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An E-function is a formal power series with algebraic coefficients that is annihilated by some
non-zero differential operator, and whose coefficients satisfy some growth condition. E-functions
were introduced by Siegel [12] in 1929 with the goal of generalizing the theorems of Hermite,
Lindemann andWeierstrass about transcendence of values of the exponential function. Examples
of E-functions include the exponential function, the Bessel function, and hypergeometric E-
functions
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for integers 0 ≤ p < q, rational parameters a1, . . . , ap, b1, . . . bq ∈ Q ∖ Z≤0, and an algebraic
scalar λ. Here (x)n := x(x + 1) · · · (x + n − 1). After noticing that any polynomial expression
in E-functions with algebraic coefficients is again an E-function, Siegel asked the following
question:

does the Q̄[z]-algebra generated by hypergeometric E-functions contain all E-functions?

While this is true for E-functions satisfying a differential equation of order at most two [10],
a negative answer has been provided in 2021 by J. Fresán and P. Jossen [4] who found a way
to construct non-hypergeometric E-functions annihilated by a third-order linear operator. An
explicit example is given by the power series
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The goal of the seminar is to understand the Fresán-Jossen construction of non-hypergeometric E-
functions.

Contents and structure of the seminar

The study of Fresán-Jossen’s paper gives us the opportunity to learn about several topics in alge-
braic geometry and number theory, including: E-functions and G-functions, differential Galois
theory, Tannakian categories, differential modules (D-modules), and p-adic differential equa-
tions. More precisely, the seminar is structured as follows:

� The first two talks concern the classical theory of E-functions and of the closely related
family of G-functions. In Talk 1 the basic definitions and fundamental examples are given; next
the relation between E-functions and G-functions in terms of Laplace transform and Fourier
transform of the associated differential operators is discussed. In Talk 2 we introduce a special
class of ODEs, called Picard-Fuchs differential equations, whose solutions are G-functions. This
permits to establish a relation between special values of G-functions and periods of algebraic
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varieties. Next we show that special values of G-functions appear in the asymptotic expansion
of E-functions. This gives extra motivation to study Siegel’s question: a positive answer would
imply a severe restriction on the set of numbers that can appear as periods of algebraic varieties,
in a way that is not compatible with the current standard conjectures.

� Talks 3 to 6 present several aspect of the theory of linear differential operators that will be
needed in the construction of the non-hypergeometric E-functions. This series of talks can be
intended as a crash course on the development of some aspects of the theory of linear differential
equations in the algebraic setting. Differential Galois theory (Talk 3) associates to a linear
operator an algebraic group, the differential Galois group. Similarly to classical Galois theory,
a correspondence between differential Galois groups and finite extensions of differential fields
is described. In several circumstances, it is more convenient to think of the differential Galois
group as of the Tannaka group of an object in a category of differential modules (Talk 4). The
basic theory of differential modules (D-modules) on the affine line and of their structure is the
content of Talk 5. Finally in Talk 6 we study the singularities of D-modules, and in particular
we introduce the concept of slope and the Levelt-Turrittin decomposition.

� In Talks 7-8 we put together what we learned from Talks 1-2 and Talks 3-6. Inspired by E-
functions and G-functions, we define D-modules of type E and type G. They are related by
Fourier transform and live into suitable categories equipped with a special fiber functor (Talk
7). Among D-modules of type E there are D-modules arising from hypergeometric E-functions;
in the light of Siegel’s question, the goal is to prove that not every D-module of type E is
generated by the hypergeometric D-modules. The strategy of the proof partially relies on the
fact that the categories of D-modules of type E and G are Tannakian, as we prove in Talk 8.
The proof of this fact will give us the opportunity to explore some p-adic aspects of G-functions
and differential equations.

� In Talks 9-11 we finally construct the non-hypergeometric E-functions following Fresán-Jossen.
We prove that a three-dimensional D-module of type E that is also hypergeometric gives rise
to a D-module of type G whose singularities have a special geometric configuration: they are
collinear of form an equilateral triangle (Talk 10). It is possible to prove such a result thanks
to Katz’s classification of the differential Galois groups of hypergeometric D-modules (Talk 9).
Finally, we constructD-modules of typeG from polynomial maps. Their singular points are given
by the critical values of the polynomial. By choosing a suitable fourth-degree polynomial, i.e.
such that its critical values are not collinear nor form an equilateral triangle, and using Fourier
transform, we finaly construct a D-module of type E that is not generated by hypergeometric
modules.

Organization and description of the talks

Format hybrid – in person but will stream simultaneously via Zoom.

Dates We will meet on a two-weekly bases on Thursday afternoon 3.15 having two one-hour
talks with a break in-between. We plan to start on November 3. The last talk will take place
on January 26.

Places alternating between Darmstadt and Frankfurt (starting from Frankfurt)
� Frankfurt: Room 711 Groß, Robert-Mayer-Straße 10.
� Darmstadt: Room 244 - S2—15, Schlossgartenstraße 7.

Classification of the talks What does ⋆, ⋆⋆, ⋆ ⋆ ⋆ mean?
⋆ : Suitable for Masters- or Ph.D. students without much background in algebraic geometry;
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talks should be straightforward to prepare.
⋆⋆ : Suitable for Ph.D. students and postdocs; usually requires background in algebraic geometry
or knowledge of almost all previous talks.
⋆ ⋆ ⋆: Suitable for ambitious Ph.D. students and postdocs, as well as for Professors. Requires
solid background in algebraic geometry (and algebraic groups for Talk 9) and/or the willingness
to engage with the material in significant depth.

Getting started It is highly recommended to read the nicely written introduction of the Fresán-
Jossen paper [4] in order to have an overview of the problem and of the strategy of the solution.

Final remark The goal of the Gaus-AG is not only to learn advances in current research, but
also to get to know each other, discuss and participate actively. We strongly encourage you to
contact the organizers in the preparation of the talks, and to discuss with them or with your
colleagues about any problem that may arise.

Talk 1: E-functions and G-functions ⋆ (03.11 Frankfurt) [G. Bogo]

Define E-series and G-series [4, Definition 1.2], and present the basic theory of E-functions
follwing [5, Sec 2.1]; in particular, prove that hypergeometric functions are E-functions (example
(4) in [5, Sec 2.1]) and discuss the Siegel-Shidlovsky theorem. State Siegel’s question [4, pag
904]. Introduce the differential algebras E and G [4, Section 1.4], G-operators and E-operators [4,
Def 1.6]. Present their basic properties as given in [4, Theorem 1.8] and [4, Theorem 1.10], but
do not discuss singularities of the operators. Introduce the Fourier transform [4, Section 1.1],
the Laplace transform [4, Sections 1.11,1.12,1.13] and give a complete description of their action
on the algebras E and G [4, Prop 1.14]. Conclude by presenting the example in [4, Section 1.15]
in order to shed light on the definition of E-operators.

Talk 2: G functions and geometry ⋆⋆ (03.11 Frankfurt) [C. Röhrig]

Introduce Picard-Fuchs differential equations on curves by following [6, pag 71-72]. State (with-
out proof) that the solution of a Picard-Fuchs differential equation is a G-function [1, pag 110]
and the conjectural converse statement (Bombieri-Dwork conjecture [1, pag 11]). As an exam-
ple, present the Legendre family and its relation with hypergeometric functions as discussed
in [9, Sections 2.1-2.2] (the reading of the introduction and of Sections 1,2 of [9] can be helpful
in the preparation of the talk.) Introduce and describe the sets G [3, Def 2] and H [3, Section
2.2], and state the main theorem [3, Theorem 1], which relates Siegel’s question to periods of
algebraic varieties. Prove the theorem (see [3, Section 6]) by discussing the main ingredients: the
appearance of arbitrary elements of G in the asymptotic expansion of E-functions [3, Theorem
3] and the asymptotic expansion of hypergeometric E-functions [3, Theorem 4].

Talk 3: Some aspects of differential Galois theory ⋆⋆
(24.11 Darmstadt) [R. Çiloğlu]

The goal of the talk is to give an introduction to differential Galois groups and Galois correspon-
dence. The main reference is the book [13]. Introduce differential modules over differential fields
(with algebraically closed fields of constants), [13, Definition 1.6.]. Pick your favorite running
example to illustrate all the concepts. Introduce Picard-Vessiot extensions [13, §1.3.] and define
the differential Galois group [13, Definition 1.25.]. Explain that it is an algebraic group [13,
Theorem 1.27.] and prove that the maximal spectrum of the Picard-Vessiot ring is a torsor for
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the differential Galois group [13, Theorem 1.28.]. State the Galois correspondence [13, Theorem
1.34.] and sketch its proof.

Talk 4: Tannakian categories ⋆ (24.11 Darmstadt) [A. Güthge]

The goal of the talk is to introduce Tannakian categories and relate the Tannaka group of a
differential module to its differential Galois group. We mostly follow the article [2], specifically
Chapter 2. Define affine group schemes and explain how to recover them from their category of
finite-dimensional representations, [2, Chapter 2, Proposition 2.8.]. Define neutral Tannakian
categories [2, Chapter 2, Definition 2.19.] and give some examples (such as the category of
differential modules or algebraic vector bundles with integrable connection). Sketch the proof
of the main theorem [2, Chapter 2, Theorem 2.11.]. Explain how to recover the differential
Galois group of a differential module through Tannakian formalism, [13, Theorem 2.33.]. Prove
[2, Chapter 2, Proposition 2.20.]. This gives an alternate way to see that the differential Galois
group is algebraic

Talk 5: Holonomic D-modules on A1 ⋆ (01.12 Frankfurt) [M. Müller]

In this talk and the next we follow Claude Sabbah’s notes [11] to introduce the basic notions of
D-module theory on the affine line. Define the Weyl algebra A1(C) and the algebras D, D̂ of
local differential operators. Talk about their basic properties [11, I, §1.3]. Introduce the notion
of good filtration of a D-module [11, I, Definition 3.2.1.]. Define the characteristic variety [11,
I, Definition 3.2.5.] and give an example. Define holonomic D-modules and explain that they
are precisely the D-modules of the form D/I for some non-zero left ideal I ⊂ D [11, I, Corollary
3.3.5]. Finally globalize the story following [11, III, §1.1.] to introduce holonomic modules over
the Weyl algebra A1(C). In particular, we need [11, III, Proposition 1.1.5.] whose key input is
[11, I, Lemma 2.3.3].

Talk 6: Formal meromorphic connections ⋆ (01.12 Frankfurt) [F. Pennig]

Introduce the notion of formal meromorphic connection [11, Definition 4.3.1.] (replacing K
by K̂). This is the same as a differential module over K̂. Prove that any holonomic A1(C)-
or D-module determines a formal meromorphic connection by extension of scalars (this is one
direction of [11, Theorem 4.3.2.]). Prove [11, Proposition 4.3.3], also known as the cyclic vector
lemma. Introduce the Newton polygon of a formal meromorphic connection, define the slopes
and regular meromorphic connections. Spend the rest of the talk explaining [11, Theorem 5.4.7.],
also known as the Levelt-Turrittin decomposition. One of the main ingredients is [11, Theorem
5.3.1.] which gives a splitting of a formal meromorphic connection according to its slopes.

Talk 7: Divisor of a module in Conn0(Gm) and hypergeometric modules ⋆ ⋆ ⋆
(22.12 Darmstadt)[K. Jakob]

Define Fourier transform of D-modules and introduce the set of solutions of a D-module in a
differential algebra A, [4, §2.1 & 2.2]. Introduce the Tannakian categories Conn0(Gm) and
RS0(A1) and explain their relation via Fourier transform of D-modules [4, Proposition 2.3.,
§2.4]. Define modules of type E and G [4, Def 2.9] and the associated categories E and G. Dis-
cuss [4, Theorem 2.12 (1)], which relates D-modules to G-functions, and the analogous statement
for E [4, Theorem 2.13]. Construct the monoidal functor

Ψ : Conn0(Gm) → {Qℓ − graded vector spaces}
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and conclude that the Galois group of M contains an explicit algebraic torus. Define the
divisor div(M) of a module M ∈ Conn0(Gm) [4, §2.6., Lemma 2.7., 2.8]. Finally, introduce
hypergeometric D-modules [4, Definition 3.6] and prove [4, Theorem 3.7.], computing their
divisor.

Talk 8: André’s theorem ⋆ (22.12 Darmstadt)[Y. M. Wong]

The goal of the talk is to prove that E is a Tannakian subcategory of Conn0(Gm) [4, Theorem
2.14]. The main tool is André’s theorem [4, Theorem 2.12 (2)] whose proof uses Bombieri’s
characterization of G-functions in terms of their p-adic radius of convergence. the presentation
is based on André’s book [1]. Introduce the notion of global radius of a D-module [1, IV, 3.3].
This requires some basic concepts in p-adic differential equations tat can be found in [1, IV,
1-2]. State that G-modules are precisely the modules with finite global radius [4, pag 76] (see
also [4, Sec 1.7,1.8]). Prove the first two points of Lemma 2 in (André, IV,3). Complete the
proof for the category E by following the proof of [4, Theorem 2.14].

Talk 9: Differential Galois groups of hypergeometric D-modules ⋆ ⋆ ⋆
(12.01 Frankfurt) [J. Chen]

Recall the definition of generalized hypergeometric equations following [8, Chapter 3, §1]. Com-
pute the slope and state [8, Theorem 3.6.]. Define Lie-irreducibility [8, §2.7.] and explain the
relation to Kummer induction. The rest of the talk will focus on the computation of differential
Galois groups. Following [7, §2.5. & 2.6.] introduce the local differential Galois group, the up-
per numbering filtration and the unique index N -subgroup. Explain the relation to the slopes.
Prove Katz’s Main D.E. Theorem [8, 2.8.1.] using Gabber’s torus trick [8, Theorem 1.0]. Use
the various recognition results for semisimple Lie algebras as a black box.

Talk 10: The symmetry constraint ⋆ ⋆ ⋆ (12.01 Frankfurt) [Y. Li]

The talk follows closely [4, Sec 4]. Define Lie-generated objects of a Tannakian category [4, Def
4.3] and motivate this definition as in [4, Sec 4.4]. Prove [4, Theorem 4.7], which shows that an
object of E with Galois group SL3 which is Lie-generated by objects of H is Lie-generated by
only one specific object. It is not necessary to prove all the special cases in the proof. Finally,
prove [4, Theorem 4.9], which describes the symmetry constraint on the Fourier transform of a
three-dimensional object of E with Galois group containing SL3.

Talk 11: A non-hypergeometric E-operator ⋆⋆ (26.01 Darmstadt) [M. Zhang]

The talk follows [4, Sec 5]. Prove [4, Prop 5.1], which describes a fundamental matrix of solutions
of DGm-module induced by a polynomial map. Discuss then the case of fourth order polynomials:
if the critical values are not collinear, the associated DGm-module is simple [4, Lemma 5.3] and
its Galois group of contains SL3 [4, Lemma 5.3]. Finally, prove the main result [4, Theorem
5.7], which provides infinitely may examples of non-hypergeometric E-functions. Conclude by
discussing [4, Sec 5.8] and giving a concrete example of such E-function.

Talk 12: E-functions and geometry (26.01 Darmstadt) [J. Fresán]

I will explain why every exponential period function of the form
∫
σ e

−zfω, where f is a regular
function on an algebraic variety X defined over the field of algebraic numbers, ω is an algebraic
differential form on X, and σ is a rapid decay cycle on X(C), is a linear combination of E-
functions ”with monodromy” with coefficients in the field generated by usual periods, special
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values of the gamma function and Euler’s constant. This is how E-functions arise from geometry
and gives some intuition of why a positive answer to Siegel’s question about hypergeometric E-
functions was extremely unlikely. (Joint work with Peter Jossen).
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