒ g1(x)M + . . . + gn(x)M < 2 (45)

Step 3:
Now we are able to prove Theorem 4.1.1. We set

f := gM
1 + . . . + gM

n − 2 (46)

g := (−1)n+1 ∗
∏

i

fi (47)

These two functions will describe P . If x ∈ P , then f(x) < 0 by Inequality 45.
Since all the functions fi are negative in x, we have g(x) < 0. Conversely, take a
point x ∈ V with f(x) < 0, g(x) < 0. We have to show x ∈ P . But if this is not the
case, then not all of the values fi(x) are negative. Since g(x) < 0, there are at least
two of the values fi(x) which are strictly positive. Hence two of the values gi(x) are
greater than 1 and consequently f(x) > 0, a contradiction which proves Theorem
4.1.1. 2
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4.2 A remark in the case of the plane IR2

We consider the case V = IR2 in the Theorem 4.1.1. We will show that the condition
that there is only a finite number of vertices, is not a restriction. For this, we show
that we can change the system into an equivalent one, where this statement is true.

Definition 4.2.1 Two systems {f1, . . . , fn} and
{g1, . . . , gm} of polynomials in two indeterminates are called equivalent, if

{(x, y) ∈ IR2 : g1(x, y) > 0, . . . , gm(x, y) > 0} =

{(x, y) ∈ IR2 : f1(x, y) > 0, . . . , fn(x, y) > 0} (48)

Proposition 4.2.2 Given a system {f1, . . . , fn} of real polynomials (∈ IR[x, y]).
Then there is an equivalent system {g1, . . . , gn} of real polynomials (∈ IR[x, y]), such
that any two among the gi are without common divisor.

Proof:
We consider the set of pairs (i, j) with i, j ∈ {1, . . . , n} and i < j. On this set we
introduce the lexicographic ordering, that is, (i, j) ≤ (i′, j′) iff i < i′ or (i = i′ and
j ≤ j′). Hence (1, 2) < (1, 3) < . . . < (1, n) < (2, 3) < . . . , (n − 1, n). We call
a system of n polynomials g1, . . . , gn (i, j)–good, if for all pairs (i′, j′) < (i, j) the
polynomials gi′ and gj′ are without common divisor (wcd). The set of polynomials we
search is a (n−1, n)-good system, for which in addition gn−1 and gn are wcd. Among
all the systems g1, . . . , gn which are equivalent to f1, . . . , fn we choose one which is
(i, j)-good with (i, j) maximal. We will show that then there is an equivalent system
where in addition gi and gj are wcd. If (i, j) = (n − 1, n), we are ready. Otherwise
we find a (i, j)+-good system, where (i, j)+ denotes the succesor for our ordering.
This would be a contradiction. We show the following statement (∗):

To a given (i, j)-good system, which is equivalent to f1, . . . , fn, there exists an
equivalent (i, j)-good system such that in addition gi and gj are wcd. (∗)

Firstly, we can suppose that in all decompositions of the polynomials g1, . . . , gn in
irreducible polynomials only first or second powers appear. This is clear from the
fact that x3 and x have always the same sign. Let d be the greatest common divisor
of gi and gj . If d = 1, we are done. Otherwise, there are polynomials h1, h2 wcd
with gi = d ∗ h1 and gj = d ∗ h2. For every natural number m > 0 we have:

{(x, y) ∈ IR2 : gi > 0, gj > 0} =

{(x, y) ∈ IR2 : h1 ∗ h2 > 0, d ∗ (h1 + m ∗ h2) > 0} (49)

This follows from the fact that both sets contain exactly the points where the three
polynomials d, h1, h2 are all positive or all negative.

Case 1: d and h1h2 are wcd. Every irreducible polynomial can divide h1 + m ∗ h2

at most for one value of m since otherwise it would divide the difference, hence h2
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and h1 too, in contradiction to the assumption that these two polynomials have no
common divisor. Consequently, we can choose the value of m such that h1+m∗h2 has
no common divisor with any of the polynomials g1, . . . , gn. In the system g1, . . . , gn

we replace gi by g′i := d(h1 + m ∗ h2) and gj by g′j := h1h2. We will show that the
new system is an equivalent one which is again (i, j)-good. So let (k, l) < (i, j). If
k < i, then it remains to show that gk, g′i and gk, g′j have no common divisor. Since
gi and gk have no common divisor and d is a divisor of gi, it follows that gk and d are
wcd. By choice of m the two polynomials gk and h1 + m ∗ h2 are without common
divisor. Hence gk and g′i have no common divisor. Since gk has no common divisor
with gi nor gj , and h1, h2 are divisors of these polynomials, g ′j = h1h2 are wcd too.

If on the contrary k = i and i < l < j, then gi and gl are wcd, hence d and gl too.
By choice of m gl and h1 + m ∗ h2 are wcd, hence gk and g′i too. So it is shown that
the new system is again (i, j)-good. But in addition the polynomials g ′

i and g′j have
no common divisors, this shows the statement (∗) for this case.

Case 2: Let d′ denote the greatest common divisor of d and h1h2, so we assume
that the degree of d′ is at least 1 (otherwise we are in case 1). Then there are
polynomials h′

1 and h′

2 wcd such that d(h1 + m ∗ h2) = d′ ∗ h′

1 and h1h2 = d′ ∗ h′

2.

Again, for every natural number m > 0 we have:

{(x, y) ∈ IR2 : h′

1(x, y) ∗ h′

2(x, y) > 0, d′(x, y) ∗ (h′

1(x, y) + m ∗ h′

2(x, y)) > 0}

= {(x, y) ∈ IR2 : h1(x, y) ∗ h2(x, y) > 0, d(x, y) ∗ (h1(x, y) + m ∗ h2(x, y)) > 0}

= {(x, y) ∈ IR2 : gi(x, y) > 0, gj(x, y) > 0} (50)

Now we choose m such that h′

1 + mh′

2 has no common divisor with any of the
polynomials g1, . . . , gn. We put g′i := d′(h′

1 + m ∗ h′

2) and g′j := h′

1h
′

2. Consequently,
the system g1, . . . , gi−1, g

′

i, gi+1, . . . , gj−1, g
′

j , gj+1, . . . , gn is equivalent to the system
g1, . . . , gn.

We show firstly that h′

1h
′

2 and d′ have no common divisor. If this were not the case,
then let d′′ be an irreducible divisor of the greatest common divisor of h′

1h
′

2 and d′.
Since h′

1 and h′

2 are wcd, d′′ must divide one of these two polynomials.

Suppose d′′ divides h′

2. Since h1h2 = d′h′

2, the polynomial (d′′)2 divides h1h2. Since
h1 and h2 have no common divisor, (d′′)2 divides one of these two polynomials.
But d′′ divides d′ too and consequently d, hence (d′′)3 divides gi or gj. This is a
contradiction, for we supposed that the polynomials g1, . . . , gn contain only first or
second powers of irreducible polynomials.

Suppose now that d′′ divides h′

1. Since d(h1 + m ∗ h2) = d′h′

1, the polynomial (d′′)2

divides d(h1 + m ∗ h2). Since d′′ is also a divisor of h1h2, the two polynomials
h1 + m ∗ h2 and d′′ cannot have a common divisor. We conclude that (d′′)2 divides
d. But d′′ also divides one of the polynomials h1 and h2, so (d′′)3 divides one of the
polynomials gi, gj , this is again a contradiction.

So we have shown that h′

1h
′

2 and d′ have no common divisor. With an analogous
proof we can show that the new system is again (i, j)-good and that g ′

i and g′j have
no common divisor. This shows the statement (∗) in this case.
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As we have already noted, the proposition follows from (∗). 2

Corollary 4.2.3 For every system of polynomials in IR[x, y], there is an equivalent
one with a finite number of vertices.

Proof: We apply Proposition 4.2.2. Now the corollary is clear from the fact that
two polynomials without common divisor have a finite number of common zeros. 2

4.3 Reductions with the help of symmetric polynomials

In this section, we want to give another proof of Theorem 4.1.1 which has the
advantage that it can be easily generalized to the case that more than 2 functions
have a common zero and to give some of the ideas which we will use in Chapter 5.
The strategy is to consider the value set of a given description of a semialgebraic set
instead of regarding the set itself. In general, this value set is more complex than
the first one, but we can describe the image of our semialgebraic set with the help
of easier functions. In order to find a reduction at this level, we will produce local
descriptions corresponding to the vertices and glue them together in order to get a
global description.

Definition 4.3.1 Let x1, . . . , xn ∈ R where R is a real closed field. We denote by
si the ith elementary symmetric polynomial, that is

si =
∑

xε1
1 · · · xεn

n (51)

where (ε1, . . . , εn) runs over all n-tuples with ε1, . . . , εn ∈ {0, 1} and
∑

j εj = i. We
set ε0 = 1.

Proposition 4.3.2 Let R be a real closed field. Then

{(x1, . . . , xn) ∈ Rn : x1 > 0, . . . , xn > 0}

= {(x1, . . . , xn) ∈ Rn : s1(x1, . . . , xn) > 0, . . . , sn(x1, . . . , xn) > 0} (52)

and

{(x1, . . . , xn) ∈ Rn : x1 ≥ 0, . . . , xn ≥ 0}

= {(x1, . . . , xn) ∈ Rn : s1(x1, . . . , xn) ≥ 0, . . . , sn(x1, . . . , xn) ≥ 0} (53)

Proof: Let (x1, . . . , xn) ∈ Rn. If all the xi’s are positiv, then the si’s are trivially
positive. Suppose now that not all the xi’s are positive. If a number xi is zero, then
sn too, so suppose that all the xi’s are positive or negative. Consider the polynomial

f(t) =
n
∏

i=1

(t − xi) =
n
∑

i=1

(−1)i ∗ si ∗ tn−i
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All the roots are real and not zero, so we can count the number of strictly positive
roots with the help of Descartes’ Rule (2.1.11), it is the number of variations of
signs in the sequence 1,−s1, s2, . . . , (−1)nsn. If the si’s were all positive, then this
number would be n, a contradiction.

Let us prove the second part of the proposition. Suppose that we have x1, . . . , xn

such that s1 ≥ 0, . . . , sn ≥ 0. By rearranging, we can assume that x1, . . . , xm 6= 0
and xm+1 = . . . = xn = 0 for 1 ≤ m ≤ n. Consider the polynomial

f(t) =
m
∏

i=1

(t − xi) =
m
∑

i=1

(−1)i ∗ si ∗ tn−i

All the roots are real and not zero, so we can count the number of strictly negative
roots with the help of Descartes’ Rule (2.1.11), it is the number of variations of signs
in the sequence 1, s1, s2, . . . , sm, hence it is zero. So we find x1 ≥ 0, . . . , xm ≥ 0 and
consequently x1 ≥ 0, . . . , xn ≥ 0.

This shows Proposition 4.3.2. 2

Next, we introduce a very useful tool which will be the base of Chapter 5. In the
proof of Theorem 4.1.1 we saw that the value set of the functions in the given de-
scription plays an important rule. One part of statement (∗) can be read as follows:
there are only finitely many points x on V such that (f1(x), f2(x), f3(x)) = (1, 1, 0)
or = (0, 1, 1) or = (1, 0, 1). There are no points x on V such that
(f1(x), f2(x), f3(x)) = (1, 1, c) with c 6= 0 etc. Consequently, the following defi-
nition seems to be interesting and it turns out later that this is the case. Here we
don’t need it in full generality.

Definition 4.3.3 Let V ⊆ IRp be a real algebraic variety. Given a semialgebraic
set S explicitely with the help of a description as a finite union (see Section 2.4)

S = ∪i{fi = 0, gi,1 > 0, . . . , gi,ni
> 0} (54)

We consider the application

Φ : V 7→ IRm,

Φ(x) = (f1(x), g1,1(x), . . . , g1,n1
(x), f2(x), g2,1(x), . . .) (55)

where m :=
∑

i(1 + ni). We call this map the value map of the description, the
valueset Φ(S) the valueset of S and Φ(V ) the valueset of V .

Remark 4.3.4 We stress the fact that all these notions depend on the given de-
scription. For a fixed semialgebraic set there exist infinitely many ways of describing
it and consequently infinitely many different value maps. In the following we take
the point of view that we are given a semialgebraic set by an explicit description.
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Theorem 4.3.5 Let V be a bounded real affine variety over IR and let
f1, . . . , fn+1 ∈ IR[V ] with n + 1 ≥ 2. Again, we set

P = {x ∈ V : f1(x) > 0, . . . , fn+1(x) > 0} (56)

Assume, that the following two conditions hold:

• The point (0, . . . , 0) is not in the closure of the value set of P .

• There are only finitely many vertices (which are the points on the border of P
where exactly n among the functions fi vanish).

Then there is an equivalent system of only n functions g1, . . . , gn ∈ IR[V ] i.e.

{x ∈ V : f1(x) > 0, . . . , fn+1(x) > 0}

= {x ∈ V : g1(x) > 0, . . . , gn(x) > 0} (57)

Remark 4.3.6 The following proof is very technical. The idea is to produce a
description of a semialgebraic set by describing it locally and then gluing together
all these descriptions.

Let us look at the value set W for the variety V of Theorem 4.3.5. Since
P = {x ∈ V : f1(x) > 0, . . . , fn+1(x) > 0}, Φ is the application from V to IRn+1

which associates to a point x the n + 1-tuple (t1, . . . , tn+1) = (f1(x), . . . , fn+1(x))
and W = Φ(V ). Since V is bounded, W is bounded too. We denote the value set
of P by Q, consequently Q = W ∩ {t1 > 0, . . . , tn+1 > 0}. The hypothesis on the
finiteness of the number of vertices of P means that the intersections of the closure
Q with the coordinate lines have a finite number of points. Suppose we can find
polynomials h1, . . . , hn ∈ IR[t1, . . . , tn+1] such that

{(t1, . . . , tn+1) ∈ W : h1(t1, . . . , tn+1) > 0, . . . , hn(t1, . . . , tn+1) > 0}

= {(t1, . . . , tn+1) ∈ W : t1 > 0, . . . , tn+1 > 0} (58)

Then we have

P = {x ∈ V : h1(f1(x), . . . , fn+1(x)) > 0, . . . , hn(f1(x), . . . , fn+1(x)) > 0} (59)

This is easy to see: since x ∈ V we have

(f1(x), . . . , fn+1(x)) ∈ W (60)

Hence for any x ∈ V the inequalities f1(x), . . . , fn+1(x) > 0 are satisfied if and
only if the inequalities h1(f1(x), . . . , fn+1(x)) > 0, . . . , hn(f1(x), . . . , fn+1(x)) > 0
are satisfied. In order to reduce the given system, it will be sufficient to find the n
functions h1, . . . , hn.
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Let x1, . . . , xm ∈ W denote the intersections of Q with the coordinate lines. We
consider the functions si(t1, . . . , tn+1) for all i = 3, . . . , n + 1. (If n = 1 then we
don’t need these functions and sets like {s3 > 0, . . . , sn+1 > 0} are considered to
be W ). We will show that locally in each point xi we can find a description of the
value set of P with only one supplementary function. Afterwards, we have to glue
all these functions together in order to obtain a function h such that h, s3, . . . , sn+1

describe the value set of P .

Remark 4.3.7 The word neighbourhood means in the sequel a neighbourhood in
W for the topology induced by IRn+1 and a notation of the form {f > 0} is to be
read as {x ∈ W : f(x) > 0}

Proposition 4.3.8 (Local description) Let V and P be as in Theorem 4.3.5, Q
the value set of P and x1, . . . , xm the finitely many intersections of Q with the coordi-
nate lines. Then there is a function h1 ∈ IR[t1, . . . , tn+1] and an open neighbourhood
W1 of the set {x1, . . . , xm} such that

Q ∩ W1 = {h1 > 0, s3 > 0, . . . , sn+1 > 0} ∩ W1 (61)

and

{s3 ≥ 0, . . . , sn+1 ≥ 0} ∩ W1 ∩ {h1 = 0} = {x1, . . . , xm} (62)

Proof: We set

W1 := {t1 + . . . + tn+1 > 0} (63)

Since in a vertex xi there are exactly n coordinates zero and one positive coordinate,
W1 is indeed an open neighbourhood of the set {x1, . . . , xm}. We define

h1(t1, . . . , tn+1) := s2(t1, . . . , tn+1) (64)

Since on W1 the first elementary symmetric polynomial s1 is positive, we deduce the
first equation from Proposition 4.3.2.

If x = (t1, . . . , tn+1) is in the set on the left hand side of the second equation, then
all the elementary symmetric polynomials of t1, . . . , tn+1 are non-negative, hence
t1, . . . , tn+1 ≥ 0 by Proposition 4.3.2. Since h1(x) = 0 and x ∈ W1 this means that
exactly n among the numbers ti are zero, so x is a vertex and in the set {x1, . . . , xm}.
The inverse inclusion is obvious. 2

Proposition 4.3.9 (Global description) We take the same situation as in The-
orem 4.3.5: V a bounded real variety, P a basic open set and Q the value set of
P . Suppose we have a neighbourhood W1 and a function h1 as in Proposition 4.3.8.
Then there exists a polynomial h ∈ IR[t1, . . . , tn+1] such that

Q = {(t1, . . . , tn+1) ∈ W : h(t1, . . . , tn+1) > 0,

s3(t1, . . . , tn+1) > 0, . . . , sn+1(t1, . . . , tn+1) > 0} (65)
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Before proving Proposition 4.3.9, we have to show some lemmas.

Lemma 4.3.10 There is a non-constant function p1 ∈ IR[t1, . . . , tn+1] such that:

a) p1 > 0 on W .

b) p1(xi) > 1 for i = 1, . . . ,m.

c) {p1 ≥ 1} ⊆ W1

Proof: This is a simple application of the Stone–Weierstrass–Theorem. 2

Lemma 4.3.11 There exists a non-constant function p2 ∈ IR[t1, . . . , tn+1] such that:

a) p2 ≥ 0 on W .

b) p2(xi) = 0 for i = 1, . . . ,m.

c) {p2 ≤ 1} ⊆ {p1 > 1}

Proof: We set

qi(t1, . . . , tn+1) := (t1 − xi,1)2 + . . . + (tn+1 − xi,n+1)2 (66)

where xi = (xi,1, . . . , xi,n+1). On the compact set W −{p1 > 1} the function
∏m

i=1 qi

is strictly positive, hence we find a real number c > 0 such that p2 := c ∗∏m
i=1 qi > 1

on this set. Then p2 fulfils the assertions of the lemma. 2

Now we consider the closed sets

M1 := (W − {p2 < 1}) ∩ Q (67)

M2 := (W − {p2 < 1}) ∩ {s3 > 0, . . . , sn+1 > 0} − Q (68)

Lemma 4.3.12 M1 and M2 are disjoint closed bounded sets.

Proof: Suppose that there is a x ∈ M1 ∩ M2. We consider four cases:

a) x ∈ Q. Then also a neighbourhood of x is in Q, so x /∈ M2.

b) x has i coordinate 0 and n + 1− i positive coordinates where i ≤ n− 1. Hence
s1(x) > 0, s2(x) > 0 This holds true in a neighbourhood of x. Suppose there
is a point y ∈ (W − {p2 < 1}) ∩ {s3 > 0, . . . , sn+1 > 0} − Q in this
neighbourhood. We have consequently s1(y) > 0, . . . , sn+1(y) > 0 ⇒ y ∈ Q by
Proposition 4.3.2. This is a contradiction to x ∈ M2.
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c) x has n coordinates 0 and one positive coordinate. Since x ∈ Q, we conclude
that x is in the set {x1, . . . , xm} and hence p2(x) = 0 and x ∈ {p2 < 1}. Since
{p2 < 1} is an open set, every point y in a neighbourhood of x is in this set.
This contradicts x ∈ M2.

d) x = (0, . . . , 0) This is impossible since (0, . . . , 0) /∈ Q by assumption. 2

By the Stone-Weierstrass-Theorem we find a polynomial h2 ∈ IR[t1, . . . , tn+1] such
that h2 > 1 on M1 and h2 < −1 on M2 (note that W is closed in IRn+1, hence a
closed set of W is closed in IRn+1 too). Now we set

h := pM
1 ∗ h1 + pM

2 ∗ h2 (69)

where M is a sufficiently large natural number. We claim that this function fulfils the
assertions of Proposition 4.3.9. For showing this fact, we have to consider different
parts of W . For each such part, we will find an exponent M sufficiently large such
that h fulfils the assertions of Proposition 4.3.9 on this area. By taking the maximum
of these exponents, we find an exponent for W entirely.

Lemma 4.3.13 For M sufficiently large,

Q ∩ {p1 ≤ 1} = {h > 0, s3 > 0, . . . , sn+1 > 0} ∩ {p1 ≤ 1} (70)

Proof: On the compact set W ∩ {p1 ≤ 1} the function pM
1 h1 is bounded indepen-

dently of M . By construction of p2 we have {p1 ≤ 1} ⊆ {p2 > 1}. But the set on
the left is compact, hence we find a real number δ > 0 such that p2 > 1 + δ on the
set {p1 ≤ 1}. Now we can choose M sufficiently large such that h = pM

1 h1 + pM
2 h2

has the same sign as h2 in every point where |h2| > 1.

Let x ∈ Q ∩ {p1 ≤ 1}. We have to show x ∈ {h > 0, s3 > 0, . . . , sn+1 > 0} ∩ {p1 ≤
1} but the only non-trivial part is to show x ∈ {h > 0}. But p2(x) > 1 hence
x ∈ (W − {p2 < 1}) ∩ Q = M1. Thus h2(x) > 1 and hence h(x) > 0.

Conversely, let x ∈ {h > 0, s3 > 0, . . . , sn+1 > 0} ∩ {p1 ≤ 1}. We have to show
x ∈ Q ∩ {p1 ≤ 1}. Suppose x /∈ Q. Then x ∈ M2, hence h2(x) < −1 and h(x) < 0,
a contradiction.

From these two directions, we conclude Equation 70. 2

Lemma 4.3.14 For any M ≥ 0 we have

Q ∩ {p1 ≥ 1, p2 ≥ 1} = {h > 0, s3 > 0, . . . , sn+1 > 0} ∩ {p1 ≥ 1, p2 ≥ 1} (71)

Proof: Let x ∈ Q∩{p1 ≥ 1, p2 ≥ 1}. It remains to show that h(x) > 0. On the one
hand x ∈ M1, hence h2(x) > 1. On the other hand, x ∈ Q ∩ W1, hence h1(x) > 0
(see Proposition 4.3.8). It follows h(x) = p1(x)M ∗ h1(x) + p2(x)M ∗ h2(x) > 0.

Now let x ∈ {h > 0, s3 > 0, . . . , sn+1 > 0} ∩ {p1 ≥ 1, p2 ≥ 1}. We have to show
x ∈ Q. Suppose x /∈ Q. Then x ∈ M2, hence h2(x) < −1. On the other hand
x ∈ W1, x /∈ Q, s3(x) > 0, . . . , sn+1(x) > 0 and by Proposition 4.3.8 h1(x) ≤ 0.
Hence h(x) = p1(x)M ∗ h1(x) + p2(x)M ∗ h2(x) < 0. This is a contradiction.

These two directions show Equation 71. 2
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Lemma 4.3.15 There is a M > 0 sufficiently large such that,

Q ∩ {p2 ≤ 1} = {h > 0, s3 > 0, . . . , sn+1 > 0} ∩ {p2 ≤ 1} (72)

Proof: We recall that we have

{s3 ≥ 0, . . . , sn+1 ≥ 0} ∩ W1 ∩ {h1 = 0} = {x1, . . . , xm} (73)

We set D := {s3 ≥ 0, . . . , sn+1 ≥ 0} ∩ {p2 ≤ 1}(⊆ W1). This is a closed, hence
compact set. Since p1 > 1 on D, we find a real number δ > 0 such that p1 > 1 + δ
on D.

On D we have h1(x) = 0 ⇒ x = {x1, . . . , xm} ⇒ p2(x) = 0. We apply  Lojasiewicz’
Inequality (see 2.4.12). This gives us natural numbers M2 and a real number c2 > 0
such that

|pM2

2 | ≤ c2 ∗ |h1| (74)

on the set D, with equality only on the set D ∩ {h1 = 0} = {x1, . . . , xm}.

The function h2 is bounded on D. So there is a c′ such that on D

|pM2

2 h2| ≤ c′ ∗ |h1| (75)

We choose M sufficiently large such that (1 + δ)M > c′. Then on D

|pM
2 h2| ≤ pM

1 ∗ |h1| (76)

with equality only for the points x1, . . . , xm. This shows that h = pM
1 h1 +pM

2 h2 and
h1 have the same sign on D.

Now, we will prove Equation 72.

Let x ∈ Q∩{p2 ≤ 1}. We have to show x ∈ {h > 0, s3 > 0, . . . , sn+1 > 0}∩{p2 ≤ 1}.
The only non-trivial part is h(x) > 0. But

x ∈ Q ∩ W1 = {h1 > 0, s3 > 0, . . . , sn+1 > 0} ∩ W1

hence h1(x) > 0. Since x ∈ D, we have h(x) > 0.

Conversely, let x ∈ {h > 0, s3 > 0, . . . , sn+1 > 0} ∩ {p2 ≤ 1}. We have to show that
x ∈ Q∩{p2 ≤ 1}. It remains to show that x ∈ Q. Suppose x /∈ Q. Since x ∈ W1 and
s3(x) > 0, . . . , sn+1 > 0 we have h1(x) ≤ 0, but since x ∈ D we conclude h(x) ≤ 0,
a contradiction.

So we have proven Equality 72. 2

Proof of Proposition 4.3.9: We take M sufficiently large such that Equalities 70
and 72 hold. We have

{p1 ≤ 1} ∪ {p1 ≥ 1, p2 ≥ 1} ∪ {p2 ≤ 1} = W (77)
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We take the union of Equalities 70,71 and 72. This yields to:

Q = {h > 0, s3 > 0, . . . , sn+1 > 0} (78)

This finishes the proof of Proposition 4.3.9. 2

Proof of Theorem 4.3.5: By Proposition 4.3.8 and Proposition 4.3.9 we find a
function h ∈ IR[t1, . . . , tn+1] such that Q = {h > 0, s3 > 0, . . . , sn+1 > 0}. As we
have already explained (see equation 4.3), this shows Theorem 4.3.5. 2

4.4 Some consequences

Although Theorem 4.3.5 is not as general as the Theorem of Bröcker–Scheiderer,
it has the advantage of a direct and intuitive proof. It is strong enough to give us
some useful corollaries, in particular all the theorems we have already proven in this
work.

Corollary 4.4.1 Let R be an archimedean, real closed field (e.g. R = Ralg). Then
Theorem 4.3.5 holds true with R instead of IR.

Proof: We consider R as a subfield of IR. Instead of looking for a reduction of
the set PR = {x ∈ VR : f1(x) > 0, . . . , fn+1(x) > 0}, we consider the fi as functions
in IR[x1, . . . , xn] and try to reduce PIR = {x ∈ VIR : f1(x) > 0, . . . , fn+1(x) > 0},
where VIR means the variety defined by the same equations than V but considered
as a variety over IR. Then we have to make sure that the functions obtained by the
reduction (which are a priori functions in IR[V ]) lie again in R[V ]. So we have to
follow the proof of Theorem 4.3.5.

The hypothesis that the point (0, . . . , 0) lies not in the closure of the value set of PR

implies that the first order formula over R ⊆ IR,

Ψ = ∃ε∀x ∈ VR

(f1(x) > 0, . . . , fn+1(x) > 0 =⇒ f1(x)2 + . . . + fn+1(x)2 > ε2) (79)

is true over R. By Model Completeness (see Proposition 2.4.11), we conclude that
Ψ is true over IR too, so (0, . . . , 0) is not in the closure of the value set of PIR.

Next, we express the finiteness of the number vertices with the help of a first order
formula. It is easy to find a formula which translates the fact that a point y ∈ VR is
a vertex. If m < ∞ denotes the number of vertives of P ⊆ VR, then the formula

Ψ′ := ∃x1, . . . , xm ∈ VR∀y ∈ VR(y is a vertex of PR

=⇒ y = x1 or . . . or y = xm) (80)
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is true over R, hence by Model Completeness it is true over IR. So PIR has exactly
m < ∞ vertices, and these are the vertices of PR ⊆ VR ⊆ VIR. Consequently, the
hypotheses of Theorem 4.3.5 are verified. But if the functions fi are functions over R
and all the vertices have coordinates in R, then all the calculations are over R. This
follows from the fact, that all the functions p1, p2, h1, h2 are in R[t1, . . . , tn+1]. (For
p1 and h2 this is not automatically true, but since R is dense in IR, we can assume
this by variing a bit the coefficients of these functions). Hence h ∈ R[t1, . . . , tn+1]
and we are done. 2

Theorem 4.4.2 Let V be a real affine variety. Given n + 1 ≥ 2 functions
f1, . . . , fn+1 ∈ IR[V ]. Again, we set

P = {x ∈ V : f1(x) > 0, . . . , fn+1(x) > 0} (81)

We suppose, that the following two conditions hold:

• P is bounded.

• The point (0, . . . , 0) is not in the closure of the value set of P .

• There are only finitely many vertices.

Then there is an equivalent system of only n functions g1, . . . , gn ∈ IR[V ] i.e.

{x ∈ V : f1(x) > 0, . . . , fn+1(x) > 0}

= {x ∈ V : g1(x) > 0, . . . , gn(x) > 0} (82)

Remark 4.4.3 The difference with Theorem 4.3.5 is that here, we only demand
that P is bounded, but not that the real affine variety V is bounded.

Proof: We use a stereographic projection in order to compactify the real affine
variety V . Let V ⊆ IRm. We consider the map Π : IRm 7→ Sm − N where
N = (0, . . . , 0, 1) and

Π(t1, . . . , tm) := (y1, . . . , ym+1) =

=
1

1 + t21 + . . . + t2m
(t1, . . . , tm, t21 + . . . , t2m) (83)

The image of Π lies in the real algebraic set

Sm =

{

(y1, . . . , ym+1) ∈ IRm+1 : y2
1 + . . . + y2

m + (ym+1 −
1

2
)2 =

1

4

}

(84)

The inverse mapping is Π−1 : Sm − N 7→ Rm defined by

Π−1(y1, . . . , ym+1) =
1

1 − ym+1
(y1, . . . , ym) (85)
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If we have an equation g(x1, . . . , xm) = 0 or an inequation h(x1, . . . , xm) > 0 then
we consider the equation

g(y1, . . . , ym+1) = (1 − ym+1)jg

(

y1

1 − ym+1
, . . . ,

ym

1 − ym+1

)

= 0 (86)

or the inequation

h(y1, . . . , ym+1) = (1 − ym+1)jh

(

y1

1 − ym+1
, . . . ,

ym

1 − ym+1

)

> 0 (87)

where the natural number j is sufficiently large such that g is a polynomial. For
the inequality h > 0 we take in addition j pair. In this way, the real affine variety
V is transformed into a real affine variety V ′ of Sm and the set P is transformed
into a basic open subset P ′ described by n + 1 functions. Since P is bounded, N
lies not in the closure of P ′, the vertices of P correspond exactly to the vertices of
P ′ and consequently the assumptions of Theorem 4.3.5 are satisfied, so we find n
polynomials in m + 1 variables which describe P ′. Replacing an occurrence yi by

xi

1+x2
1
+...+x2

m

for i = 1, . . . ,m and ym+1 by
x2
1
+...+x2

m

1+x2
1
+...+x2

m

gives rational functions which

describe P . Multiplying by a sufficiently large power of the strictly positive function
1 + x2

1 + . . . + x2
m gives polynomials which describe P . 2

Corollary 4.4.4 Theorem 4.4.2 gives another proof of Theorem 4.1.1.

Proof: The assumptions of Theorem 4.1.1 imply the assumptions of Theorem
4.4.2. 2

4.5 A direct proof in the archimedean, one–dimensional case

In this section we give a complete proof of the Bröcker-Scheiderer-Theorem in the
archimedean, one-dimensional case.

Theorem 4.5.1 Let V be a real affine variety of dimension 1 over a real closed
archimedean field R. Then every basic open set can be described with one single
inequality.

The idea of the proof is to use a generic reduction and to apply the methods of the
preceding sections to produce a true reduction.

We give, without proof, a theorem proven in 1974 by Bröcker:

Theorem 4.5.2 (Generic reduction) Let R be a real closed field and let V be a
real affine variety of dimension d. Then for every basic open set there exists a basic
open set described by only d inequalities such that the symmetric difference of these
two sets is of dimension < d.
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Proof of Theorem 4.5.1:

In order to proof Theorem 4.5.1, it will be sufficient to reduce a basic open set of
the form {f1 > 0, g1 > 0}. Since the following demonstration is very similar to that
of Theorem 4.3.5, we will not give every detail.

Case 1: V is a bounded variety.
Once again, we look at the value set of V , this gives us a semialgebraic set of R2 of
dimension 1 and the Zariski–closure W of this set has also dimension 1. The aim is
to find a function f ∈ R[t1, t2] such that

{(t1, t2) ∈ W : t1 > 0, t2 > 0} = {(t1, t2) ∈ W : f(t1, t2) > 0} (88)

We apply Theorem 4.5.2 to the real affine variety W , hence d = 1. This gives us a
function f ∈ R[W ] such that equality 88 is satisfied except on a set of dimension 0,
that is a finite number of points. We choose a representant of f in R[t1, t2] which we
call f again. If there are points (t1, t2) such that f(t1, t2) > 0 but t1 ≤ 0 or t2 ≤ 0
then we multiply f by a function which has a root in x and which is strictly positive
elsewhere. Executing this algorithm for all such points, we can suppose that

{(t1, t2) ∈ W : f(t1, t2) > 0}

= {(t1, t2) ∈ W : t1 > 0, t2 > 0} − {x1, . . . , xm} (89)

where {x1, . . . , xm} are the (finitely many) points of the difference of the two sets.
So all the coordinates of the {x1, . . . , xm} are positive.

Lemma 4.5.3 There are functions p1, p2 ∈ R[t1, t2] which are non-negative on W
and such that

{x1, . . . , xm} ⊆ {p1 < 1} ⊆ {p1 ≤ 1} ⊆

⊆ {p2 > 1} ⊆ {p2 ≥ 1} ⊆ {t1 > 0, t2 > 0} (90)

and

{t1t2 = 0} ⊆ {p2 = 0} (91)

Proof (Sketch): We start with the function (t1t2)2 and multiply by a positive
polynomial function which is sufficiently large on the points {x1, . . . , xm} and suffi-
ciently small on the set {t1 < 0}∪{t2 < 0}. (Existence by Stone–Weierstrass). This
yields to the function p2. Then also by Stone–Weierstrass we find the function p1.
2

The two closed sets {p2 ≥ 1} and {t1 ≤ 0} ∪ {t2 ≤ 0} are disjoint, by Stone–
Weierstrass we find a function g such that g > 1 on the first set and g < −1 on the
second set.
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Lemma 4.5.4 Let M be a sufficiently large natural number and set

h := pM
1 f + pM

2 g (92)

Then

{(t1, t2) ∈ W : h(t1, t2) > 0} = {(t1, t2) ∈ W : t1 > 0, t2 > 0} (93)

Proof: This is essentially the same as in the proof of Theorem 4.3.5. On the set
{p1 < 1} the function pM

1 f is bounded independently of M whereas p2 > 1 + ε for
a ε > 0. Consequently, for M sufficiently large, h > 0 and hence Equation 93 is
satisfied on {p1 < 1}.

On the set {p2 ≥ 1, p1 ≥ 1} we have f > 0, g > 0 and hence h > 0 and Equation 93
is verified on this set.

On the set {t1 ≤ 0} ∪ {t2 ≤ 0} we have f ≤ 0, g ≤ 0 hence h ≤ 0 and Equation 93
is verified on this set.

Now, we consider the closed set {t1 ≥ 0, t2 ≥ 0, p2 ≤ 1}. By assumption, the only
roots of f which lie in this set must have a vanishing coordinate and hence p2 = 0
on these points. This enables us to apply  Lojasiewicz’ Inequality and with the same
arguments as in the proof of Lemma 4.3.15, for M sufficiently large, Equation 93 is
verified on this set. 2

From the lemma above we conclude that

{x ∈ V : f1(x) > 0, f2(x) > 0} = {x ∈ V : h(f1(x), f2(x)) > 0} (94)

which shows Theorem 4.5.1 in the bounded case.

Case 2: V is not bounded.
With the help of a stereographic projection, this case can be reduced to the first
one. Since this is exactly the same as in the proof of Theorem 4.4.2, we omit the
details. 2
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5 Polynomial Reductions

5.1 Polynomial Reduction of basic open sets

All the constructions in Chapter 4 have a common point. Starting with any descrip-
tion of a semialgebraic, basic open set we found another, equivalent description for
it, for which the used functions depended in a polynomial way on the given functions.
The next definition gives a precise meaning to this notion.

Definition 5.1.1 Let V be a real variety over an ordered field R and let S ⊆ V be
a basic open set written in the form

S = {x ∈ V : f1(x) > 0, . . . , fm(x) > 0} (95)

where the f1, . . . , fm ∈ R[V ]. A polynomial reduction with s < m functions is
a set of s functions h1, . . . , hs ∈ R[t1, . . . , tm] such that

S = {x ∈ V : h1(f1(x), . . . , fm(x)), . . . , hs(f1(x), . . . , fm(x))} (96)

Remark 5.1.2 This definition depends on an explicit description of S as a basic
open set.

The notion polynomial reduction can apply to more general cases:

Definition 5.1.3 Let V be a real variety over a field R and S ⊆ V a semialgebraic
set which is explicitely given by a description with the help of m functions fi ∈ R[V ].
Then another description of S with the help of functions gj is called a polynomial
description if for every gj there exists a polynomial hj ∈ R[t1, . . . , tm] such that
for any x ∈ V

gj(x) = hj(f1(x), . . . , fm(x)) (97)

We want to prove the following theorem:

Theorem 5.1.4 (Basic open sets)
Let V be a real variety of dimension d over a real closed field R and S ⊆ V a

semialgebraic basic open set given by an explicite description. Then there exists a
polynomial reduction with d functions.

Proof: It is sufficient to prove that we can reduce in a polynomial way every set of
d + 1 functions, since by induction we then find polynomial reductions for every set
of functions. We use the function Φ introduced in Definition 4.3.3. We recall that
Φ : V 7→ Rd+1. Let W be the image of V under this mapping. By Proposition 2.6.3
dim W ≤ dim V = d. By Proposition 2.4.10, W is a semialgebraic subset of Rd+1,
let W ′ denote the Zariski–closure of W . Then the dimension of W ′ is at most d (see
Proposition 2.6.2).
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We consider the semialgebraic set

{y = (t1, . . . , td+1) ∈ W ′ : t1 > 0, . . . , td+1 > 0} (98)

We consider the functions t1, . . . , td+1 as elements of R[W ′]. By Theorem 2.7.1 we
find h1, . . . , hd ∈ R[W ′] such that

{y ∈ W ′ : t1 > 0, . . . , td+1 > 0}

= {y ∈ W ′ : h1(t1, . . . , td+1) > 0, . . . , h1(t1, . . . , td+1) > 0} (99)

Since R[W ′] = R[t1, . . . , td+1]/I(W ′), we can choose for each hi a representant in
R[t1, . . . , td+1] which, by abuse of notation, we call hi again.

Now we have

{x ∈ V : f1(x) > 0, . . . , fd+1(x) > 0}

= {x ∈ V : h1(f1(x), . . . , fd+1(x)) > 0, . . . , hd(f1(x), . . . , fd+1(x)) > 0} (100)

This is easy to see: if x ∈ V then (f1(x), . . . , fd+1(x)) ∈ W ⊆ W ′, hence by Equation
99 the Equation 100 follows immediately. 2

Problem 5.1.5 There are some natural questions. For instance, we could ask if
we are able to bound the degrees of the polynomials h1, . . . , hd by a bound which
depends only on V . Another problem would be to bound the degrees of h1, . . . , hd

by a bound which depends only on V and the maximal degree of the polynomials
f1, . . . , fd+1. These questions seems not to be very easy.

5.2 Polynomial Reduction of semialgebraic sets

In this section, we will follow the same strategy as in the previous to find polynomial
reductions for semialgebraic sets.

Theorem 5.2.1 (Semialgebraic sets)
Let V be a real variety V of dimension d and S ⊆ V a semialgebraic set given
explicitely by a description which uses the functions f1, . . . , fm ∈ R[V ] Then there
is a polynomial reduction of S as

S =
t
⋃

i=1

{gi = 0, gi,1 > 0, . . . , gi,s > 0} (101)

with t ≤ τ(d) and s ≤ d where the gi, gi,j ∈ R[V ] depend in a polynomial way on the
f1, . . . , fm.
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Proof: Again, we consider the value map Φ : V 7→ Rm defined by

Φ(x) = (f1(x), . . . , fm(x)) (102)

By Propositions 2.6.3 the dimension of the semialgebraic set W = Φ(V ) is at most
d. Then with Proposition 2.6.2 the dimension of the Zariski–Closure of W , which
we denote by W ′, is at most d. Now we use Theorem 2.7.5. We consider the
real algebraic variety W ′ and the semialgebraic set P ⊆ W ′ which arises from the
description of S by replacing every occurence of the form fi(x) > 0 (resp. ≥ 0, < 0,
≤ 0) by ti > 0 (resp. ≥ 0, < 0, ≤ 0). So we find a description of P of the form

P =
t
⋃

i=1

{(t1, . . . , tm) ∈ W ′ : hi = 0, hi,1 > 0, . . . , hi,s > 0} (103)

with hi, hi,j ∈ R[W ′], t ≤ τ(d) and s ≤ d. Again we denote by hi resp. hi,j a repre-
sentant of hi resp. hi,j in R[t1, . . . , tm]. But then with f(x) := (f1(x), . . . , fm(x))

S =
t
⋃

i=1

{x ∈ V : hi(f(x)) = 0, hi,1(f(x)) > 0, . . . , hi,s(f(x)) > 0} (104)

This is easy to see, since if x ∈ S, then (f1(x), . . . , fm(x)) ∈ P . This shows Theorem
5.2.1. 2

5.3 Polynomial Reduction of other classes of sets

With the tool developped in the preceding sections, we can prove some other the-
orems for polynomial reductions. We have to use the corresponding theorems in
Section 2.7.

Theorem 5.3.1 (Basic closed sets)
Let V be a real variety of dimension d over a real closed field R and S ⊆ V a
semialgebraic basic closed set given by an explicite description. Then there exists a
polynomial reduction of the form

S = {h1(x) ≥ 0, . . . , hs(x) ≥ 0} (105)

with hi ∈ R[V ] and s ≤ d(d+1
2

Theorem 5.3.2 (Open semialgebraic sets)
Let V be a real variety of dimension d over a real closed field R and S ⊆ V a open
semialgebraic set given by an explicite description

S =
u
⋃

i=1

{fi,1 > 0, . . . , fi,wi
> 0} (106)
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Then there exists a polynomial reduction of the form

S =
t
⋃

i=1

{hi,1(x) > 0, . . . , hi,s(x) > 0} (107)

with hi,j ∈ R[V ], s ≤ d and t ≤ (d + 1) ∗ τ(d)

Problem 5.3.3 Can we achieve t ≤ t(V ) in general? Proposition 2.6.3 states
that the dimension of the image of a semialgebraic set of dimension d under a
semialgebraic function has a dimension ≤ d, but it is not obvious (and probably
not true) why the t-invariant of the image cannot be greater than the one of the
considered semialgebraic set.

Theorem 5.3.4 (Closed semialgebraic sets)
Let V be a real variety of dimension d over a real closed field R and S ⊆ V a closed
semialgebraic set given by an explicite description

S =
u
⋃

i=1

{fi,1 ≥ 0, . . . , fi,wi
≥ 0} (108)

Then there exists a polynomial reduction of the form

S =
t
⋃

i=1

{hi,1(x) ≥ 0, . . . , hi,s(x) ≥ 0} (109)

with hi,j ∈ R[V ], s ≤ d(d+1)
2 and t ≤ d(d+1)∗τ(d)

Proofs: The proofs are similar to the proofs of Theorems 5.1.4 and 5.2.1. Given
an explicit description of the semialgebraic set with functions f1, . . . , fm, we con-
sider the image of S under the application Φ which associates to x ∈ V the point
(f1(x), . . . , fm(x)) ∈ Rm. We consider the Zariski–closure W ′ of the image of Φ. By
Propositions 2.6.3 and 2.6.2, its dimension is ≤ d if d denotes the dimension of V .

In the description of S we replace every occurence of the form fi(x) > 0 (resp. ≥ 0
etc.) by ti > 0 (resp. ti ≥ 0 etc.). It is clear from the descriptions of S that this gives
us a basic closed resp. an open semialgebraic resp. a closed semialgebraic subset
of W ′. Now, we apply Theorems 2.7.6 resp. 2.7.4 resp. 2.7.7 to find reductions
of these semialgebraic sets. Replacing ti by fi(x) in these descriptions gives us the
polynomial reductions of S we sought in the theorems. 2

5.4 A spectral version

An analysis of the methods in the previous sections allows us to generalize the results
to a wide class of objects. While we used so far arguments from Semialgebraic
Geometry, we next want to find a spectral version of the theorems about polynomial
reductions.
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Theorem 5.4.1 Let A be a R-algebra of finite transcendence degree d. Then every
basic open set of SpecrA can be written with at most d inequalities.

Proof: It is sufficient to show this theorem for a basic open set described with
d + 1 inequalities. So let P = {α ∈ SpecrA : a1(α) > 0, . . . , ad+1(α) > 0}. Since the
transcendence degree of A is d, we find a non zero polynomial p ∈ R[t1, . . . , td+1]
such that p(a1, . . . , ad+1) = 0. We set

B := R[t1, . . . , td+1]/(p) (110)

Consider the application

φ : B 7→ A (111)

defined by ti 7→ ai. It is clear that φ is well defined. It induces a map

φ∗ : SpecrA 7→ SpecrB (112)

Set

Q = {β ∈ SpecrB : t1(β) > 0, . . . , td+1(β) > 0} (113)

Then P = φ∗−1(Q):

α ∈ P = {a1 > 0, . . . , ad+1 > 0} ⇐⇒ ∀i − ai /∈ α ⇐⇒ ∀i − φ(ti) /∈ α

⇐⇒ ∀i − ti /∈ φ∗(α) ⇐⇒ φ∗(α) ∈ Q = {t1 > 0, . . . , td+1 > 0} (114)

Since p is a non-zero polynomial, the transcendence degree of B is at most d. By
Theorem 2.7.3 we can write Q with only d functions g1, . . . , gd ∈ B such that

Q = {β ∈ SpecrB : g1(β) > 0, . . . , gd(β) > 0} (115)

We choose for each gi a representant gi ∈ R[t1, . . . , td+1] We claim that

P = {α ∈ SpecrA : g1(a1, . . . , ad+1) > 0, . . . , gd(a1, . . . , ad+1) > 0)} (116)

For the proof, let α ∈ P . Then

∀i gi(a1, . . . , ad+1) /∈ α ⇐⇒ ∀i φ(gi(t1, . . . , td+1)) /∈ α

⇐⇒ ∀i gi(t1, . . . , td+1) /∈ φ∗(α) (117)

Consequently,

α ∈ P ⇐⇒ φ∗(α) ∈ Q ⇐⇒ φ∗(α) ∈ {g1 > 0, . . . , gd > 0}

⇐⇒ α ∈ {g1(a1, . . . , ad+1) > 0, . . . , gd(a1, . . . , ad+1) > 0} (118)

This shows the claim and Theorem 5.4.1. 2

47



References
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in: L’analyse numérique et la théorie de l’approximation, tome 11, N.1-2, 1982.-
S. 139-145

[12] Precup, R.: Piecewise convex interpolation.- in: L’analyse numérique et la
théorie de l’approximation, tome 14, N.2, 1985.- S. 123-126
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