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CHERN CLASSES OF LINEAR SUBMANIFOLDS

WITH APPLICATION TO SPACES OF k-DIFFERENTIALS

AND BALL QUOTIENTS

MATTEO COSTANTINI, MARTIN MÖLLER, AND JOHANNES SCHWAB

Abstract. We provide formulas for the Chern classes of linear submanifolds
of the moduli spaces of Abelian differentials and hence for their Euler charac-
teristic. This includes as special case the moduli spaces of k-differentials, for
which we set up the full intersection theory package and implement it in the
sage-program diffstrata.

As an application, we give an algebraic proof of the theorems of Deligne-
Mostow and Thurston that suitable compactifications of moduli spaces of k-
differentials on the 5-punctured projective line with weights satisfying the INT-
condition are quotients of the complex two-ball.
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1. Introduction

Linear submanifolds are the most interesting and well-studied subvarieties of
moduli spaces of abelian differentials ΩMg,n(µ) and their classification seems far
from complete at present. They are defined as the normalization of algebraic sub-
stacks of ΩMg,n(µ) that are locally a union of linear subspaces in period coordi-
nates. In the holomorphic case, linear submanifolds defined by real linear equa-
tions are precisely the closures of GL+

2 (R)-orbits by the fundamental theorems of
Eskin-Mirzakhani-Mohammadi ([EM18], [EMM15]). These orbit closures are au-
tomatically algebraic subvarieties by Filip’s theorem ([Fil16]). Our results require
algebraicity, but they work as well for meromorphic differentials and for subvarieties
whose equations are only C-linear.

Research of J.S and M.M. is supported by the DFG-project MO 1884/2-1 and the Collaborative
Research Centre TRR 326 “Geometry and Arithmetic of Uniformized Structures”.

Research of M.C. has been supported by the DFG Research Training Group 2553.
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Linear submanifolds include

• spaces of quadratic differentials,
• Teichmüller curves,
• eigenform loci and Prym loci,
• the recent sporadic examples from [MMW17] and [EMMW20], but also
• spaces defined by covering constructions, and
• in the meromorphic case, spaces defined by residue conditions.

These examples are R-linear. Spaces of k-differentials for k ≥ 2 and in particular
the ball quotients in Section 8 are prominent examples that are only C-linear.

Our primary goal is a formula for the Chern classes of the cotangent bundle of
any linear submanifold or rather of its compactification. The Euler characteristic is
an intrinsic compactification-independent application. Knowing the Chern classes
is a prerequisite for understanding the birational geometry of linear submanifolds,
such as computations of the Kodaira dimension, see [CCM22].

This goal was achieved in [CMZ22] for the full projectivized strata of Abelian
differentials PΩMg,n(µ) themselves, taking the modular smooth normal crossing

compactification PΞMg,n(µ) of multi-scale differentials from [BCGGM3] as point of
departure. In the inextricable zoo of linear manifolds we are not aware of any intrin-
sic way to construct a smooth compactification with modular properties. Working
with the normalization of the closure in some ambient compactification is usually
unsuitable for intersection theory computations. Here, however, thanks to the work
of Benirschke-Dozier-Grushevsky ([BDG22]) and some minor upgrades we are able
to work with this closure.

We now introduce more notation to state the general results and then apply them
to specific linear submanifolds. Let ΩH → ΩMg,n(µ) be a linear submanifold. Let

moreover H → PΩMg,n(µ) be its projectivization and let H → PΞMg,n(µ) denote
the normalization of its closure into the space of multi-scale differentials. The
boundary strata DΓ of PΞMg,n(µ) are indexed by level graphs Γ as we recall in

Section 3.2. By [BDG22, Theorem 1.5] the boundary of H is divisorial and consists
two types of divisors: First there are the divisors DH

h of curves whose level graphs
have only horizontal edges (i.e. joining vertices of the same level). Second there
are the divisors DH

Γ parameterized by level graphs Γ ∈ LG1(H) that have one
level below the zero level and no horizontal edges and such that the intersection
of H with the interior of the boundary divisor DΓ is non-empty. Those boundary
divisors DH

Γ come with the integer ℓΓ, the least common multiple of the prongs κe
along the edges. We let ξ = c1(O(−1)) be the first Chern class of the tautological
bundle on H.

Theorem 1.1. The first Chern class of the logarithmic cotangent bundle of a pro-
jectivized compactified linear submanifold H is

(1) c1(Ω
1
H(log ∂H)) = N · ξ +

∑

Γ∈LG1(H)

(N −N⊤
Γ )ℓΓ[D

H
Γ ] ∈ CH1(H) ,

where N := dim(ΩH) and where N⊤
Γ := dim(DH,⊤

Γ ) + 1 is the dimension of the
unprojectivized top level stratum in DH

Γ .

To state a formula for the full Chern character we need to recall a procedure
that also determines adjacency of boundary strata. It is given by undegeneration
maps δi that contract all the edges except those that cross from level −i + 1 to
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level −i, see Section 3.2. This construction can obviously be generalized so that a
larger subset of levels remains. For example the undegeneration map δ∁i contracts
only the edges crossing from level −i + 1 to level −i. We can now define for any
graph Γ ∈ LGL(H) with L levels below zero and without horizontal edges the

boundary component DH
Γ of codimension L and the quantity ℓΓ =

∏L
i=1 ℓδi(Γ).

Theorem 1.2. The Chern character of the logarithmic cotangent bundle is

ch(Ω1
H(log ∂H)) = eξ ·

N−1∑

L=0

∑

Γ∈LGL(H)

ℓΓ

(
N −N⊤

δL(Γ)

)
iΓ∗
( L∏

i=1

td
(
N

⊗−ℓδi(Γ)

Γ/δ∁i (Γ)

)−1)
,

where NΓ/δ∁i (Γ)
denotes the normal bundle of DH

Γ in DH
δ∁i (Γ)

, where td is the Todd

class and iΓ : DH
Γ →֒ H is the inclusion map.

So far the results have been stated to parallel exactly those in [CMZ22]. We
start explaining the difference in evaluating this along with the next result, a closed
formula for the Euler characteristic.

Theorem 1.3. Let H → PΩMg,n(µ) be a projectivized linear submanifold. The
orbifold Euler characteristic of H is given by

χ(H) = (−1)d
d∑

L=0

∑

Γ∈LGL(H)

KH
Γ ·N⊤

Γ

|AutH(Γ)|
·
−L∏

i=0

∫

H[i]
Γ

ξ
d
[i]
Γ

H[i]
Γ

,

where the integrals are over the normalization of the closure H → PΞMg,n(µ) inside
the moduli space of multi-scale differentials and similar integrals over boundary
strata, where

• H
[i]
Γ are the linear submanifolds at level i of Γ as defined in Section 3.5,

• d
[i]
Γ := dim(H

[i]
Γ ) is the projectivized dimension,

• KH
Γ is the product of the number of prong-matchings on each edge of Γ that

are actually contained in the linear submanifold H,
• AutH(Γ) is the set of automorphism of the graph Γ whose induced action
on a neighborhood of DH

Γ preserves H,
• d := dim(H) is the projectivized dimension.

The number of reachable prong matchings KH
Γ and the number |AutH(Γ)| as

defined in the theorem are in general non-trivial to determine. Also the description

of H
[i]
Γ requires specific investigation. For example, for strata of k-differentials,

these H
[i]
Γ are again some strata of k-differentials, but the markings of the edges

have to be counted correctly.
The most important obstacle to evaluate this formula however is to compute

the fundamental classes of linear submanifolds, or to use tricks to avoid this. For
strata of abelian differentials, this step was provided by the recent advances in
relating fundamental classes to Pixton’s formula ([HS21], [BHPSS20]). Whenever
we have the fundamental classes at our disposal, we can evaluate expressions in the
tautological ring, as we briefly summarize in Section 4.
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Applications: Teichmüller curves in genus two. As an example where fun-
damental class considerations can be avoided, we give an alternative quick proof of
one of the first computations of Euler characteristics of Teichmüller curves, initially
proven in [Bai07], see also [MZ16] for a proof via theta derivatives. We assume fa-
miliarity with the notation for linear submanifolds in genus two strata, as recalled
in Section 6.

Theorem 1.4 (Bainbridge). The Euler characteristic of the Teichmüller curve WD

in the eigenform locus for real multiplication by a non-square discriminant D is
χ(WD) = −9ζ(−1) where ζ = ζ

Q(
√
D) is the Dedekind zeta function.

Proof. The Hilbert modular surface XD is the disjoint union of the symmetriza-
tion of the eigenform locus ED ⊂ ΩM2,1(1, 1), the product locus PD of reducible
Jacobians and the Teichmüller curve WD. This gives

χ(PD) + χ(WD) +
1

2
χ(ED) = χ(XD) .

Now we apply Theorem 1.3 to ED. The top-ξ-integral in the L = 0-term of van-
ishes by Corollary 4.3, since ED is a linear submanifold with REL non-zero. The
codimension-one boundary strata are PD and WD. They don’t intersect, so there
are no codimension-two boundary strata without horizontal nodes and we get

(2) χ(ED) = −χ(PD)− 3χ(WD)

where the factor 3 stems from the number of prong-matchings. Since Siegel com-
puted χ(XD) = 2ζ(−1) and viewing PD as the vanishing locus of the product of
odd theta functions gives χ(PD) = −5ζ(−1), the theorem follows from the two
equations. �

Strata of k-differentials. The space of quadratic differentials is the cotangent
space to moduli space of curves and thus fundamental in Teichmüller dynamics. We
give formulas for Chern classes, Euler characteristics and for the intersection theory
in these spaces. In fact, our formulas work uniformly for spaces of k-differentials
for all k ≥ 1. Having the quadratic case in mind, we write Q = PΞkMg,n(µ) for
the space of multi-scale k-differentials defined in [CMZ19], which coincides (up to
explicit isotropy groups, see Lemma 7.2) with the compactification as above of the
associated linear submanifold obtained via the canonical covering construction.

The formulas in Theorem 1.2 apply to Q viewed as a linear submanifold in
some higher genus stratum Mĝ,n̂(µ̂). However the fundamental class of these sub-
manifolds is not known, conceivably it is not even a tautological class. The main
challenge here is to convert these formulas into formulas that can be evaluated on Q
viewed as a submanifold in Mg,n where the fundamental class is given by Pixton’s
formula.

While the boundary strata of the moduli space PΞMg,n(µ) are indexed by level

graphs, the boundary strata of the moduli space of multi-scale k-differentials Q are

indexed by coverings of k-level graphs π : Γ̂mp → Γ, where the legs of Γ̂mp are
marked only partially, see Section 7 or also [CMZ19, Section 2] for the definitions
of these objects and the labeling conventions of those covers. Each edge e ∈ Γ has
an associated k-enhancement κe given by | orde ω+ k|, where ω is the k-differential
on a generic point of the associated boundary stratum Dπ. We let ζ = c1(O(−1))
be the first Chern class of the tautological bundle on Q. Via the canonical cover
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construction, Theorem 1.3 implies the following formula for the Euler characteristic
of strata of k-differentials.

Corollary 1.5. The orbifold Euler characteristic of a projectivized stratum of k-
differentials PΩkMg,n(µ) is given by

χ(PΩkMg,n(µ)) =
(
−1

k

)d d∑

L=0

∑

(π:Γ̂mp→Γ)∈LGL(Q)

S(π) ·
N⊤
π ·
∏
e∈E(Γ) κe,

|Aut(Γ)|
·
−L∏

i=0

∫

Q[i]
π

ζ
d[i]π

Q[i]
π

,

where S(π) is the normalized size of a stabilizer of a totally labeled version of the

graph Γ̂mp and Q
[i]
π are the strata of k-differentials of Dπ at level i.

The full definition of S(π) is presented in (48). It equals one for many π, e.g. if

all vertices in Γ have only one preimage in Γ̂mp. See Remark 7.6 for values of this
combinatorial constant.

k 1 3 4 5 6 7 8 9

χ(PΩkM2,1(2k)) − 1
40

1
3

3
2

21
5 9 18 30 51

Table 1. Euler characteristics of some minimal strata of k-
differentials

Table 1 gives the Euler characteristics of some strata of quadratic differentials,
for more examples and cross-checks see Section 7.5.

All the formulas for evaluations in the tautological ring of strata of k-differentials
have been coded in an extension of the sage program diffstrata (an extension of
admcycles by [DSZ21]) that initially had this functionality for abelian differen-
tials only (see [CMZ22], [CMZ20]). See Section 4 for generalities on tautological
ring computations and in particular Section 7 for the application to k-differentials.
The program diffstrata has been used to verify the Hodge-DR-conjecture from
[CGHMS22] in low genus. Moreover, diffstrata confirms that the values of the
tables in [Gou16] can be obtained via intersection theory computations:

Proposition 1.6. The Conjecture 1.1 in [CMS19] expressing Masur-Veech volumes
for strata of quadratic differentials as intersection numbers holds true for strata of
projectivized dimension up to six, e.g. Q(12) = 5614/6075 · π6.

Ball quotients. Deligne-Mostow ([DM86]) and Thurston [Thu98] constructed com-
pactifications of strata of k-differentials on M0,n for very specific choices of µ and
showed that these compactified strata are quotients of the complex (n − 3)-ball.
These results were celebrated as they give a list of non-arithmetic ball quotients,
of which there today are still only finitely many sporadic examples, see [DPP16]
and [Der20] for recent progress. The compactifications are given as GIT quotients
(in ([DM86]) or in the language of cone manifolds (in [Thu98]) and the proof of
the discreteness of the monodromy representation requires delicate arguments for
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extension of the period at the boundary, resp. surgeries for the cone manifold com-
pletion.

As application of our Chern class formulas we give a purely algebraic proof that
these compactifications are ball quotients, based on the fact that the equality case
in the Bogomolov-Miyaoka-Yau inequality implies a ball quotient structure, see
Proposition 8.1. Since this is a proof of concept, we restrict to the case n = 5, i.e.
to quotients of the complex two-ball, and to the condition INT in (3), leaving the
analog for Mostow’s generalized ΣINT-condition [Mos86] for the reader.

The computation of the hyperbolic volume of these ball quotients had been open
for a long time. A solution has been given by McMullen [McM17] and Koziarz-
Nguyen [KN18], see also [KM16]. Since computing the hyperbolic volume is equiv-
alent to computing the Euler characteristic by Gauss-Bonnet, our results provide
alternative approach to this question, too.

There are only four kinds of boundary divisors of Q:

• The divisors Γij where two points with ai + aj < k collide.
• The divisors Lij where two points with ai + aj > k collide.
• The ’horizontal’ boundary divisor Dhor consisting of all components where
two points with ai + aj = k collide.

• The ’cherry’ boundary divisors ijΛkl.

Theorem 1.7. Suppose that µ = (−a1, . . . ,−a5) is a tuple with ai ≥ 0 and with
the condition

(3)
(
1−

ai
k

−
aj
k

)−1

∈ Z if ai + ak < k (INT)

for all i 6= j. Then there exists a birational contraction morphism Q → B onto a
smooth proper DM-stack B that contracts precisely all the divisors Lij and ijΛkl.

The target B satisfies the Bogomolov-Miyaoka-Yau equality for Ω1
B
(logDhor).

As a consequence B = B \Dhor is a ball quotient.

The signature of the intersection form on the eigenspace that k-differentials are
modeled on has been computed by Veech [Vee93]. The only other case where the
signature is (1, 2) are strata in M1,3. As observed by Ghazouani-Pirio in [GP17],
(see also [GP20]) there are only few cases where the metric completion of the
strata can be a ball quotient. However they also find additional cases where the
monodromy of the stratum is discrete. This implies that the period map descends to
a map from the compactified stratum to a ball quotient. It would be interesting to
investigate if there are more such cases, possibly with non-arithmetic monodromy.

Acknowledgments. We thank Selim Ghazouani, Daniel Greb and Vincent Kon-
zarz for helpful remarks on ball quotients and the Bogomolov-Miyaoka-Yau equality
and Frederik Benirschke und Johannes Schmitt for their comments.

2. Logarithmic differential forms and toric varieties

This section connects the Euler characteristic to integrals of characteristic classes
of the sheaf of logarithmic differential forms. We work on a possibly singular but
normal and irreducible variety H of dimension d, whose singularities are toric and
contained in some boundary divisor ∂H. We are interested in the Euler character-
istic of a (Zariski) open subvariety H with divisorial complement, such that that
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the inclusion H →֒ H is a toroidal embedding. In particular the boundary divisor
∂H = H \H is locally on open subsets Uα a torus-invariant divisor.

In this situation we define locally Ω1
Uα

(log) to be the sheaf of (C∗)d-invariant
meromorphic differential forms. These glue to sheaf Ω1

H(log ∂H), that is called
logarithmic differential sheaf. This terminology is justified by the following idea
from [Mum77, Section 4], the details and definitions being given in [KKMSD73].
For any ’allowable’ smooth modification p : W → H that maps a normal crossing
boundary divisor ∂W ⊂ W onto ∂H we have p∗Ω1

H(log ∂H) = Ω1
W
(log ∂W ) for

the usual definition of the logarithmic sheaf on W . Moreover, such an ’allowable’
smooth modification always exists.

Proposition 2.1. For H →֒ H as above the Euler characteristic of H can be
computed as integral

(4) χ(H) = (−1)d
∫

H
cd(Ω

1
H(log ∂H))

over the top Chern class of the logarithmic cotangent bundle.

Proof. If H is smooth, this is well known, a self-contained proof was given in
[CMZ22, Proposition 2.1]. In general we use an allowable modification. By def-
inition this restricts to an isomorphism W → H, hence does not change the left
hand side. The right hand side also stays the same by push-pull and the pullback
formula along an allowable smooth modification. �

In all our applications, H will be a proper Deligne-Mumford stack with toroidal
singularities. We work throughout with orbifold Euler characteristics, and since
then both sides of (4) are multiplicative in the degree of a covering, we can apply
Proposition 2.1 verbatim.

3. The closure of linear submanifolds

The compactification of a linear submanifold we work with has (currently) no
intrinsic definition. Rather we consider the normalization of the closure of a linear
submanifold inside the moduli space of multi-scale differentials ΞMg,n(µ). We
recall from [BDG22] the basic properties of such closures. The goal of this section
is to make precise and to explain the following two slogans:

• Near boundary points without horizontal edges, the closure is determined
as for the ambient abelian stratum by the combinatorics of the level graph
and it is smooth. The ghost automorphisms, the stack structure at the
boundary that stems from twist groups, agrees with the ghost automor-
phisms of the ambient stratum and the intersection pattern is essentially
determined by the profiles of the level graph, a subset of the profiles of the
ambient stratum.

• In the presence of horizontal edges there are toric singularities. Working
with the appropriate definition of the logarithmic cotangent sheaf these
singularities don’t matter. This sheaf decomposes into summands from
horizontal nodes, from the level structure, and the deformation of the dif-
ferentials at the various levels, just as in the ambient stratum.
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3.1. Linear submanifolds in generalized strata. Let ΩMg,n(µ) denote the
moduli space of Abelian differential of possibly meromorphic signature µ. Despite
calling them ’moduli space’ or ’strata’ we always think of them as quotient stacks or
orbifolds and intersection numbers etc. are always understood in that sense. These
strata come with a linear structure given by period coordinates (e.g. [Zor06] for an
introduction). A linear submanifold ΩH of ΩMg,n(µ) is an algebraic stack with a
map ΩH → ΩMg,n(µ) which is the normalization of its image and whose image
is locally given as a finite union of linear subspaces in period coordinate charts.
See [Fil20, Example 4.1.10] for an example that illustrates why we need to pass
to the normalization for ΩH to be a smooth stack. In the context of holomorphic
signatures and GL2(R)-orbit closures, the linear manifolds obtained in this way can
locally be defined by equations with R-coefficients ([EM18], [EMM15]). We refer
to them as R-linear submanifolds. In this context, the algebraicity follows from
being closed by the result of Filip ([Fil16]), but in general algebraicity is an extra
hypothesis.

To set up for clutching morphisms and a recursive description of the bound-
ary of compactified linear submanifolds, we now define generalized strata, com-
pare [CMZ22, Section 4]. For a tuple g = (g1, . . . , gk) of genera and a tuple
n = (n1, . . . , nk) together with a collection of types µ = (µ1, . . . , µk) with |µi| = ni
we first define the disconnected stratum ΩMg,n(µ) =

∏k
i=1 ΩMgi,ni

(µi) . Then,
for a linear subspace R inside the space of the residues at all poles of µ we define
the generalized stratum ΩMR

g,n(µ) to be the subvariety with residues lying in R.
Generalized strata obviously come with period coordinates and we thus define a
generalized linear submanifold ΩH to be an algebraic stack together with a map to
ΩMR

g,n(µ) whose image is locally linear in period coordinates and where ΩH is the
normalization of its image.

Rescaling the differential gives an action of C∗ on strata an the quotient are
projectivized strata PΩMg,n(µ). The image of a linear submanifold in PΩMg,n(µ)
is called projectivized linear manifold H, but we usually omit the ’projectivized’.

We refer with an index B to quantities of the ambient projectivized stratum, such
as its dimension dB and the unprojectivized dimension NB = dB + 1. The same
letters without additional index are used for the linear submanifold, e.g. N = d+1,
and we write dH and NH only if ambiguities may arise.

3.2. Multi-scale differentials: boundary combinatorics. We will work in-
side the moduli stack of multi-scale differentials, that is the compactification B :=
PΞMg,n(µ) of a stratum B := PΩMg,n(µ) defined in [BCGGM3] and recall some
of its properties, see also [CMZ22, Section 3]. Everything carries over with ob-

vious modifications to the compactification PΞM
R

g,n(µ) of generalized strata, see
[CMZ22, Proposition 4.1].

Each boundary stratum of PΞMg,n(µ) has its associated level graph Γ, a stable
graph of the underlying pointed stable curve together with a weak total order on
the vertices, usually given by a a level function normalized to have top level zero,
and an enhancement κe ≥ 0 associated to the edges. Edges are called horizontal,
if they start and end at the same level, and vertical otherwise. Moreover κe = 0 if
and only if the edge is horizontal. We denote the closure of the boundary stratum
of points with level graph Γ by DB

Γ and denote in general the complement of more
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degenerate boundary strata by an extra ◦, i.e., here by DB,◦
Γ . These DB

Γ are in
general not connected, and might be empty (e.g. for unsuitably large κe).

We let LGL(B) be the set of all enhanced (L + 1)-level graphs without hor-
izontal edges. The structure of the normal crossing boundary of PΞMg,n(µ) is
encoded by undegenerations. For any subset I = {i1, . . . , in} ⊆ {1, . . . , L} there
are undegeneration map

δi1,...,in : LGL(B) → LGn(B) ,

that preserves the level passage given as a horizontal line just above level −i and
contracts the remaining level passages. We define δ∁I = δI∁ .

The boundary strata DB
Γ for Γ ∈ LGL(B) are commensurable to a product of

generalized strata B
[i]
Γ = PΞM

Ri

gi,ni
(µi) defined via the following diagram.

(5)

c−1
Γ (UΓ) DB,s

Γ

Us∆

∏0
i=−LB

[i]
Γ =: BΓ BΓ,∆ UΓ DB

Γ

q∆

⊂

pΓ cΓ

p∆Γ c∆Γ⊃ ⊂

Here gi,ni and µi are the tuples of the genera, marked points and signatures of
the components at level i of the level graph and Ri is the global residue condition

induced by the levels above. The covering space DB,s
Γ and the moduli stack Us∆

of simple multi-scale differentials compatible with an undegeneration of ∆ were
constructed in [CMZ22, Section 4.2].

3.3. Multi-scale differentials: Prong-matchings and stack structure. The
notion of a multi-scale differential is based on the following construction. Given a
pointed stable curve (X, z), a twisted differential is a collection of differentials ηv
on each component Xv of X , that is compatible with a level structure on the dual
graph Γ of X , i.e. vanishes as prescribed by µ at the marked points z, satisfies the
matching order condition at vertical nodes, the matching residue condition at hori-
zontal nodes and global residue condition of [BCGGM1]. A multi-scale differential
of type µ on a stable curve (X, z) consists of an enhanced level structure (Γ, ℓ, {κe})
on the dual graph Γ of X , a twisted differential ω of type µ compatible with the
enhanced level structure, and a prong-matching for each node of X joining com-
ponents of non-equal level. Here a prong-matching σ is an identification of the
(outgoing resp. incoming) real tangent vectors at a zero resp. a pole correspond-
ing to each vertical edge of Γ. Multi-scale differentials are equivalences classes of
(X, z,Γ,σ) up to the action of the level rotation torus that rescales differentials on
lower levels and rotates prong-matchings at the same time.

To an enhanced two-level graph we associate the quantity

(6) ℓΓ = lcm(κe : e ∈ E(Γ)) .

which appears in several important place of the construction of PΞMg,n(µ):

i) It is the size of the orbit of prong-matchings when rotating the lower level
differential. Closely related:
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ii) The local equations of a node are xy = t
ℓΓ/κe

1 , where t1 is a local parameter
(a level parameter) transverse to the boundary. As a consequence a family

of differential forms that tends to a generator on top level scales with tℓΓ1
on the bottom level of Γ.

For graphs with L level passages we define ℓi = ℓΓ,i = ℓδi(Γ) to be the lcm of the

edges crossing the i-th level passage and ℓΓ =
∏L
i=1 ℓΓ,i.

There are two sources of automorphisms of multi-scale differentials: on the one
hand, there are automorphism of pointed stable curves that respect the additional
structure (differential, prong-matching). On the other hand, there are ghost auto-
morphisms, whose group we denote by GhΓ = TwΓ/Tw

s
Γ, that stem from the toric

geometry of the compactification. We emphasize that the twist group TwΓ and the
simple twist TwsΓ, hence also the ghost group GhΓ, depend only on the data of the
enhanced level graph and will be inherited by linear submanifolds below. The local
isotropy group of ΞMg,n(µ) sits in a exact sequence

0 → GhΓ → Iso(X,ω) → Aut(X,ω) → 0

and locally near (X, z,Γ,σ) the stack of multi-scale differentials is the quotient
stack [U/Iso(X,ω)] for some open U ⊂ CNB . The same holds for PΞMg,n(µ)
where the automorphism group is potentially larger since ω is only required to be
fixed projectively.

3.4. Decomposition of the logarithmic tangent bundle. We now define a
Γ-adapted basis, combining [BDG22] and [CMZ22] with the goal of giving a decom-
position of the logarithmic tangent bundle that is inherited by a linear submanifold,
if the Γ-adapted basis is suitably chosen.

We work on a neighborhood U of a point p = (X, [ω], z) ∈ DB
Γ , where Γ is

an arbitrary level graph with L levels below zero. We let α
[i]
j for i = 0, . . . ,−L

be the vanishing cycles around the horizontal nodes at level i. Let β
[i]
j be a dual

horizontal-crossing cycle, i.e. i is the top level (in the sense of [BDG22]) of this

cycle, 〈α
[i]
j , β

[i]
j 〉 = 1 and β

[i]
j does not cross any other horizontal node at level i.

Let h(i) be the number of those horizontal nodes at level i.

We complement the cycles β
[i]
j by a collection of relative cycles γ

[i]
j such that for

any fixed level i their top level restrictions form a basis of the cohomology at level i
relative to the poles and zeros of ω and holes at horizontal nodes quotiented by the

subspace of global residue conditions. In particular the span of the γ
[i]
j contains the

α
[i]
j , and moreover the union

0⋃

j=−L

{
β
[j]
1 , . . . , β

[j]
h(j), γ

[j]
1 , . . . , γ

[j]
s(j)

}
is a basis of H1(X \ P,Z,C).

Next, we define the ω-periods of these cycles and exponentiate to kill the mon-
odromy around the vanishing cycles. The functions

a
[i]
j =

∫

α
[i]
j

ω , b
[i]
j =

∫

β
[i]
j

ω , q
[i]
j = exp(2πIb

[i]
j /a

[i]
j ) , c

[i]
j =

∫

γ
[i]
j

ω .

are however still not defined on U (only on sectors of the boundary complement)
due to monodromy around the vertical nodes.
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Coordinates on U are given by perturbed period coordinates ([BCGGM3]), which
are related to the periods above as follows. For each level passage there is a level
parameter ti that stem from the construction of the moduli space via plumbing. On

the bottom level passage L we may take tL = c
[−L]
1 as a period. For the higher level

passage, the ti are closely related to the periods of a cycle with top level −i, but
the latter are in general not monodromy invariant. It will be convenient to write

(7) t⌈i⌉ =

i∏

j=1

t
ℓj
j , i ∈ N.

There are perturbed periods c̃
[−i]
j obtained by integrating ω/t⌈i⌉ against a cycle

with top level −i over the part of level −i to points nearby the nodes, cutting off
the lower level part. By construction, on each sector of the boundary complement
we have

(8) c̃
[−i]
j − c

[−i]
j /t⌈i⌉ =

∑

s>i

t⌈s⌉
t⌈i⌉

E
[−s]
j,i

for some linear (’error’) forms E
[−s]
j,i depending on the variables c

[−s]
j on the lower

level −s. Similarly, we can exponentiate the ratio over a
[−i]
j of the similarly per-

turbed b̃
[−i]
j and obtain perturbed exponentiated periods q̃

[−i]
j , such that on each

sector

(9) log q̃
[−i]
j − log q

[−i]
j =

∑

s>i

t⌈s⌉
t⌈i⌉

E
′[−s]
j,i

for some linear forms E
′[−s]
j,i . In these coordinates the boundary is given by q̃

[−i]
j = 0

and ti = 0. If we let

Ωhor
i,B(log) = 〈dq̃

[i]
1 /q̃

[i]
1 , . . . , dq̃

[i]
h(i)/q̃

[i]
h(i)〉, Ωlev

i,B(log) = 〈dt−i/t−i〉

Ωrel
i,B = 〈dc̃

[i]
2 /c̃

[i]
2 , . . . , dc̃

[i]
N(i)−h(i)/c̃

[i]
N(i)−h(i)〉,

with Ωlev
0,B(log) = 0 by convention, we thus obtain a decomposition

(10) Ω1
B
(log ∂B)|U =

0⊕

i=−L

(
Ωhor
i,B(log)⊕ Ωlev

i,B(log)⊕ Ωrel
i,B

)
.

3.5. The closure of linear submanifolds. For a linear submanifold H we denote
by H the normalization of the closure of the image of H as a substack of ΞMg,n(µ).

We denote by DΓ = DH
Γ the preimage of the boundary divisor DB

Γ in H. Again,
a ◦ denotes the complement of more degenerate boundary strata, i.e., D◦

Γ is the

preimage of DB,◦
Γ in H.

We will now give several propositions that explain that H is a compactifica-
tion of H almost as nice as the compactification PΞMg,n(µ) of strata. The first
statement explains the ’almost’.

Proposition 3.1. Let Γ be a level graph with only horizontal nodes, i.e., with one

level only. Each point in DB,◦
Γ has a neighborhood where the image of H has at

worst toric singularities.



12 MATTEO COSTANTINI, MARTIN MÖLLER, AND JOHANNES SCHWAB

More precisely, the linear submanifold is cut out by linear and binomial equa-
tions, see (13) below.

Second, the intersection with non-horizontal boundary components is transversal
in the strong sense that each level actually causes dimension drop.

Proposition 3.2. Let Γ ∈ LGL(B) be a level graph without horizontal nodes.

Each point in DB,◦
Γ has a neighborhood where each branch of H mapping to that

neighborhood is smooth and the boundary ∂H = H\H is a normal crossing divisor,
the intersection of L different divisors DH

δi(Γ)
.

In particular the image of DH
Γ has codimension L in DB

Γ .

The previous proposition allows to show, via the same argument as the proof of
[CMZ22, Proposition 5.1], the key result in order to argue inductively.

Corollary 3.3. If ∩Lj=1D
H
Γij

is not empty, there is a unique ordering σ ∈ SymL on

the set I = {i1, . . . , iL} of indices such that

Dσ(I) =
L⋂

j=1

DH
Γij

.

Moreover if ik = ik′ for a pair of indices k 6= k′, then Di1,...,iL = ∅.

The next statement is crucial to inductively apply the formulas in this paper. Re-
call that pΓ and cΓ are the projection and clutching morphisms of the diagram (5).

Proposition 3.4. There are generalized linear submanifolds ΩH
[i]
Γ → ΩMRi

gi,ni
(µi)

of dimension di with projectivization H
[i],◦
Γ , such that

0∑

i=−L
di = dH − L

and such that the normalizations H
[i]
Γ → B

[i]
Γ of closures of H

[i],◦
Γ together give a

product decomposition HΓ =
∏0
i=−LH

[i]
Γ of the normalization of the pΓ-image of

the cΓ-preimage of Im(DH
Γ ) ⊂ PΞMg,n(µ).

We will call H
[i]
Γ → B

[i]
Γ the i-th level linear manifold. Our ultimate goal here is

to show the following decomposition. The terminology is explained along with the
definition of coordinates.

Proposition 3.5. Let Γ be an arbitrary level graph with L levels below zero. In a
small neighborhood U of a point in DH

Γ there is a direct sum decomposition

(11) Ω1
H(log ∂H)|U =

0⊕

i=−L

(
Ωhor
i (log)⊕ Ωlev

i (log)⊕ Ωrel
i

)

for certain subsheaves such that the natural restriction map induces surjections

Ωhor
i,B(log)|H ։ Ωhor

i (log), Ωlev
i,B(log)|H ≃ Ωlev

i (log) and Ωrel
i,B|H ։ Ωrel

i .

Moreover the statements in items i) and ii) of Section 3.3 hold verbatim for the
linear submanifold with the same ℓΓ.
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As a consequence we may use the symbols ℓΓ and ℓΓi
ambiguously for strata and

their linear submanifolds.
We summarize the relevant parts of [BDG22]. Equations of H are interpreted as

homology classes and we say that a horizontal node is crossed by an equation, if the
corresponding vanishing cycles has non-trivial intersection with the equation. The
horizontal nodes are partitioned into H-cross-equivalence classes by simultaneous
appearance in equations for H. A main observation is that ω-periods of the van-
ishing cycles in an H-cross-equivalence class are proportional. Similarly, for each
equation and for any level passage the intersection numbers of the equation with
the nodes crossing that level add up to zero when weighted appropriately with the
residue times ℓΓ/κe ([BDG22, Proposition 3.11]).

Next, in [BDG22] they sort the equations by level and then write them in reduced

row echelon from. One may order the periods so that the distinguished c
[i]
1 (whose

period is close to the level parameter t−i) is among the pivots of the echelon form for
each i. The second main observation is that each defining equation ofH can be split

into a sum of defining equations, denoted by F
[i]
k , with the following properties. The

upper index i indicate the highest level, whose periods are involved in the equation.

Moreover, either F
[i]
k has non-trivial intersection with some (vanishing cycles of a)

horizontal node at level i and then no intersection with a horizontal node at lower
level, or else no intersection with a horizontal node at all.

As a result H is cut out by two sets of equations, see [BDG22, Equations (4.2),

(4.3), (4.4)]. First, there are the equations G
[i]
k that are t⌈−i⌉-rescalings of linear

functions

(12) G
[i]
k = L

[i]
k

(
c̃
2−δ[i]i,0

, . . . , c̃
[i]
N(i)−h(i)

)

in the periods at level i. (To get this form from the version in [BDG22] absorb the

terms from lower level periods into the function c
[i]
j where j = j(k, i) is the pivot

of the equation F
[i]
k . This does not effect the truth of (8)).

Second, there are multiplicative monomial equations among the exponentiated
periods, that can be written as bi-monomial equations with positive exponents

(13) H
[i]
k = (q̃[i])J1,k − (q̃[i])J2,k

where q̃[i] is the tuple of the variables q̃
[i]
j and J1,k, J2,k are tuples of non-negative

integers. (In the multiplicative part [BDG22] already incorporated the lower level
blurring into the pivot variable.)

Proof of Proposition 3.1. This follows directly from the form of the binomial equa-
tions (13), see [BDG22, Theorem 1.6]. �

Proof of Proposition 3.2. Smoothness and normal crossing is contained in [BDG22,
Corollary 1.8]. The transversality claimed there contains the dimension drop claimed
in the proposition. The more precise statement in [BDG22, Theorem 1.5] says that
after each intersection of H with a vertical boundary divisor the result is empty or

contained in the open boundary divisor DB,◦
Γ . �

Proof of Proposition 3.4. This is the main result of [Ben20] or the restatement in
[BDG22, Proposition 3.3] and this together with the Proposition 3.2 implies the
dimension statement. �
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Proof of Proposition 3.5. Immediate from (12) and (13), which are equations among
the respective set of generators of the decomposition in (10). The additional claim
item ii) follows from the isomorphism of level parameters and transversality. Item i)
is a consequence of this. �

3.6. Push-pull comparison for linear submanifolds. For recursive computa-

tions, we will transfer classes from H
[i]
Γ , which were defined via Proposition 3.4,

to DH
Γ essentially via pΓ-pullback and cΓ-pushforward. More precisely, taking the

normalizations into account, we have to use the maps cΓ,H and pΓ,H defined on
the normalization Hs

Γ of the cΓ-preimage of the image of DH
Γ in DB

Γ . To compute
degrees we use the analog of the inner triangle in (5) and give a concrete description
of Hs

Γ.
Recall from the introduction that KH

Γ is the number of prong-matchings of Γ
that are reachable from within H.

(14)

(ΩH◦
Γ)

pm Hs,◦
Γ

UsΓ

ΩH◦
Γ H◦

Γ BΓ,Γ UΓ DH,◦
Γ

pΓ,H cΓ,H

pΓΓ cΓΓ

Consider ΩH◦
Γ :=

∏
ΩH

[i]
Γ as a moduli space of differentials subject to some (lin-

ear) conditions imposed on its periods. Consider now the moduli space (ΩH◦
Γ)

pm :=

(
∏

ΩH
[i]
Γ )pm where we add the additional datum of one of the KH

Γ prong-matchings
reachable from the interior. The torus (C∗)L+1 acts on ΩH◦

Γ with quotient H◦
Γ =∏

H
[i],◦
Γ . On the other hand, if we take the quotient of (ΩH◦

Γ)
pm by (C∗)L+1 =

(C∗) × (CL/TwsΛ) we obtain a space Hs,◦
Γ which is naturally the normalization of

a subspace of UsΓ, since it covers DH,◦
Γ with marked (legs and) edges and whose

generic isotropy group does not stem from GhΓ (it might be non-trivial, e.g. if
a level of Γ consists of a hyperelliptic stratum), while the generic isotropy group

of DH,◦
Γ is an extension of GhΓ by possibly some group of graph automorphisms

and possibly isotropy groups of the level strata.

Lemma 3.6. The ratio of the degrees the maps in 14 on Hs
Γ is

deg(pΓ,H)

deg(cΓ,H)
=

KH
Γ

|AutH(Γ)|ℓΓ
,

where AutH(Γ) is the subgroup of Aut(Γ) whose induced action on a neighborhood
of DH

Γ preserves H.

Proof. We claim that the degree of pΓ,H is the number of prong-matchings equiv-
alence classes, i.e., deg(pΓ,H) = KH

Γ /[RΓ : TwΓ] where RΓ
∼= ZL ⊂ CL is the level

rotation group. In fact this follows since TwsΓ ⊆ TwΓ and Hs,◦
Γ is given by tak-

ing the quotient by the action of the level rotation group, which has TwΓ as its
stabilizer subgroup.

On the other side cΓ,H factors through the quotient by GhΓ = [TwΓ : TwsΓ]
acting by fixing every point. In the remaining quotient map cΓΓ of the ambient
stratum two points have the same image only if they differ by an automorphism



CHERN CLASSES OF LINEAR SUBMANIFOLDS 15

of Γ. However only the subgroup AutH(Γ) ⊂ Aut(Γ) acts on Im(Hs
Γ) and its

normalization and contributes to the local isotropy group of the normalization.
Thus only this subgroup contributes to the degree of cΓ,H. The claimed equality
now follows because [RΓ : TwsΓ] = ℓΓ. �

Consider a graph ∆ ∈ LG1(H
[i]
Γ ) defining a divisor in H

[i]
Γ . We aim to compute

its pullback to Ds
Γ and the push forward to DΓ and to H. For this purpose we need

extend the commensurability diagram (14) to include degenerations of the boundary
strata. This works by copying verbatim the construction that lead in [CMZ22]
to the commensurability diagram (5). We will indicate with subscripts H to the
morphisms that we work in this adapted setting. Recall from this construction that

in DB,s
Γ (and hence in Ds

Γ) the edges of Γ have been labeled once and for all (we

write Γ† for this labeled graph) and that the level strata H
[i]
Γ inherit these labels.

Consequently, there is unique graph ∆̃† which is a degeneration of Γ† and such that

extracting the levels i and i− 1 of ∆̃† equals ∆. The resulting unlabeled graph will

simply be denoted by ∆̃. For a fixed labeled graph Γ† we denote by J(Γ†, ∆̃) the

set of ∆ ∈ LG1(H
[i]
Γ ) such that ∆̃ is the result of that procedure. Obviously the

graphs in J(Γ†, ∆̃) differ only by the labeling of their half-edges and the following
lemma computes its cardinality.

Lemma 3.7. The cardinality of J(Γ†, ∆̃) is determined by

|J(Γ†, ∆̃)| · |AutH(∆̃)| = |AutH[i]
Γ

(∆)| · |AutH(Γ)| .

Proof. The proof is analogous to the one of [CMZ22, Lemma 4.6], where one con-

siders the kernel and cokernel of the map ϕ : AutH(∆̃) → AutH(Γ) given by
undegeneration. �

We now determine the multiplicities of the push-pull procedure. Recall from
Section 3.3 the definition of ℓΓ,j = ℓδj(Γ) for j ∈ Z≥1.

Proposition 3.8. For a fixed ∆ ∈ LG1(H
[i]
Γ ), the divisor classes of DH

∆̃
and the

clutching of DH
∆ are related by

(15)
|AutH(∆̃)|

|AutH[i]
Γ

(∆)||AutH(Γ)|
· c∗Γ,H[DH

∆̃
] =

ℓ∆
ℓ∆̃,−i+1

· p
[i],∗
Γ,H[DH

∆ ] .

in CH1(Ds
Γ) and consequently by

(16)
|AutH(∆̃)|

|AutH(Γ)|
· ℓ∆̃,−i+1 · [D

H
∆̃
] =

|AutH[i]
Γ

(∆)|

deg(cΓ,H)
· ℓ∆ · cΓ,H,∗

(
p
[i],∗
Γ,H[DH

∆ ]
)

in CH1(DΓ).

Here (15) is used later for the proofs of the main theorems while (16) is im-
plemented in diffstrata for the special case of k-differentials to compute the
pull-back of tautological classes from DH

∆ to DH
∆̃
, see also Section 7.

Proof. The proof is similar to the one of [CMZ22, Proposition 4.7] and works by

comparing the ramification orders of the maps c∆̃Γ,H and p∆̃Γ,H. The main differ-
ence to the original proof is only that the automorphism factors appearing in the
clutching morphisms are the ones fixing H. �
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The final part of this section is to compare various natural vector bundles under
pullback along the maps cΓ,H and pΓ,H. The first of this is E⊤

Γ , a vector bundle
of rank N⊤

Γ − 1 on DH
Γ that should be thought of as the top level version of the

logarithmic cotangent bundle. Formally, let U ⊂ DH
Γ be an open set centered at a

degeneration of the top level of Γ into k level passages. Then we define

(17) E⊤
Γ |U =

0⊕

i=−k
Ωlev
i (log)|U ⊕ Ωhor

i (log)|U ⊕ Ωrel
i |U .

Let moreover ξ
[i]
Γ,H be the first Chern class of the line bundle on DH

Γ generated by

the multi-scale component at level i and and L
[i]
Γ be the line bundle whose divisor

is given by the degenerations of the i-th level of Γ, as defined more formally in (27)
below.

We have the following compatibilities.

Lemma 3.9. The first Chern classes of the tautological bundles on the levels of a
boundary divisor are related by

(18) c∗Γ,H ξ
[i]
Γ,H = p

[i],∗
Γ,HξH[i]

Γ

in CH1(Ds
Γ) .

It is also true that

(19) p
[i]∗
Γ,HLH[i]

Γ

= c∗Γ,HL
[i]
Γ where LH[i]

Γ

= OH[i]
Γ

( ∑

∆∈LG1(H[i]
Γ )

ℓ∆D∆

)
.

Similarly for the logarithmic cotangent bundles we have

(20) p
[0],∗
Γ,H Ω1

H[0]
Γ

(logDH[0]
Γ

) = c∗Γ,H E⊤
Γ,H .

Proof. The first claim is just the global compatibility of the definitions of the bun-
dles O(−1) on various spaces, compare [CMZ22, Proposition 4.9].

The second claim is a formal consequence of Lemma 3.7 and Proposition 3.8,
just as in [CMZ22, Lemma 7.4].

The last claim follows as in [CMZ22, Lemma 9.6] by considering local generators,
which are given in (17) and have for linear submanifolds the same shape as for
strata. �

In the final formulas we will use these compatibilities together with the following
restatement of Lemma 3.6.

Lemma 3.10. Suppose that αΓ ∈ CH0(D
H
Γ ) is a top degree class and that c∗Γ,HαΓ =

∏−L(Γ)
i=0 p

[i],∗
Γ,Hαi for some αi. Then

∫

DH
Γ

αΓ =
KH

Γ

|AutH(Γ)|ℓΓ

−L(Γ)∏

i=0

∫

H[i]
Γ

αi .

4. Evaluation of tautological classes

This section serves two purposes. First, we briefly sketch a definition of the
tautological ring of linear submanifolds and how the results of the previous section
can be used to evaluate expressions in the tautological ring, provided the classes
of the linear manifold are known. Second, we provide formulas to compute the
first Chern class of the normal bundle NH

Γ = NDH
Γ

to a boundary divisor DH
Γ
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of a projectivized linear submanifold H. This is needed both for the evaluation
algorithm and as an ingredient to prove our main theorems.

4.1. Vertical tautological ring. We denote by ψi ∈ CH1(H) the pull-backs of
the classes ψi ∈ CH1(Mg,n) to a linear submanifold H. The clutching maps are

defined as clΓ,H = iΓ,H ◦ cΓ,H, where iΓ,H : DH
Γ → H is the inclusion map of the

boundary divisor. We define the (vertical) tautological ring R•
v(H) of H to be the

ring with additive generators

(21) clΓ,H,∗
( −L∏

i=0

p
[i],∗
Γ,Hαi

)

where Γ runs over all level graphs without horizontal edges for all boundary strata
of H, including the trivial graph, and where αi is a monomial in the ψ-classes
supported on level i of the graph Γ. That this is indeed a ring follows from the excess
intersection formula [CMZ22, Proposition 8.1] that works exactly the same for linear
submanifolds, and the normal bundle formula Proposition 4.4 which allows together
with Proposition 4.1 to rewrite products in terms of our standard generators. We
do not claim that pushfoward R•

v(H) → CH•(Mg,n) maps to the tautological ring

R•(Mg,n), since the fundamental classes of linear submanifolds, e.g. loci of double

covers of elliptic curves, may be non-tautological in Mg,n (see e.g. [GP03]).

To evaluate a top-degree class of the form α := ψp11 · · ·ψpnn · [DH
Γ ] ∈ CH0(H)

there are (at least) two possible ways to proceed: If one knows the class [H] ∈
CHdim(H)(PΞMg,n(µ)) and this class happens to be tautological, one may evaluate

∫

H
α =

∫

PΞMg,n(µ)

ψp11 · · ·ψpnn · [DΓ] · [H]

using the methods described in [CMZ22]. Alternatively one may apply Lemma 3.6
to obtain

(22)

∫

H
α =

KH
Γ

|AutH(Γ)|ℓΓ

−L∏

i=0

∫

H[i]
Γ

∏

j∈l(i)
ψpii ,

where l(i) denotes the set of legs on level i of Γ. To evaluate this expression, one

needs to determine the fundamental classes of the level linear submanifolds H
[i]
Γ in

their corresponding generalized strata, which is in general a non-trivial task.

4.2. Evaluation of ξH. If we want to evaluate a top-degree class in CH0(H) that
is not just a product of ψ-classes and a boundary stratum, but also involves the
ξH-class, we can reduce to the previous case by applying the following proposition.

Proposition 4.1. The class ξH on the closure of a projectivized linear submanifold
H can be expressed as

(23) ξH = (mi + 1)ψi −
∑

Γ∈ LGi 1(H)

ℓΓ[D
H
Γ ]

where LGi 1(H) are two-level graphs with the leg i on lower level.

Proof. The formula is obtained by pulling-back the formula in [CMZ22, Proposi-
tion 8.1] to H and thereby using the transversality statement from Proposition 3.2.

�
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We remark here that in some cases it is possible to directly evaluate the top
ξH-powers by using that we can represent the powers of the ξH-class via an explicit
closed current.

Let PΩMg,n(µ) be a holomorphic stratum, i.e. a stratum of flat surfaces of finite
area or equivalently all the entries of µ are non-negative. Then there is a canonical
hermitian metric on the tautological bundle OPΩMg,n(µ)(−1) given by the flat area
form

(24) h(X,ω, z) = areaX(ω) =
i

2

∫

X

ω ∧ ω

which extends to an hermitian metric of the tautological bundle on PΞMg,n(µ). If

H → PΞMg,n(µ) is the compactification of a linear submanifold of such a holomor-
phic stratum, then the area metric induces an hermitian metric, which we denote
again by h, on the pull-back OH(−1) of the tautological bundle to H. Recall from
Proposition 3.1 (combined with the level-wise decomposition in Proposition 3.4)

that the singularities of H are toric. Let H
tor

→ H be a resolution of singularities
which is locally toric.

Proposition 4.2. Let H
tor

→ PΞMg,n(µ) be a resolution of a compactified lin-

ear submanifold of a holomorphic stratum. The curvature form i
2π [Fh] of the

pull metric h to H
tor

is a closed current that represents the first Chern class
c1(OHtor(−1)). More generally, the d-th wedge power of the curvature form rep-

resents c1(OHtor(−1))d for any d ≥ 1.

Proof. In [CMZ19, Proposition 4.3] it was shown that on the neighborhood U of a
boundary point of PΞMg,n(µ) in the interior of the stratum DΓ the metric h has
the form

(25) h(X, q) =
L∑

i=0

|t⌈i⌉|
2
(
htck(−i) + hver(−i) + hhor(−i)

)

where htck(−i) (coming from the ’thick’ part) are smooth positive functions bounded

away from zero and

hver(−i) := −
i∑

p=1

Rver
(−i),p log |tp| , hhor(−i) := −

Eh
(−i)∑

j=1

Rhor
(−i),j log |q

[i]
j | ,(26)

where Rver
(−i),p is a smooth non-negative function and Rhor

(−i),j is a smooth positive

function bounded away from zero, both involving only perturbed period coordinates
on levels −i and below.

The statement of the proposition in loc. cit. follows by formal computations from
the shape of (25) and the properties of its coefficients, see [CMZ19, Proposition 4.4

and 4.5]. We thus only need to show that in local coordinates of a point in H
tor

(mapping to the given stratum DΓ) the metric has the same shape (25). For
this purpose, recall that by Proposition 3.4, the level parameters ti are among the
coordinates. On the other hand, a toric resolution of the toric singularities arising

from (13) is given by fan subdivision and thus by a collection of variables y
[i]
j for

each level i, each of which is a product of integral powers of the q
[i]
j at that level i.

Conversely the map H
tor

→ PΞMg,n(µ) is given locally by q
[i]
j =

∏
k(y

[i]
k )bi,j,k for
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some bi,j,k ∈ Z≥0, not all of the bi,j,k = 0 for fixed (i, j). Plugging this into (25)
and (26) gives an expression of the same shape and with coefficients satisfying the
same smoothness and positivity properties. Mimicking the proof in loc. cit. thus
implies the claim. �

For a linear submanifold H consider the vector space given in local period co-
ordinates by the intersection of the tangent space of the unprojectivized linear
submanifold with the span of relative periods. We call this space the REL space
of H and we denote by RH its dimension.

Using Proposition 4.2 we can now generalize the result about vanishing of top ξ-
powers on non-minimal strata of differentials to linear submanifolds with non-zero
REL (see [Sau18, Proposition 3.3] for the holomorphic abelian strata case).

Corollary 4.3. Let H → PΞMg,n(µ) be a linear submanifold of a holomorphic
stratum. Then ∫

H
ξiHα = 0 for i ≥ dH −RH + 1,

where dH is the dimension of H and RH is the dimension of the REL space and
where α is any class of dimension dH − i.

Proof. Since the area is given by an expression in absolute periods, the pullback of ξ

to H
tor

is represented by Proposition 4.2 by a (1, 1)-form involving only absolute
periods (see [Sau18, Lemma 2.1] for the explicit expression in the case of strata).
Taking a wedge power that exceeds the dimension of the space of absolute periods
gives zero. �

4.3. Normal bundles. Finally we state the normal bundle formula, which is nec-
essary to evaluate self-intersections, which is for example needed to evaluate powers
of ξH. More generally, we provide formulas for the normal bundle of an inclusion
jΓ,Π : DH

Γ →֒ DH
Π between non-horizontal boundary strata of relative codimension

one, say defined by the L-level graph Π and one of its (L+ 1)-level graph degener-
ations Γ. This generalization is needed for recursive evaluations. Such an inclusion
is obtained by splitting one of the levels of Π, say the level i ∈ {0,−1, . . . ,−L}. We
define

(27) L
[i]
Γ = ODH

Γ

(∑

Γ
[i]
 ∆̃

ℓ∆̃,−i+1D
H
∆̃

)
for any i ∈ {0,−1, . . . ,−L} ,

where the sum is over all graphs ∆̃ ∈ LGL+2(H) that yield divisors in DH
Γ by

splitting the i-th level, which in terms of undegenerations means δ∁−i+1(∆̃) = Γ.
The following result contains the formula for the normal bundle as the special case
where Π is the trivial graph.

Proposition 4.4. For Π
[i]
 Γ (or equivalently for δ∁−i+1(Γ) = Π) the Chern class

of the normal bundle NH
Γ,Π := NDH

Γ /D
H
Π

is given by

(28) c1(N
H
Γ,Π) =

1

ℓΓ,(−i+1)

(
−ξ

[i]
Γ,H − c1(L

[i]
Γ,H) + ξ

[i−1]
Γ,H

)
in CH1(DH

Γ ) .

Proof. We use the transversality statement Proposition 3.2 of H with a boundary
stratum DB

Γ in order to have that the transversal parameter is given by ti. Then
the proof is as the same as the one in the case of abelian strata, see [CMZ22,
Proposition 7.5]. �
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Since in Section 8 we will need to compute the normal bundle to horizontal
divisors for strata of k-differentials, we provide here the general formula for the
case of smooth horizontal degenerations of linear submanifolds.

Proposition 4.5. Let DH
h ⊂ DH be a divisor in a boundary component DH ob-

tained by horizontal degeneration. Suppose that the linear submanifold is smooth
along DH

h and let e be one of the new horizontal edges in the level graph of DH
h .

Then the first Chern class of the normal bundle NH
Dh

is given by

c1(N
H
Dh

) = −ψe+ − ψe− ∈ CH1(DH)

where e+ and e− are the half-edges associated to the two ends of e.

Proof. Similarly to the proof of [CMZ22, Proposition 7.2], consider the divisor De

in Mg,n corresponding to the single edge e and denote by Ne its normal bundle.
The forgetful map f : Dh → De induces an isomorphism NH

Dh
→ f∗NDe

(compare
local generators!) and the formula follows from the well-known expression of NDe

in terms of ψ-classes. �

We will need the following result about pullbacks of normal bundles to apply the
same arguments as in [CMZ22] recursively over inclusions of boundary divisors. The
proof is the same as in [CMZ22, Corollary 7.7], since it follows from Proposition 4.4

that we can j-pullback properties of ξ and L
[i]
Γ that hold on the whole stratum and

hence on linear submanifolds.

Lemma 4.6. Let Γ ∈ LGL(H) and let ∆̃ be a codimension one degeneration of the

(−i+1)-th level of Γ, i.e., such that Γ = δ∁i (∆̃), for some i ∈ {1, . . . , L+1}. Then

j∗
∆̃,Γ

(
ℓΓ,j c1

(
NH

Γ/δ∁j (Γ)

))
=





ℓ∆̃,j c1

(
NH

∆̃/δ∁j (∆̃)

)
, for j < i

ℓ∆̃,j+1 c1

(
NH

∆̃/δ∁
(j+1)

(∆̃)

)
otherwise.

5. Chern classes of the cotangent bundle via the Euler sequence

The core of the computation of the Chern classes is given by two exact sequences
that are the direct counterparts of the corresponding theorems for abelian strata.
The proof should be read in parallel with [CMZ22, Section 6 and 9] and we mainly
highlight the differences and where the structure theorems of the compactification
from Section 3.5 are needed.

Theorem 5.1. There is a vector bundle K on H that fits into an exact sequence

(29) 0 −→ K
ψ

−→ (H
1

rel
)∨ ⊗OH(−1)

ev
−→ OH −→ 0 ,

where H
1

rel is the Deligne extension of the local subsystem that defines the tangent

space to ΩH inside the relative cohomology H
1

rel,B|H, such that the restriction of K

to the interior H is the cotangent bundle Ω1
H and for U as in Proposition 3.5 we

have

K|U =
0⊕

i=−L
t⌈−i⌉ ·

(
Ωhor
i (log)⊕ Ωlev

i (log)⊕ Ωrel
i

)
.
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The definition of the evaluation map and the notion of Deligne extension on a
stack with toric singularities requires justification given in the proof. For the next
result we define the abbreviations

(30) EH = Ω1
H(log ∂H) and LH = OH

( ∑

Γ∈LG1(B)

ℓΓD
H
Γ

)

that are consistent with the level-wise definitions in (17) and (27).

Theorem 5.2. There is a short exact sequence of quasi-coherent OH-modules

(31) 0 −→ EH ⊗ L−1
H → K → C −→ 0

where C =
⊕

Γ∈LG1(H) CΓ is a coherent sheaf supported on the non-horizontal

boundary divisors, whose precise form is given in Proposition 5.4 below.

Proof of Theorem 5.1. We start with the definition of the maps in the Euler se-
quence for the ambient stratum, see the middle row in the commutative diagram
below. It uses the evaluation map

(32) evB : (H
1

rel,B)
∨ ⊗OB(−1) → OB , γ ⊗ ω 7→

∫

γ

ω ,

restricted to H. The first map in the sequence is

(33) dci 7→
(
γi −

ci
ck
αk

)
⊗ ω, i = 1, . . . , k̂, . . . , N ,

as usual in the Euler sequence, on a chart of H where ck is non-zero. The exactness
of the middle row is the content of [CMZ22, Theorem 6.1].

We next define the sheaf Eq. In the interior, Eq is the local system of equations
cutting out ΩH, and thus the quotient (H1

rel)
∨ = (H1

rel,B)
∨/Eq is the relative

homology local system, by definition of a linear manifold. The proof in [CMZ22,
Section 6.1] concerning the restriction of the sequence to the interior H uses that
H has a linear structure with tangent space modeled on the local system H1

rel. In
particular it gives the claim about K|H.

As an interlude, we introduce notation for the Deligne extension of (H1
rel,B)

∨. For

each γ
[i]
j we let γ̂

[i]
j be it extension, the sum of the original cycles and vanishing cycles

times logarithms of the coordinates of the boundary divisors to kill monodromies.
The functions

ĉ
[i]
j =

1

t⌈−i⌉

∫

γ̂
[i]
j

ω

are called log periods in [BDG22].
We now define Eq at the boundary, say locally near a point p ∈ DΓ, to be

the subsheaf of (H
1

rel,B)
∨ generated by the defining equations F

[i]
k constructed in

Section 3.5, but with each variable replaced by its Deligne extension. It requires
justification that this definition near the boundary agrees with the previous def-
inition in the interior. We can verify this for the distinguished basis consisting

of the F
[i]
k . Equations that do not intersect horizontal nodes agree with their

Deligne extension. This cancellation of the compensation terms is [BDG22, Propo-

sition 3.11] ( see also the expression for F
[i]
k after [BDG22, Proposition 4.1]) which

displays the ω-integrals of the terms to be compared. For equations F
[i]
k that

do intersect horizontal nodes (thus only at level i by construction) the difference

F
[i]
k (c

[s]
j , all (j, s))−F

[i]
k (ĉ

[s]
j , all (j, s)) vanishes thanks to the proportionality of the
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periods of horizontal nodes in an H-equivalence class and since on H the equa-

tion H
[i]
k holds.

By the very definition of defining equation its periods evaluate to zero, explaining
the right arrow in the top row of the following diagram and showing that ev is well-
defined on the quotient.

0 KEq Eq⊗OH(−1) 0

0
L⊕
i=0

t⌈−i⌉ · Ω
[i]
B |H (H

1

rel,B)
∨ ⊗OH(−1) OH 0

0
L⊕
i=0

t⌈−i⌉ · Ω[i] (H
1

rel)
∨ ⊗OH(−1) OH 0 .

ψ

qΩ

evB

ev

Here we used the abbreviations

Ω
[i]
B = Ωhor

i,B(log)⊕ Ωlev
i,B(log)⊕ Ωrel

i,B, Ω[i] = Ωhor
i (log)⊕ Ωlev

i (log)⊕ Ωrel
i .

The surjectivity of qΩ follows from the definition of the summands in (11). It
requires justification that the image is not larger, since the derivatives of the local
equations of H do not respect the direct sum decomposition 10. More precisely
we claim that KEq is generated by two kinds of equations. Before analyzing them,
note that the log periods satisfy by construction an estimate of the form

(34) c̃
[−i]
j − ĉ

[−i]
j =

∑

s>i

t⌈s⌉
t⌈i⌉

Ê
[−s]
j,i

with some error term Ê
[−k]
j,i depending on the variables c

[−s]
j on the lower level −s

as in (8).

For each of the equations (12) the corresponding linear function L
[i]
k in the vari-

ables c
[i]
j is an element in Eq. We use the comparisons (34) and (8) to compute

its ψ-preimage in KEq via (33). It is t⌈−i⌉ times the corresponding expression in

the ĉ
[i]
j plus a linear combination of the terms t⌈−s⌉Ê

[s]
j,i . The quotient by such a

relation does not yield any quotient class beyond those in ⊕ii=0t⌈−i⌉ · Ω
[i].

We write the other equations (13) as (q[i])J1,k−J2,k = 1 since we are interested in
torus-invariant differential forms and can compute on the boundary complement.
Consider d log of this equation. Under the first map ψ of the Euler sequence

(35) dq
[i]
j /q

[i]
j = d log(q

[i]
j ) = d

(
2πI

b
[i]
j

a
[i]
j

)
7→

2πI

a
[i]
j

(
β
[i]
j −

b
[i]
j

a
[i]
j

α
[i]
j

)
⊗ ω

Recall from summary of [BDG22] in Section 3.5 that the functions a
[i]
j for all j

where (v1, . . . , vN(i)−h(i)) := J1,k − J2,k is non-zero are rational multiples of each

other. Note moreover that β
[i]
j −

b
[i]
j

a
[i]
j

α
[i]
j = β

[i]
j − 1

2πI log(q
[i]
j )α

[i]
j is the Deligne

extension of β
[i]
j across all the boundary divisors that stem from horizontal nodes

at level i. For the full Deligne extension β̂
[i]
j the correction terms for the lower level
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nodes have to be added. Together with (9) we deduce that the ψ-image of

h(i)∑

m=1

vma
[i]
m

dq̃
[i]
m

q̃
[i]
m

=

h(i)∑

m=1

vjc
[i]
j(m)

dq̃
[i]
m

q̃
[i]
m

differs from the element in Eq responsible for the equation H
[i]
k only by terms from

lower level s, which come with a factor t⌈−s⌉. In this equation used that a
[i]
m = c

[i]
j(m)

for an appropriate j(m). Since c
[i]
j(m) is close to t⌈−i⌉ c̃

[i]
j(m), compare with (8) this

element indeed belongs to the kernel of ψ as claimed in the commutative diagram.
The quotient by such a relation does not yield any quotient class beyond those
above either. Since the (13) and (12) correspond to a basis (in fact: in reduced row
echelon form) of Eq, this completes the proof. �

Proof of Theorem 5.2. Uses that the summands of K|U are, up to t-powers, the
decomposition of the logarithmic tangent sheaf by Proposition 3.5.

�

Corollary 5.3. The Chern character and the Chern polynomial of the kernel K of
the Euler sequence are given by

ch(K) = NeξH − 1 and c(K) =

N−1∑

i=0

(
N

i

)
ξiH .

Proof. As a Deligne extension of a local system, (H
1

rel,B)
∨|H has trivial Chern

classes except for c0. By construction, the pullback of the sheaf Eq to an allow-
able modification (toric resolution with normal crossing boundary, see the proof of
Proposition 2.1) is the Deligne extension of a local system. It follows that all Chern
classes but c0 of this pullback vanish and by push-full this holds for Eq, too. The
Chern class vanishing for (H1

rel)
∨ and the corollary follows. �

To start with the computation of C, we will also need an infinitesimal thickening
the of the boundary divisor DH

Γ , namely we define DH
Γ,• to be its ℓΓ-th thickening,

the non-reduced substack of H defined by the ideal IℓΓ
DH

Γ

. We will factor the above

inclusion using the notation

iΓ = iΓ,• ◦ jΓ,• : D
H
Γ

jΓ,•

→֒ DH
Γ,•

iΓ,•

→֒ H .

We will denote by L⊤
Γ,• = (jΓ,•)∗(L⊤

Γ ) and E⊤
Γ,• = (jΓ,•)∗(E⊤

Γ ) the push-forward to

the thickening of the vector bundles defined in (27) and (17).

Proposition 5.4. The cokernel of (31) is given by

(36) C =
⊕

Γ∈LG1(B)

CΓ where CΓ = (iΓ,•)∗(E
⊤
Γ,• ⊗ (L⊤

Γ,•)
−1) .

Moreover, there is an equality of Chern characters

ch
(
(iΓ,•)∗(E

⊤
Γ,• ⊗ (L⊤

Γ,•)
−1)
)

= ch
(
(iΓ)∗

(ℓΓ−1⊕

j=0

N⊗−j
Γ ⊗ E⊤

Γ ⊗ (L⊤
Γ )

−1
))
.
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Proof. The second part of the statement is justified by the original argument in
[CMZ19, Lemma 9.3].

The first part of the statement follows since, from Theorem 5.1 we know that

K|U =

0⊕

i=−L

−i∏

j=1

t
ℓj
j ·
(
Ωhor
i (log)⊕ Ωlev

i (log)⊕ Ωrel
i

)

and from Proposition 3.5 we also know that

(37) (EH ⊗ L−1
H )|U =

0⊕

i=−L

L∏

j=1

t
ℓj
j ·
(
Ωhor
i (log)⊕ Ωlev

i (log)⊕ Ωrel
i

)

where Γ is an arbitrary level graph with L levels below zero and U is a small

neighborhood of a point in DH,◦
Γ . �

We can finally compute

Proposition 5.5. The Chern character of the twisted logarithmic cotangent bun-
dle EH⊗L−1

H can be expressed in terms of the twisted logarithmic cotangent bundles
of the top levels of non-horizontal divisors as

ch(EH ⊗ L−1
H ) = Neξ − 1 −

∑

Γ∈LG1(B)

iΓ∗

(
ch(E⊤

Γ ) · ch(L⊤
Γ )

−1 ·
(1− e−ℓΓ c1(NΓ))

c1(NΓ)

)
.

Proof. The proof [CMZ19, Prop. 9.5] works in the same way, since the only tool
that was used is the Grothendieck-Riemann-Roch Theorem applied to the map
f = iΓ, which is still a regular embedding. �

Proof of Theorem 1.1 and Theorem 1.2. The final formulas of the full twisted Chern
character, Chern polynomials and Euler characteristic follow from the arguments
used for Abelian strata in [CMZ19, Section 9], since they were purely formal starting
from the previous proposition. The relevant inputs needed are the compatibility
statement of Lemma 3.9, the formula for pulling back normal bundles given in
Lemma 4.6 and Corollary 3.3. �

Proof of Theorem 1.3. A formal consequence of Theorem 1.2 and the rewriting in
[CMZ22, Theorem 9.10] (with the reference to [CMZ22, Proposition 4.9] replaced
by Lemma 3.9) is

(38) χ(H) = (−1)d
d∑

L=0

∑

Γ∈LGL(H)

N⊤
Γ · ℓΓ ·

∫

DH
Γ

0∏

i=−L
(ξ

[i]
Γ,H)d

[i]
Γ ,

We now use Lemma 3.10 to convert integrals on a boundary component into the
product of integrals of its the level strata. �

6. Example: Euler characteristic of the eigenform locus

For a non-square D ∈ N with D ≡ 0 or 1 (mod 4) let

ΩED(1, 1) ⊆ ΩM2,2(1, 1) and ΩWD ⊆ ΩM2,1(2)

be the eigenform loci for real multiplication by OD in the given stratum, see
[McM03], [Cal04], [McM07] for the first proofs that these loci are linear subman-
ifolds and some background. We define ED := PΩED(1, 1) as the projectivized
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eigenform locus. Associating with the curve its Jacobian, the projectivized eigen-
form locus maps to the Hilbert modular surface

XD = H×H/ SL(OD ⊕O∨
D) .

Inside XD let PD ⊆ XD denote the product locus, i.e. the curve consisting of those
surfaces which are polarized products of elliptic curves. The Weierstrass curve WD

is defined to be the image of ΩWD. It is contained in the complement XD \ PD.
The goal of this section is to provide references and details for the proof of

Theorem 1.4 and in particular (2). The numerical input is

χ(XD) = 2ζ(−1) and χ(PD) = −
5

2
χ(XD) = −5ζ(−1),

where ζ = ζ
Q(

√
D) is the Dedekind zeta function. The first formula is due to

Siegel [Sie36], see also [Gee88, Theorem IV.1.1], the second is given in [Bai07,
Theorem 2.22]

1 1

−2

0

−2

0

11

2

−4

2

11

ΓP ΓW

Figure 1. The boundary divisors of the eigenform locus E.

To apply Theorem 1.3 to the linear manifold ED we need to list the boundary
strata without horizontal curves. This list consists of two divisorial strata only,
given in Figure 1, namely the product locus and the Weierstrass locus. To justify
the coefficients in (2) we need:

Lemma 6.1. The top-powers of ξ on the respective level strata evaluate to∫

E

ξ2 = 0,

∫

D⊥
ΓP

1 = 1, and

∫

D⊥
ΓW

1 = 1 .

Proof. The first integral is an application of Corollary 4.3. For the second note that
there is unique differential up to scale of type (1, 1,−2,−2) on a P1 with vanishing
residues, the third is obvious. �

The proof is completed by noticing that that automorphism groups in Theo-
rem 1.3 are trivial and that all three prong-matchings for ΓW are reachable since
they belong to one orbit of the prong rotation group.

7. Strata of k-differentials

Our goal here is to prove Corollary 1.5 that gives a formula for the Euler char-
acteristic of strata PΩkMg,n(µ) of k-differentials. Those strata can be viewed as
linear submanifolds of strata of Abelian differentials PΩMĝ,n̂(µ̂) via the canoni-
cal covering construction and thus Theorem 1.3 applies. This is however of little
practical use as we do not know the classes of k-differential strata in PΩMĝ,n̂(µ̂).

However, we do know their classes in Mg,n via Pixton’s formulas for the DR-cycle
([HS21], [BHPSS20]). As a consequence the formula in Corollary 1.5 can be im-
plemented, and the diffstrata package does provide such an implementation. In
this section we thus recall the basic definitions of the compactification and collect
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all the statements to perform evaluation of expressions in the tautological rings on
strata of k-differentials.

7.1. Compactification of strata of k-differentials. We want to work on the
multi-scale compactificationQ := Qk := PΞkMg,n(µ) of the space of k-differentials.
As topological space this compactification was given in [CMZ19], reviewing the
plumbing construction from [BCGGM3], but without giving the stack structure.
Here we consider a priori the compactification of Section 3. We give some details,
describing auxiliary stacks usually by giving C-valued points and morphisms, from
which the reader can easily deduce the notion of families following the procedure in
[BCGGM3]. From this description it should become clear that the two compactifi-
cations, the one of Section 3 and [CMZ19], agree up to explicit isotropy groups (see
Lemma 7.2). In particular the compactification Qk is smooth. This follows also
directly from the definition of Section 3, since the only potential singularities are
at the horizontal nodes. There however the local equations (13) simply compare
monomials (with exponent one), the various q-parameters of the k preimages of a
horizontal node.

We start by recalling notation for the canonical k-cover in the primitive case.
Let X be a Riemann surface of genus g and let q be a primitive meromorphic k-
differential of type µ = (m1, . . . ,mn), i.e. not the d-th power of a k/d-differential
for any d > 1. This datum defines (see e.g. [BCGGM2, Section 2.1]) a connected

k-fold cover π : X̂ → X such that π∗q = ωk is the k-power of an abelian differential.
This differential ω is of type

µ̂ :=
(
m̂1, . . . , m̂1︸ ︷︷ ︸
g1:=gcd(k,m1)

, m̂2, . . . , m̂2︸ ︷︷ ︸
g2:=gcd(k,m2)

, . . . , m̂n, . . . , m̂n︸ ︷︷ ︸
gn:=gcd(k,mn)

)
,

where m̂i := k+mi

gcd(k,mi)
− 1. (Here and throughout marked points of order zero

may occur.) We let ĝ = g(X̂) and n̂ =
∑

i gcd(k,mi). The type of the covering
determines a natural subgroup Sµ̂ ⊂ Sn̂ of the symmetric group that allows only
the permutations of each the gcd(k,mi) points corresponding to a preimage of the
i-th point. In the group Sµ̂ we fix the element

(39) τ0 =
(
12 · · · g1

)(
g1 + 1 g1 + 2 · · · g1 + g2

)
· · ·
(
1 +

n−1∑

i=1

gi · · ·
n∑

i=1

gn

)
,

i.e. the product of cycles shifting the gi points in the π-preimage of each point in z.
We fix a primitive k-th root of unity ζk throughout.

We consider the stack ΩHk := ΩHk(µ̂) whose points are

(40) {(X̂, ẑ, ω, τ) : τ ∈ Aut(X̂), ord(τ) = k, τ∗ω = ζkω, τ |ẑ = τ0} .

Families are defined in the obvious way. Morphisms are morphisms of the under-
lying pointed curves that commute with τ . Since the marked points determine
the differential up to scale, the differentials are identified by the pullback of mor-
phisms up to scale. Commuting with τ guarantees that morphisms descend to the
quotient curves by 〈τ〉 (for a morphism f to descend, a priori fτf−1 = τa for
some a would be sufficient, but the action on ω implies that in fact a = 1). It will
be convenient to label the tuple of points ẑ by tuples (i, j) with i = 1, . . . , n and
j = 1, . . . , gcd(k,mi). There is a natural forgetful map ΩHk → ΩMĝ,n̂ and period
coordinates (say, after providing both sides locally with a Teichmüller marking)
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show that this map is the normalization of its image and the image is cut out by
linear equations, i.e. that ΩHk is a linear submanifold as defined in Section 3.1.

The subgroup
(41)

G =
〈(

12 · · · g1
)
,
(
g1 + 1 g1 + 2 · · · g1 + g2

)
, · · · ,

(
1 +

n−1∑

i=1

gi · · ·
n∑

i=1

gn

)〉
⊂ Sµ̂

generated by the cycles that τ0 is made from acts on ΩHk and on the projectiviza-
tion Hk. We denote the quotient of the latter by Hmp

k := Hk/G, where the upper
index is an abbreviation of marked (only) partially.

Since τ has ω as eigendifferential, its k-th power naturally descends to (projec-

tivized) k-differential [q] on the quotient X = X̂/〈τ〉, which is decorated by the
marked points z, the images of ẑ.

We denote by Q the stack with the same underlying set as Hmp
k , but where

morphisms are given by the morphisms of (X/〈τ〉, z, [q]) in PΩkMg,n(µ). Written

out on curves, a morphism in Q is a map f : X̂/〈τ〉 → X̂ ′/〈τ ′〉, such that there
exists a commutative diagram

(42)

X̂ X̂ ′

X = X̂/〈τ〉 X ′ = X̂ ′/〈τ ′〉 .

g

f

If two such maps g exist, they differ by pre- or postcomposition with an auto-

morphism of X̂ resp. X̂ ′. Via the canonical cover construction, the stack Q is
isomorphic to PΩkMg,n(µ). The non-uniqueness of g exhibits Hmp

k = Q/〈τ〉 as the
quotient stack by a group of order k, acting trivially.

As in Section 3, we denote by ΩHk := ΩHk(µ) the normalization of the closure
of ΩHk in ΞMĝ,n̂(µ) an let Hk := Hk(µ) be the corresponding projectivizations.

We next describe the boundary strata of Hk. These are indexed by enhanced level

graphs Γ̂ together with an 〈τ〉-action on them. We will leave the group action
implicit in our notation. The following lemma describes the objects parametrized
by the boundary components DHk

Γ̂
(using the notation from Section 3) of the com-

pactification Hk.

Lemma 7.1. A point in the interior of the boundary stratum DHk

Γ̂
is given by a

tuple

{(X̂, Γ̂, ẑ, [ω],σ, τ) : τ ∈ Aut(X̂), ord(τ) = k, τ∗ω = ζkω, τ |ẑ = τ0}

where (X̂, Γ̂, ẑ, [ω],σ) ∈ PΞMĝ,n̂(µ̂) is a multi-scale differential and where moreover
the prong-matching σ is equivariant with respect to the action of 〈τ〉.

The equivariance of prong-matching requires an explanation: Suppose xi and yi
are standard coordinates near the node corresponding to an edge e of Γ, so that the
prong-matching at e is given by σe =

∂
∂xi

⊗ − ∂
∂yi

(compare [BCGGM3, Section 5]

for the relevant definitions). Then τ∗xi and τ∗yi are standard coordinates near
τ(e). We say that a global prong-matching σ = {σe}e∈E(Γ̂) is equivariant if στ(e) =
∂

∂τ∗xi
⊗− ∂

∂τ∗yi
for each edge e.
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Proof. The necessity of the conditions on the boundary points is obvious from the
definition in (40), except for the prong-matching equivariance. This follows from the
construction of the induced prong-matching in a degenerating family in [BCGGM3,
Proposition 8.4] and applying τ to it.

Conversely, given (X̂, Γ̂, ẑ, [ω],σ, 〈τ〉) as above with equivariant prong-matchings,
we need to show that it is in the boundary of Hk. This is achieved precisely by the
equivariant plumbing construction given in [BCGGM2]. �

The group G still acts on the compactification ΩHk and on its projectivization
Hk. As above we denote the quotient by H

mp

k = Hk/G to indicate that the points ẑ
are now marked only partially. By Lemma 7.1 we may construct Q just as in the
uncompactified case.

The map H
mp

k → Q is in general non-representable due to the existence of

additional automorphisms of objects in H
mp

k . This resembles the situation common
for Hurwitz spaces, where the target map is in general non-representable, too. We
denote by d : Hk → H

mp

k → Q the composition of the maps.

7.2. Generalized strata of k-differentials. Our notion of generalized strata is
designed for recursion purposes so that the extraction of levels of a boundary stra-
tum of Q is an instance of a generalized stratum (of k-differentials). This involves
incorporating disconnected strata, differentials that are non-primitive on some com-
ponents, and residue conditions. Moreover, we aim for a definition of a space of
k-fold covers on which the group G acts, to match with the previous setup. The
key is to record which of the marked points is adjacent to which component, an
information that is obviously trivial in the case of primitive k-differentials.

A map A : ẑ → π0(X̂) that records which marked point is adjacent to which

component of X̂ is called an adjacency datum. (Such an adjacency datum is equiv-
alent to specifying a one-level graph of a generalized stratum, which is indeed the
information we get when we extract level strata.) The subgroup G from (41) acts

on the triples (X̂, ẑ,A) of pointed stable curves with adjacency map by acting si-
multaneously on ẑ and on A by precomposition. For a fixed adjacency datum A
we consider the stack ΩH̃k(µ̂,A) whose points are

{(X̂, ẑ, ω, τ) : (X̂, ẑ) have adjacency A, τ ∈ Aut(X̂),

ord(τ) = k, τ∗ω = ζkω, τ |ẑ = τ0, } .

We denote by ΩHk(µ̂, [A]) := G · ΩH̃k(µ̂,A) the G-orbit of this space.
A residue condition is given by a τ -invariant partition λR of a subset of the

set Hp ⊆ {1, . . . , n̂} of marked points such that m̂i < −1. We often also call the
associated linear subspace

R :=

{
(ri)i∈Hp

∈ CHp :
∑

i∈λ
ri = 0 for all λ ∈ λR

}
.

the residue condition. This space will typically not be G-invariant. We denote by
ΩHR

k (µ̂,A) ⊆ ΩHk(µ̂,A) the subset where for each R ∈ R the residues of ω̂ at all

the points zi ∈ R add up to zero. If (X̂, ẑ, ω, τ) is contained in ΩHR

k (µ̂,A), then

g · (X̂, ẑ, ω, τ) is contained in ΩHg·R
k (µ̂, g · A) for any g ∈ G. That is, the G-action

simultaneously changes the residue condition and the adjacency datum. We denote
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by [R,A] the G-orbit of this pair and use the abbreviation

(43) ΩH
[R,A]
k := G · ΩHR

k (µ̂,A)

for the G-orbit of the spaces, µ̂ being tacitly fixed throughout.

As above, we denote by H
[R,A]
k the projectivization of ΩH

[R,A]
k and by HR,mp

k :=

H
[R,A]
k /G the G-quotient, dropping the information about adjacency and the con-

nected components to ease notation. Finally, we denote by QR the stack with the

same underlying set asHR,mp
k and with morphisms defined in the same way as above

for Q. Recall that the curves in QR may be disconnected. We call such a stratum
with possibly disconnected curves and residue conditions a generalized stratum of

k-differentials. Since H
[R,A]
k is a linear submanifold, we can still compactify them

as before and a version of Lemma 7.1 with adjacency data still holds.
We will now compute the degree of the map d from the linear submanifolds to

the strata of k-differential. Our definition of generalized strata of k-differentials
makes the degree of this map the same in the usual and in the generalized case.

Lemma 7.2. The map d : H
[R,A]

k → Q
R

is proper, quasi-finite, unramified and of
degree

deg(d) =
1

k

∏

mi∈µ
gcd(mi, k) .

Proof. The degree is a consequence of being composed of a quotient by a group of
order |G| =

∏
mi∈µ gcd(mi, k) and the non-representable inverse of a quotient by a

group of order k.
The map is unramified as both quotient maps are unramified. �

7.3. Decomposing boundary strata. Having constructed strata of k-differentials,
we now want to decompose their boundary strata again as a product of generalized
strata of k-differentials and argue recursively. In fact, the initial stratum should

be a generalized stratum Q
R

, thus coming with its own residue condition, but we
suppress this in our notation, focusing on the new residue condition that arise when
decomposing boundary strata. Here ’decomposition’ of the boundary strata should
be read as a construction of a space finitely covering both of them, as given by the
following diagram,

(44)

D◦,Hk,s
π

Hk(π) :=
∏−L
i=0 Hk(π[i]) Im(pπ) D◦,Hk

π

Q(π) :=
∏−L
i=0 Q(π[i]) D◦,Q

π ,

pπ cπ

dπ

⊇
dπ

whose notation we now start to explain. Note that the diagram is for the open
boundary strata throughout, since we mainly need the degree all these maps as in
Lemma 3.6 (the existence of a similar diagram over the completions follows as at
the beginning of Section 3.2).

We denote by Γ̂ the level graphs indexing the boundary strata of PΞMĝ,n̂(µ̂) and

thus of Hk. Following our general convention for strata their legs are labeled, but
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not the edges. In H
mp

k the leg-marking is only well-defined up to the action of G.
A graph with such a marking is said to be marked (only) partially and denoted by

Γ̂mp. Even though curves in Hk are marked (and not only marked up to the action

of G), the boundary strata of Hk are naturally indexed by partially marked graphs

as well: If Γ̂ is the dual graph of one stable curve in the boundary of Hk, then for

all g ∈ G the graph g · Γ̂ is the dual graph of another stable curve in the boundary

of Hk. The existence of τ implies that level graphs Γ̂ at the boundary of Hk come
with the quotient map by this action. To each boundary stratum of Q we may thus

associate a k-cyclic covering of graphs π : Γ̂mp → Γ (see [CMZ19, Section 2] for the
definitions of such covers). We denote the corresponding (open) boundary strata
by D◦,Q

π ⊂ Q and the (open) boundary strata corresponding to such a G-orbit of
graphs by D◦,Hk

π ⊂ Hk. The map dπ : D◦,Hk
π → D◦,Q

π is the restriction of the map
d : Hk → Q.

Next we construct the commensurability roof just as in (14), though for each Γ̂
in the G-orbit separately, so that D◦,Hk,s

π is the disjoint union of a G-orbit of the
roofs in (14).

Next we define the spaces Hk(π[i]). Consider the linear submanifolds of general-
ized strata of k-differentials with signature and adjacency datum given by the i-th

level of one marked representative Γ̂ of Γ̂mp (the resulting strata are independent of
the choice of a representative). Their product defines the image Im(pπ). For every
level i, consider the orbit under G(Hk(π[i])), where G(Hk(π[i])) is the group as in
(41) for the i-th level, of the linear submanifolds we extracted from the levels. We
define Hk(π[i]) to be these orbits, which in particular are then linear submanifolds
associated to generalized strata of k-differentials as we defined them above. We can
hence consider, for every level, the morphism given by the quotient by G(Hk(π[i]))
composed with the non-representable map that kills the 〈τ〉-isotropy groups at each
level and denote by Q(π[i]) its image, which is called the generalized stratum of k-
differentials at level i. The map dπ in diagram 44 is just a product of maps like
the map d above, thus Lemma 7.2 immediately implies:

Lemma 7.3. The degree of the map dπ in the above diagram (44) is

deg(dπ) =
1

kL+1

n∏

i=1

gcd(mi, k)
∏

e∈E(Γ)

gcd(κe, k)
2

where κe is the k-enhancement of the edge e.

We recall Lemma 3.6 and compute explicitly the coefficients appearing in our

setting here. Note that the factor |AutH(Γ)| there should be called |AutHk
(Γ̂)| in

the notation used in this section.

Lemma 7.4. The ratio of the degrees of the topmost maps in (44) is

deg(pπ)

deg(cπ)
=

KHk

Γ̂

|AutHk
(Γ̂)| · ℓΓ̂

where the number of reachable prong-matchings is given by

KHk

Γ̂
=

∏

e∈E(Γ)

κe
gcd(κe, k)

and AutHk
(Γ̂) is the subgroup of automorphisms of Γ̂ commuting with τ .
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We remark that the quantity ℓΓ̂ is intrinsic to Γ, for a two-level graph it is given

by ℓΓ̂ = lcm
(

κe

gcd(κe,k)
for e ∈ E(Γ)

)
.

Proof. The first statement is exactly the one of Lemma 3.6 since the topmost maps
in (44) are given by a disjoint union of the topmost maps in (14).

For the second statement, consider an edge e ∈ E(Γ). The edge e has gcd(κe, k)
preimages, each with an enhancement κe

gcd(κe,k)
. The prong-matching at one of the

preimages determines the prong-matching at the other preimages by Lemma 7.1,
as they are related by the action of the automorphism.

For the third statement, we need to prove that the subgroup of Aut(Γ̂) fixing
setwise the linear subvariety Hk is precisely the subgroup commuting with τ . If

ρ ∈ Aut(Γ̂) commutes with τ , then it descends to a graph automorphism of Γ
and gives an automorphism of families of admissible covers of stable curves, thus
preserving Hk. Conversely, if ρ fixes Hk, it induces an automorphism of families of
admissible covers of stable curves, thus of coverings of graphs. A priori this implies
only that ρ normalizes the subgroup generated by τ . Note however that on Hk the
automorphism τ acts by a fixed root of unity ζk. If ρτρ

−1 is a non-trivial power of τ ,
this leads to another (though isomorphic) linear subvariety. We conclude that ρ
indeed commutes with τ . �

The aim of the following paragraphs is to rewrite the evaluation Lemma 3.10 in
our context in order to find the shape of the formula in Corollary 1.5. We elaborate
on basic definitions to distinguish notions of isomorphisms and automorphisms.
The underlying graph of an enhanced (k-)level graph can be written as a tuple
Γ = (V,H,L, a : H ∪L→ V, i : H → H), where V , H and L are the sets of vertices,
half-edges and legs, a is the attachment map and i is the fixpoint free involution
that specifies the edges. An isomorphism of graphs σ : Γ → Γ′ is a pair of bijections
σ = (σV : V → V ′, σH : H → H ′) that preserve the attachment of the half-edges
and legs and the the identification of the half-edges to edges, i.e. the diagrams

(45)

H ∪ L V H H

H ′ ∪ L V ′ H ′ H ′

a

σH∪idL σV

i

σH σH

a′ i′

commute. If the graph is an enhanced level graph, we additionally ask that σ
preserves the enhancements and level structure. In the presence of a deck transfor-
mation τ , we moreover ask that σ commutes with τ .

In the sequel we will encounter isomorphisms of graphs with the same underlying
sets of vertices and half-edges. We emphasize that in this case an isomorphism σ
is an automorphism if and only if it preserves the maps a and i, i.e. if

(46) σ−1
V ◦ a ◦ (σH ∪ idL) = a and σ−1

H ◦ i ◦ σH = i.

We now define the group of level-wise half-edge permutations compatible with
the cycles of τ , i.e., we let

G := Gπ =

−L∏

i=0

G(Hk(π[i])),
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where G(Hk(π[i])) is the group G from (41) applied to the i-th level stratum. An

element of the group G is a permutation g : H ∪L→ H ∪L and acts on a graph Γ̂

via g · Γ̂ = (V,H,L, a ◦ g, i).
There is a natural action of the group G on the set of all (possibly disconnected)

graphs with the same set of underlying vertices as Γ̂mp. We denote by

(47) StabG(Γ̂) := {g ∈ G : gΓ̂ ∼= Γ̂}

the stabilizer. Note that this is in general not a group, as it is not the stabilizer of
an element but of an isomorphism class. We also denote by StabG(H(π)) the set of
elements of G which fix the adjacency data (or equivalently the 1-level graphs) of
the level-wise linear manifolds H(π[i]), i.e., elements which permute vertices with
the same signature and permute legs of the same order on the same vertex.

Lemma 7.5. We have

|AutHk
(Γ̂)| · | StabG(Γ̂)| = |Aut(Γ)|

∏

e∈E(Γ)

gcd(κe, k) · | StabG(H(π))|

Proof. Fix a cover Γ̂ → Γ. We may assume that the vertices of Γ are {1, . . . , vΓ},
the legs are {1, . . . , n} and the half-edges are {1±, . . . , h±Γ } with the convention

that i(h±) = h∓. For Γ̂, we may assume that the preimages of vertex v are
(v, 1), . . . , (v, pv) such that τ((v, q)) = (v, q+1), where equality in the second entry is

to be read mod pv. Similarly, we index the legs of Γ̂ by tuples (m, 1), . . . , (m, pm) for
m = 1, . . . , n, and the half-edges by tuples (h±, 1), . . . , (h±, ph±) for h± = 1, . . . , h±Γ ,
again such that (h+, q) and (h−, q) form an edge.

We consider the group P of pairs of permutations σ = (σV , σH) of the vertices

and half-edges of Γ̂ that are of the following form: There exists a γ = (γV , γH) ∈
Aut(Γ), integers λv ∈ Z/pvZ for any v ∈ V (Γ) and integers µh± ∈ Z/ph±Z for any
h± ∈ E(Γ) such that

σV = {(v, q) 7→ (γV (v), q + λv)} and σH = {(h±, q) 7→ (γH(h±), q + µh±)}.

We let this group act on Γ̂ via σ · Γ̂ = (V,H,L, σ−1
V ◦ a ◦ (σH ∪ idL), i). An element

σ ∈ P acts always as an isomorphism since the diagrams (45) commute. If we
denote by e the edge given by h±, we have ph± = gcd(κe, k). Hence the group P
has cardinality

|P| = |Aut(Γ)| ·
∏

e∈E(Γ)

gcd(κe, k) ·
∏

v∈V (Γ)

pv.

Recall that the group G is a product cyclic groups and thus abelian. The
stabilizer StabG(Hk(π)) has a subgroup Stabf where only half-edges and legs
attached to the same vertex are permuted (the superscript f is for fixed), i.e.

the elements g ∈ Stabf are exactly those for which a ◦ g = a. The quotient
Stabp := StabG(Hk(π))/ Stab

f can be identified with those elements of G that per-
mute legs and half-edges in such a way that whenever a leg or half-edge attached to
a vertex v1 is moved to another vertex v2, then all the legs and half-edges attached
to v1 are moved to v2. So we may alternatively identify Stabp with τ -invariant

permutations of the vertices of Γ̂ (hence the superscript p for permutation). This
yields | Stabp | =

∏
v∈V (Γ) pv.
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The group P comes with a commutative triangle

AutH(Γ̂) P

Aut(Γ)

where the vertical map is the forgetful map, the diagonal map is the quotient by
G-map and the horizontal map is natural injection. Since we computed above
|P|, we know that the kernel of the surjective map P → Aut(Γ) has cardinality∏
e∈E(Γ) gcd(κe, k) ·

∏
v∈V (Γ) pv.

Note now that the group Stabf acts on the set StabG(Γ̂) and we denote by

StabG(Γ̂)/ Stabf the space of orbits. We are done if we can identify elements of

StabG(Γ̂)/ Stabf with elements of the cosets in P/AutH(Γ̂).

For this identification, first consider g ∈ StabG(Γ̂). By definition, there exists

an isomorphism σ(g) : g · Γ̂ → Γ̂ such that g · Γ̂ = σ(g)(Γ̂). This induces a

map σ : StabG(Γ̂) → P . Note that Stabf is a subgroup of AutH(Γ̂). If we had

chosen a different representative g′ in the orbit g · Stabf , the resulting element

σ(g′) ∈ P would differ by an element of AutH(Γ̂). Hence σ induces a well-defined

map StabG(Γ̂)/ Stabf → P/AutH(Γ̂). We now construct an inverse map for σ.
For any ρ ∈ P , we need to find an element g ∈ G such that σ(g) = ρ, i.e. such that

g · Γ̂ = ρ(Γ̂). This implies that g must satisfy the equation

a ◦ g = ρ−1
V ◦ a ◦ (ρH ∪ idL),

which determines the element g up to the action of Stabf . The resulting g does not

depend on the choice of a representative of the coset ρ/AutH(Γ̂) because of (46). �

We let now

(48) S(π) =
|G|

|G|
·
| StabG(Γ̂)|

| StabG(Γ̂)|
=

| StabG/G(Γ̂)|∏
e gcd(κe, k)

2

where the stabilizers are defined in a way analogous to (47).

Remark 7.6. The ratio S(π) = 1 for many coverings of graphs π : Γ̂ → Γ, e.g.

when all vertices of Γ have exactly one preimage in Γ̂. In this case G/G only
permutes half-edges adjacent to one vertex, and this always stabilizes the graph.
Thus S(π) = 1, as |G/G| =

∏
e gcd(κe, k)

2. More generally S(π) = 1 if each edge

of Γ is adjacent to at least one vertex which has exactly one preimage in Γ̂. In this
case it is straightforward to verify that the obvious generators of G/G are stabilizing
the graph.

If there are vertices of Γ with more than one pre-image in Γ̂, then S(π) is in
general non-trivial. Consider for example the covering of graphs π depicted in
Figure 2, for which S(π) = 1

2 .

As a consequence of the degree computation in Lemma 7.4 and Lemma 7.5, we
can write an evaluation lemma for k-differentials analogous to Lemma 3.10. We
give two versions, for Hk and Q respectively.
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Figure 2. A covering of graphs π : Γ̂ → Γ in Ξ2M3,1(8) with
non-trivial S(π).

Lemma 7.7. Let (π : Γ̂mp → Γ) ∈ LGL(H
mp
k ) and Γ̂ a marked version of Γ̂mp.

Suppose that απ ∈ CH0(D
Hk
π ) and βπ ∈ CH0(D

Q
π ) are top degree classes and that

c∗παπ = p∗π

−L∏

i=0

αi and c∗πd
∗
πβπ = p∗πd

∗
π

−L∏

i=0

βi

for some αi and βi. Then

∫

D
Hk
π

απ = S(π) ·

∏
e∈E(Γ) κe

|Aut(Γ)| ·
∏
e∈E(Γ) gcd(κe, k)

2 · ℓΓ̂
·
−L∏

i=0

∫

Hk(π[i])

αi

and
∫

DQ
π

βπ = S(π) ·

∏
e∈E(Γ) κe

kL · |Aut(Γ)| · ℓΓ̂
·
−L∏

i=0

∫

Q(π[i])

βi.

Proof. In order to show the first statement, we first apply Lemma 7.4 and note
that the map pπ is not surjective in general. It is now enough to check that the
number of of adjacency data appearing in Hk(π) is |G|/| StabG

(
Hk(π)

)
|, while the

one appearing in the image of pπ is |G|/| StabG Γ̂|. We finally use Lemma 7.5 to
rewrite the prefactor. For the second statement, we additionally apply Lemma 7.2
and Lemma 7.3. �

We are finally ready to prove Corollary 1.5.

Proof of Corollary 1.5. The orbifold Euler characteristics of Q = PΩkMg,n(µ) and
Hk are related by

χ(PΩkMg,n(µ)) =
1

deg(d)
· χ(Hk).

We apply the general Euler characteristic formula in the form (38) to Hk and group

the level graphs Γ̂ ∈ LGL(Hk) by those with the same graph Γ̂mp that is marked
partially. Since the integrals do not depend on the marking, we obtain

χ(Q) =
k

|G|
(−1)d

d∑

L=0

∑

(π:Γ̂mp→Γ)∈LGL(Hmp
k

)

N⊤
π · ℓΓ̂ ·

∫

D
Hk
π

0∏

i=−L
(ξ

[i]

Γ̂,Hk

)d
[i]
Γ

where we used the notation that Γ̂ is a fully marked representative of Γ̂mp. Thanks
to Lemma 3.9 we can apply Lemma 7.7 and convert the integral over DHk

π into a
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ξ-integral over the product of Hk(π[i]). We hence obtain

χ(PΩkMg,n(µ))

=
k

|G|
· (−1)

d
d∑

L=0

∑

(π:Γ̂mp→Γ)∈LGL(Hmp
k

)

S(π)

∏
e∈E(Γ) κe ·N

⊤
π

|Aut(Γ)| ·
∏
e gcd(κe, k)

2
·
−L∏

i=0

∫

Hk(π[i])

ξd
[i]
π

=

(
−1

k

)d d∑

L=0

∑

(π:Γ̂mp→Γ)∈LGL(Q)

S(π) ·

∏
e∈E(Γ) κe ·N

⊤
π

|Aut(Γ)|
·
−L∏

i=0

∫

Q(π[i])

ζd
[i]
π .

For the second equality, we used that

(49) d∗ζ = kξ , and hence d∗ξ =
deg(d)

k
ζ

for any level stratum, together with the dimension statement of Proposition 3.4.
The final result is what we claimed in Corollary 1.5. �

7.4. Evaluating tautological classes. In this section we explain how to evaluate
any top degree class of the form

(50) β := ζp0ψp11 · · ·ψpnn · · · [DQ
π1
] · · · [DQ

πw
] ∈ CH0(Q)

for any generalized stratum Q of k-differentials. First, we show how to transform
the previous class into the form

β =
∑

i

ψ
qi,1
1 · · ·ψ

qi,n
1 [DQ

σi
].

Then by Lemma 7.7, we can write every summand of β as a product of ψ-classes
evaluated on generalized strata of k-differentials. We finally will explain how to
evaluate such classes.

Let us start with the first task. The relations in the Chow ring of a general
linear submanifold we obtained in Section 4 immediately apply to the covering Hk

and we want to restate them in the Chow ring of the generalized stratum Q of k-
differentials. Let i be the index of a marked point in Q and (i, j) be the index of a
preimage of this point in Hk. Moreover, letmi denote the order of the k-differential
at the i-th marked point, and let m̂i,j denote the order of the abelian covering at
the (i, j)-th marked point. Then the relation

(51) ψi,j =
gcd(mi, k)

k
· d∗ψi

holds, see for example [SZ20, Lemma 3.9]. Using the relation

m̂i,j + 1 = (mi + k)/ gcd(mi, k)

and applying push-pull we obtain

(52) (m̂i,j + 1)d∗ψi,j =
deg(d)

k
(mi + k)ψi.

We can now write the analogue of Proposition 4.1 for the first Chern class ζ ∈
CH1(Q) of the tautological line bundle on the stratum of k-differentials.
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Corollary 7.8. The class ζ can be expressed as

ζ = (mi + k)ψi −
∑

(π:Γ̂mp→Γ)∈iLG1(Q)

kℓΓ̂mp
[DQ

π ]

= (mi + k)ψi −
∑

(π:Γ̂mp→Γ)∈iLG1(Q)

S(π)

∏
e∈E(Γ) κe

|Aut(Γ)|
clπ,∗ p

∗
πd

∗
π[Q(π)]

where iLG1(Q) are covers of two-level graphs with the leg i on lower level and
clπ = iπ ◦ dπ ◦ cπ is the clutching morphism analogous to (21).

Proof. The first equation is obtained by pushing forward the equation in Proposition 4.1
along d and using the relations (49) and (52). The second equation is obtained from
the first by Lemma 7.7. �

Remark 7.9. The expression given by the second line of Corollary 7.8 reproves the
formula of [Sau21, Theorem 3.12] and computes explicitly the coefficients appearing
in loc.cit., which were computed only for special two-level graphs.

To state the formula for the normal bundle, let

L⊤
π = ODQ

π

( ∑

(σ:∆̂mp→∆)∈LG2(Q)
δ2(σ)=π

ℓ∆̂,1D
H
σ

)

denote the top level correction bundle.

Corollary 7.10. Suppose that Dπ is a divisor in Q corresponding to a covering of

graphs (π : Γ̂mp → Γ) ∈ LG1(Q). Then the first Chern class of the normal bundle
is given by

c1(Nπ) =
1

ℓΓ̂

(
−

1

k
ζ⊤π − c1(L

⊤
π ) +

1

k
ζ⊥π
)
∈ CH1(DQ

π ),

where ζ⊤π , resp. ζ⊥π , is the first Chern class of the line bundle generated by the top,
resp. bottom, level multi-scale component.

Proof. We can pull-back the right and left hand sides of the relation via d. Using
the expression (49), we see that the pulled-back relation holds since it agrees with
the one of Proposition 4.4. Since d is a quasi-finite proper unramified map, we are
done. The same argument, together with Proposition 4.5, works for the second
statement about horizontal divisors. �

Using the same arguments as [CMZ22, Proposition 8.1], it is possible to show an
excess intersection formula in this context of k-differentials. We will not explicitly
do this here since the methods and the result are exactly parallel to the original
ones for Abelian differentials. Using the previous ingredients we can then reduce
the computation of the class β in (50) to the computation of a top-degree product
of ψ-classes

α := ψp11 · · ·ψpnn ∈ CH0(Q)

on a generalized stratum. If we can describe the class of a generalized stratum in its
corresponding moduli space of pointed curves, then we are done since it is possible
to compute top-degree tautological classes on the moduli space of curves, e.g. with
the sage package admcycles, see [DSZ21].
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One of the advantages in comparison to the situation with general linear sub-
manifolds (as explained in Section 4) is that the fundamental classes of strata of
primitive k-differentials PΞkMg,n(µ) are known in Mg,n, see [BHPSS20].

More generally, if Q parameterizes k-differentials, on a curve with connected
τ -quotient, which are d-th powers of primitive k′ := k/d-differentials, we can
compare ψ-classes on Q to ψ-classes on the stratum of primitive k′ differentials
PΞk

′

Mg,n(µ/d) via the diagram

Hmp
k (µ) Hmp

k′ (µ/d)

Q PΞk
′

Mg,n(µ/d)

φ

d1 d2

where the map φ sends the disconnected curve (
⋃d
i=1 X̂i,

⋃d
i=1 ẑi,

⋃d
i=1 ωi, τ) to

(X̂1, z1, ω1, τ
d|X̂1

). The map φ has degree deg(φ) = dn−1, since up to the action

of τ there are such many ways to distribute the marked points ẑ onto the connected

components of X̂ . Using deg(d1) =
1
k and deg(d2) =

1
k′ we can evaluate α as

∫

Q
α = dn

∫

PΞk′Mg,n(µ/d)

ψp11 · · ·ψpnn .

If Q parameterizes primitive differentials on disconnected curves, then
∫
Q α = 0

since we go down in dimension by looking at the image of the projection to the
moduli spaces of curves.

It remains to explain how to evaluate intersection numbers in the presence of
residue conditions. In addition to the space R defined starting from a τ -invariant
partition λR we consider the linear subspace

R :=

{
(ri)i∈Hp

∈ CHp :

∑
i∈A−1(X̂′) ri = 0 for all X̂ ′ ∈ π0(X̂)

ri = ζ−1
k rτ(i) for all i ∈ Hp

}

cut out by the residue theorem on each component and the deck transformation.
Recall that λR is τ -invariant. Let λR0 denote a subset of λR obtained by removing
one element, and let R0 denote the new set of residue conditions. For ease of

notation let for now HR

k := PΩH
[R,A]
k and HR0

k := PΩH
[R0,A]
k . If R ∩R = R ∩R0

then HR

k = HR0

k . So assume that R ∩ R 6= R ∩ R0, in which case HR

k ( HR0

k is
a divisor since removing one element from λR forces to remove its τ -orbit. For a

divisor D
HR

k
π ⊆ H

R

k , we denote by R⊤ the residue conditions induced by R on the
top-level stratum Hk(π[0]). It can be simply computed by discarding from the parts

of λR all indices of legs that go to lower level in D
HR

k
π . Moreover, we denote be R⊤

the linear subspace belonging to the top-level stratum of π that is cut out by the
residue theorem and the deck transformation.

Proposition 7.11. The class of H
R

k compares inside the Chow ring of H
R0

k to the
class ξ by the formula

[H
R

k ] = −ξ −
∑

(π:Γ̂mp→Γ)∈LGR

1 (HR0
k )

ℓΓ̂[D
HR0

k
π ]−

∑

(π:Γ̂mp→Γ)∈LG1,R(HR0
k )

ℓΓ̂[D
HR0

k
π ],



38 MATTEO COSTANTINI, MARTIN MÖLLER, AND JOHANNES SCHWAB

where LGR

1 (H
R0

k ) are the two-level graphs with R⊤ ∩ R⊤ = R⊤ ∩ R⊤
0 , i.e., where

the GRC on top level induced by R does no longer introduce an extra condition,

and where LG1,R(H
R0

k ) are the two-level graphs where all the legs involved in the
condition forming R \R0 go to lower level.

Proof. The formula is obtained by intersecting the formula in [CMZ22, Proposi-

tion 8.3] withH
R0

k and thereby using the transversality statement from Proposition 3.2.
�

By pushing down this relation along d and applying relation (49) we obtain a
similar relation for a generalized stratum of k-differentials QR with residue condi-
tions R.

Corollary 7.12. The class of Q
R

compares inside the Chow ring of Q
R0

to the
class ζ by the formula

[Q
R
] = −

1

k
ζ −

∑

(π:Γ̂mp→Γ)∈LGR

1 (QR0)

ℓΓ̂[D
QR0

π ]−
∑

(π:Γ̂mp→Γ)∈LG1,R(QR0 )

ℓΓ̂[D
QR0

π ],

where LGR

1 (Q
R0

) are the two-level graphs with R⊤ ∩ R⊤ = R⊤ ∩ R⊤
0 , i.e. where

the GRC on top level induced by R does no longer introduce an extra condition

and where LG1,R(Q
R0

) are the two-level graphs where all the legs involved in the
condition forming R \R0 go to lower level.

The last expression allows us, in the presence of residue conditions, to reduce to
the previous situations without residue conditions when we want to evaluate α.

7.5. Values and cross-checks. In this section we provide in Table 2 and Table 3
some Euler characteristics for strata of k-differentials. We abbreviate χk(µ) :=
χ(PΩkMg,n(µ)). Moreover we provide several cross-checks for our values.

µ (2, 2) (2, 12) (14) (5,−1) (4, 1,−1)

χ2(µ) − 1
8

1
5 −1 − 7

15
6
5

µ (3, 2,−1) (3, 12,−1) (22, 1,−1) (2, 13,−1) (15,−1)

χ2(µ)
5
3 −5 −6 26 −147

Table 2. Euler characteristics of the strata of quadratic differen-
tials in genus 2 with at most one simple pole

The second power of the projectivized Hodge bundle over M2 is the union of
the strata of quadratic differentials of type (4), (2, 2), (2, 12) and (14), if all of them
are taken with unmarked zeros. (Note that there are no quadratic differentials of
type (3, 1).) All quadratic differentials of type (4) are second powers of abelian
differentials of type (2). The stratum (2, 2) contains both primitive quadratic dif-
ferentials and second powers of abelian differentials of type (1, 1). From Table 2
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and [CMZ22, Table 1] we read off that

χ1(2) +
1

2
χ2(2, 2) +

1

2
χ1(1, 1) +

1

2
χ2(2, 1

2) +
1

4!
χ2(1

4) = −
1

80
= χ(P2)χ(M2).

Similarly, one checks for the third power of the projectivized Hodge bundle over
M2 that the numbers in provided in Table 3 add up to − 1

48 = χ(P4)χ(M2).

µ (6) (5, 1) (4, 2) (3, 3) (4, 12) (3, 2, 1)

χ3(µ)
1
3 − 4

5 − 9
8 − 4

3
16
5 4

µ (23) (3, 13) (22, 12) (2, 14) (16)

χ3(µ)
41
10 −16 − 52

3 90 −567

Table 3. Euler characteristics of the strata of holomorphic 3-
differentials in genus 2

Now consider the second power of the projectivized Hodge bundle twisted by
the universal section over M2,1. It decomposes into the unordered strata (4),
(5,−1), (4, 1,−1), (3, 2,−1), (2, 12), (3, 12,−1), (22, 1,−1), (2, 13,−1), (15,−1),
(4, 0), (22, 0), (2, 12, 0), (14, 0), the ordered stratum (22), (2, 12) (since the zero at
the unique marked point is distinguished) and the partially ordered stratum (14).
The stratum (2, 12) appears two times in the list: the first time the unique marked
point is the zero of order 2, the second time it is one of the simple zeros. On
the stratum (14) one of the simple zeros is distinguished, while the others may be
interchanged. Note that χk(m1, . . . ,mn, 0) = (2 − 2g − n)χk(m1, . . . ,mn). The
contributions in Table 2 and [CMZ22, Table 1] add up to 1

30 = χ(P3)χ(M2,1).

8. Ball quotients

The goal of this section is to prove Theorem 1.7, which gives an independent proof
of the Deligne-Mostow-Thurston construction ([DM86], [Thu98]) of ball quotients
via cyclic coverings. For this proof of concept we consider the special case of
surfaces, i.e. lattices in PU(1, 2).

We first prove a criterion for showing that a two dimensional smooth Deligne-
Mumford stack is a ball quotient via the Bogomolov-Miyaoka-Yau equality. Even
though such a criterion exists in many contexts, typically pairs of a variety and
a Q-divisor with various hypothesis on the singularities a priori allowed, see for
example [GKPT19; GT22], we found no criterion for stacks in the literature. Only
the inequality was proven in [CT20] and only in the compact case.

We then investigate the special two dimensional strata of k-differentials of genus
zero considered in Deligne-Mostow-Thurston, compute all the relevant intersection
numbers and construct, via a contraction of some specific divisor, the smooth sur-
face stack which we finally show to be a ball quotient.



40 MATTEO COSTANTINI, MARTIN MÖLLER, AND JOHANNES SCHWAB

8.1. Ball quotient criterion. We provide a version of the Bogomolov-Miyaoka-
Yau inequality for stacks in the surface case, based on [KNS89]. Singularity termi-
nology and basics about the minimal model program can be found e.g. in [KM98].

Proposition 8.1. Suppose that B is a smooth Deligne-Mumford stack of dimension
2 with trivial isotropy group at the generic point and let D1 be a normal crossing
divisor. Moreover, suppose that K

B
(logD1)

2 > 0 and that K
B
(logD1) intersects

positively any curve not contained in D1. Then the Miyaoka-Yau inequality

(53) c21(KB
(logD1)) ≤ 3c2(KB

(logD1))

holds, with equality if and only if B = B \ D1 is a ball quotient, i.e. there is
a cofinite lattice Γ ∈ PU(1, n) such that B = [B2/Γ] as quotient stack, where
B2 = {(z1, z2) ∈ C2 : |z1|

2 + |z2|
2 < 1} is the 2-ball.

Proof. Let D be the divisor defined as D1 together with the sum D2 of the divisors
Di

2 with non-trivial isotropy groups of order bi. Let π : B → B be the map to the
coarse space and let D1 = π(D1), D2 =

∑
(1 − 1/bi)π(Di

2) and D = D1 +D2.
We start by assuming that the pair (B,D) is log-canonical and the pair (B,D2)

is log-terminal. We will show that this assumptions holds in our situation at the
end of the proof.

Let B
′
be a log-minimal model given by contracting all the log-exceptional curves

in D1, i.e., contracting all irreducible curves C ⊆ D1 with the properties C2 < 0
and (c1(KB) + [D1] + [D2]) · C ≤ 0, and let D′

i be the image of Di, for i = 1, 2.
Then

KB(logD1) +D2 = π∗(KB
′(logD′

1) +D′
2).

Moreover the log-canonical bundle satisfies

(54) K
B
(logD1) = π∗(KB(logD1) +D2) .

The fact that the support of the log-exceptional curves is in D1, together with (54),
implies that KB

′ +D′
1+D′

2 is numerically ample. By the assumption above on the

singularities we know that (B,D) is log-canonical. Hence we are in the situation of
applying [KNS89, Theorem 12].

As a consequence of (54) we know that c21(KB
(logD1)) coincides with the left

hand side of the Miyaoka-Yau inequality of [KNS89, Theorem 12] applied to B
′

with boundary divisor D′
1 +D′

2.
Moreover, by the Gauss-Bonnet theorem for DM-stacks (see e.g. [CMZ22, Propo-

sition 2.1]) we can also identify c2(KB
(logD1)) with the right hand side of the in-

equality of [KNS89, Theorem 12] applied to B
′
with boundary divisor D′

1 +D′
2, up

to non-log-terminal singularities (similarly as it was done in [CT20, Section 3.2]).
By the assumption above, the pair (B,D2) is log-terminal and so the previous iden-
tification of the right hand side of [KNS89, Theorem 12] with c2(KB

(logD)) is true
without corrections.

This shows inequality (53) and that in the case of equality B
′
\D′

1
∼= B \D1 is

a ball quotient, i.e. B \D1
∼= B2/Γ. Moreover, in this case, the divisors Di

2 are the
branch loci of π with branch indices bi.

Since B \ D1 is the coarse space associated both to B \ D1 and to [B2/Γ],
this implies that these two DM stacks have to differ by a composition of root
constructions along divisors (see e.g. [CT20, Section 3.1]). But since the branch
indices ofDi

2 can be identified with the isotropy groups of the corresponding divisors
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in [B2/Γ], and since they coincide with the isotropy groups of the corresponding
divisor B \D1, we can identify B \D1 with [B2/Γ], as non-trivial root constructions
would have changed the size of such isotropy groups.

We are finally left to show the assumption on the singularities. First, there exists

a resolution B̃ of B where the proper transform D̃ of D is a normal crossing divisor

and the exceptional divisors Ei are log-exceptional, i.e. E2
i < 0 and (c1(KB̃

)+[D̃1])·
Ei ≤ 0. Indeed such a resolution can be obtained by blowing-up smooth points of
the DM stack, where the numerical conditions can be checked on an étale chart
just as for the usual blow-up of a smooth point of a variety.

In this situation the corresponding exceptional divisors Ei for the coarse space

resolution B̃ of B are also log-exceptional, i.e., (c1(KB̃) + [D̃1] + [D̃2]) ·Ei ≤ 0 and

E2
i ≤ 0. Since contracting log-exceptional divisors does not change the singularity

type, this implies that to show that (B,D1 + D2) is log-canonical and (B,D2) is

log-terminal, it is enough to show that (B̃, D̃1 + D̃2) is log-canonical and (B̃, D̃2)
is log-terminal.

In order to do this, we observe that in general since (B̃, D̃) is a smooth DM

stack with normal crossing divisor, then (B̃, D̃1 +
∑
i D̃

i
2) is log-canonical. Details

are given in [CCM22, Theorem 5.1], using [HH09, Proposition A.13] . Then we

can use that B̃ has at worst klt singularities (since it is a surface with quotient
singularities and by [KM98, Prop. 4.18]). It is easy to show that this implies

that (B̃, D̃1 +
∑

i tiD̃
i
2) has log-canonical singularities and (B̃,

∑
i tiD̃

i
2) has log-

terminal singularities, for any 0 ≤ ti < 1. The desired statement follows then by
setting ti = 1− 1/bi. �

8.2. Strata of genus zero satisfying (INT). Let (a1, . . . , a5) be positive integers
such that gcd(a1, . . . , a5, k) = 1 with

5∑

i=1

ai = 2k, and for all i 6= j
(
1−

ai
k

−
aj
k

)−1

∈ Z if ai + aj < k.

The first condition states that µ = (−a1, . . . ,−a5) is a type of a stratum of k-
differentials on 5-pointed rational lines and that the intersection form on eigenspace
giving period coordinates has the desired signature (1, 2). Imposing the gcd-
condition lets us work without loss of generality with primitive k-differentials. The
last condition is the condition (INT) of [DM86]. For Deligne-Mostow this condition
is key to ensure that the period map extends as an étale map over all boundary
divisors. Thurston [Thu98] uses this condition to show that his cone manifolds
are indeed orbifolds. Mostow completed in [Mos88] the g = 0 picture by showing
that up to the variant ΣINT from [Mos86] these are the only ball quotient surfaces
uniformized by the VHS of a cyclic cover of 5-punctured projective line. We recall
from [DM86, Section 14] that there are exactly 27 five-tuples satisfying INT, and all
of them satisfy in fact the integrality condition INT for all i 6= j with ai + ak 6= k.

For us the condition INT has the most important consequence that the enhance-
ments κ̂e of the abelian covers of the level graphs are all one. This implies that
ghost groups of all strata in this section are trivial. However the condition INT
also enters at other places of the following computations of automorphism groups
and intersection numbers.

In the sequel we will use the notation Q = ΩkM0,5(a1, . . . , a5). We now list the
boundary divisors without horizontal edges. A short case inspection shows that the
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DΓ45 =




−a1

−a3

−a2

−a5−a4



DL12 =




−a1 −a2

−a5−a4

−a3



D12Λ45 =




−a3

−a2−a1 −a5−a4



,

Figure 3. Level graphs of boundary divisors for strata
ΩM0,5(a1, . . . , a5)

only possibilities are the level graphs Γ = Γij , see Figure 3 left, and L = Lij , see
Figure 3 middle, that yield the ’dumbbell’ divisors with two or three legs on bottom
level under the condition that that the ai’s on lower level add up to less than k,
and the level graphs Λ = i,jΛp,q that yield ’cherry’ divisors, see Figure 3 right
(V -shaped graphs are ruled out by

∑
ai = 2k). We define κi,j := k − (ai + aj),

which is both the k-enhancement of the single edge of Γi,j and the negative of the
k-enhancement of the single edge of Li,j .

Lemma 8.2. Each of the graphs Γi,j, Li,j and i,jΛp,q is the codomain of an unique

covering of graphs π ∈ LG1(Q) and for each such covering S(π) = 1.

Proof. We will give the argument for Γ1,2, the argument for the other graphs is sim-
ilar. The number of preimages of the vertices of Γ1,2 is gcd(k, a1, a2) for the bottom
level and gcd(k, a3, a4, a5) for the top level, while the edge has κ1,2 preimages.

We claim that for any cover of graphs π : Γ̂mp → Γ1,2 the domain is connected.
In fact, suppose there are k′ components. This subdivides the top level and the
bottom level into subset of equal size. This implies k′ | gcd(k, a1, a2) and k′ |
gcd(k, a3, a4, a5), and hence k′ = 1 because of gcd(k, a1, . . . , a5) = 1.

To construct such a cover of graphs it suffices to prescribe one edge of Γ̂mp, the
other edges are then forced, since τ -acts transitively on edges. Since the vertices
on top and bottom level are indistinguishable (forming each one orbit τ -orbit) the

resulting graph is independent of the choice of the first edge. In particular Γ̂mp is
unique and S(π) = 1. �

Next we compute (self)-intersection numbers of boundary divisors.

Lemma 8.3. The self-intersection numbers of the boundary divisors of Q are

[DQ
Γ ]2 = −

κ2i,j
k2

−
∑

p<q, ap+aq<k
p,q/∈{i,j}

κi,jκp,q
k2

,

[DQ
L ]

2 = −
κ2i,j
k2

and [DQ
Λ ]2 = −

κi,jκp,q
k2

.

The mutual intersection numbers are

[DQ
Γ ] · [DQ

L ] =





|κi,jκp,q|

k2
if Γ ∩ L 6= ∅

0 otherwise

[DQ
Γ ] · [DQ

Λ ] =

{κi,jκp,q
k2

if Γ ∩ Λ 6= ∅

0 otherwise.
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Proof. For the self-intersection numbers consider the formula in Corollary 7.10. As
remarked above, the condition (INT) implies that all enhancements of the abelian

coverings are 1 and hence the same is true for the ℓ̂-factor in the corollary. Let ∆p,q
i,j

denote the slanted cherry with points i, j on bottom level and points p, q on middle
level. Together with Corollary 7.8 and Corollary 7.10 we obtain

[DQ
Γi,j

]2 =
−1

k
ζ⊤ − c1(L

⊤) = −
κ2i,j
k2

∫

M0,4

ψ1 −
∑

p<q, ap+aq<k
p,q/∈{i,j}

[DQ
∆p,q

i,j

].

The degree of the slanted cherry is

(55)

∫

Q
[DQ

∆p,q
i,j

] =
κi,jκp,q
k2

by applying the second formula in Lemma 7.7 and Lemma 8.2. The other numbers
are obtained similarly. �

8.3. The contracted spaces. We want to construct the compactified ball quotient
candidate B from Q by contracting the all the divisors DQ

L and DQ
Λ . This is in fact

possible:

Lemma 8.4. The divisors DQ
L and DQ

Λ of Q are contractible. The DM-stack B

obtained from Q by contracting those divisors is smooth. If DB

L̃
and DB

Λ̃
denote the

points in B obtained by contracting the corresponding divisors in Q then
∫

B

[DB

L̃
] =

κ2i,j
k2

and

∫

B

[DB

Λ̃
] =

κi,jκp,q
k2

.

Proof. For each of the two types of boundary divisors DQ
L and DQ

Λ , we will write

a neighborhood U as quotient stack [Ũ/G] with Ũ smooth, and show that the

preimage of the boundary divisor in Ũ is a P1 with self-intersection number −1.
Castelnuovo’s criterion then implies that this curve is smoothly contractible. The

order of G will be k2

κ2
i,j

for DQ
L and k2

κi,jκp,q
for DQ

Λ . After contracting the covering

P1, the quotient is a point with isotropy group G and the claim on the degrees
follows.

We first consider a cherry divisor DQ
Λ . Let D

Hmp
k

Λ denote its preimage in Hmp
k .

As all the abelian enhancements of the cover of i,jΛp,q are one, the divisor D
Hmp

k

Λ is
irreducible, in fact isomorphic to P1 with coordinates the scales of the differential
forms on the cherries.

We compute the order of the automorphism group of any point (X̂, ω̂) in D
Hmp

k

Λ .

Suppose first that (X̂, ω̂) is generic. The irreducible components of X̂ group into

three τ -orbits: The components X̂⊤ corresponding to the top-level vertex of i,jΛp,q,

the components X̂⊥
i,j corresponding to the vertex with marked points i, j, and the

components X̂⊥
p,q corresponding to the vertex with marked points p, q. Observe that

there are κi,j edges between X̂
⊤ and X̂⊥

i,j and κp,q edges between X̂
⊤ and X̂⊥

p,q. The

restriction of τ to each of the three (not necessarily connected) curves X̂⊤, X̂⊥
i,j ,

X̂⊥
p,q has order k. Given an automorphism of the complete curve X̂ its restrictions

to X̂⊤ and X̂⊥
i,j need to agree on the κi,j nodes, and the analogue argument applies

to X̂⊥
p,q. Hence after fixing the automorphism on the top-level curve X̂⊤, there are
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k2

κi,jκp,q
possible choices for the automorphism on the two bottom-level curves left.

Together with the k choices for the top-level automorphism, we obtain

|Aut(X̂, ω̂)| =
k3

κi,jκp,q
.

As the non-representable map Hmp
k → Q has degree 1

k , this yields that the generic

point of DQ
Λ has an isotropy group of size r := k2

κi,jκp,q
. Exactly the same argument

also applies to the two boundary points of DQ
Λ corresponding to the slanted cherries.

The automorphism group is thus generated by multiplying the transversal t-
parameter (compare Section 3.4) by an r-th root of unity in local charts covering

all of i,jΛp,q. We may thus take for U any tubular neighborhood of DQ
Λ and take a

global cover Ũ of degree k2

κi,jκp,q
. Comparing with the degree of the normal bundle

in Lemma 8.3 shows that preimage of DQ
Λ in Ũ is a (−1)-curve.

We now consider a dumbbell divisor DQ
L . As above one checks that the isotropy

group at the generic point of DQ
L is of order k

|κi,j | and that the isotropy groups of

the boundary points of the divisor have a quotient group of that order. Consider a
tubular neighborhood of DQ

L and a degree k
|κi,j | cover that trivializes the isotropy

group at the generic point. Let D̃Q
L be the preimage of the boundary divisor in this

cover.
Let p, q, r denote the three marked points on the bottom level of a point in

Li,j . By applying the above line of arguments again, the three boundary points

of D̃Q
L have cyclic isotropy groups of sizes k

κp,q
, k
κp,r

and k
κq,r

respectively. The

triangle group T = T ( k
κp,q

, k
κp,r

, k
κq,r

) is always spherical, because ai + aj > k

implies ap + aq + ar < k and hence

2− (1−
κp,q
k

)− (1−
κp,r
k

)− (1 −
κq,r
k

) = 2− 2
ap + aq + ar

k
> 0.

This implies that the T -cover of D̃Q
L ramified to order k/κp,q along the divisor

where {p, q} have come together etc, trivializes the isotropy groups on the boundary

divisor D̃Q
L and the preimage of D̃Q

L is a P1. More precisely, the isotropy groups
of order k/κp,q do not fix isolated points on the boundary divisor but have one-

dimensional stabilizer, the boundary divisors intersecting D̃Q
L . This implies that

the above T -cover actually provides a chart of a full tubular neighborhood.
It remains to show that |T | = k/|κi,j| in order to conclude with the normal bundle

degree from Lemma 8.3 that this P1 is a (−1)-curve. To show this, recall that as
T is spherical, there are only the cases ( k

κp,q
, k
κp,r

, k
κq,r

) = (2, 2, n) for n ∈ N≥2

and ( k
κp,q

, k
κp,r

, k
κq,r

) = (2, 3, n) for n ∈ {3, 4, 5} to consider. In the first case the

order of T (2, 2, n) is 2n, and assuming that k
κp,q

= k
κp,r

= 2, one easily checks that

2 k
κq,r

= k
|κi,j| by using

∑
i ai = 2k. In the second case the order of T (2, 3, n) is

2 lcm(6, n), and the claimed equality follows with a similar argument. �

We will now compute the Chern classes of B. Let c : Q → B denote the
contraction map. Let

Γ := {(i, j) : i < j, ai + aj < k} and L := {(i, j) : i < j, ai + aj > k}
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be the pairs of integers appearing as indices of the Γi,j and Li,j. Let I = Ipqij denote
the common degeneration of Γij and Lpq, i.e. the three-level graph with points
p, q on bottom level, i, j on top level and the remaining point on the middle level.
Accordingly, we write

Λ := {(i, j, p, q) : i < j, i < p < q, j /∈ {p, q}, ai + aj < k, ap + aq < k} and

I := {(i, j, p, q) : i < j, i < p < q, j /∈ {p, q}, ai + aj > k, ap + aq < k}

for the quadruples of possible indices. Recall that Dhor is the union of all bound-
ary divisors DHij

whose level graph has a horizontal edge, i.e. corresponding to
pairs (i, j) with ai + aj = k. We write

H := {(i, j) : i < j, ai + aj = k}.

We summarize the intersections of the boundary divisors: The cherry DQ
i,jΛp,q

intersects precisely DQ
Γij

and ΓQ
pq. The divisor DLij

intersects precisely the three

divisors DQ
Γab

for any pair (a, b) disjoint from {i, j}. For the divisor DQ
Γij

consider

any pair (p, q) of the three remaining points as {p, q, r}. This gives an intersection
with a cherry if ap + aq < k, with a horizontal divisor if ap + aq = k and with an

L-divisor if ap + aq > k. Consequently, the divisor DQ
Hij

intersects precisely the

three divisors DQ
Γab

for any pair (a, b) disjoint from {i, j}.

Lemma 8.5. The self-intersection numbers of the boundary divisors of B are

[DB

Γi,j
]2 = −

κ2i,j
k2

+
∑

p<q, ap+aq>k
p,q/∈{i,j}

κ2i,j
k2

and [DB

Hi,j
]2 = −1.

The mutual intersection numbers are for {i, j} ∩ {p, q} = ∅ given by

[DB

Γi,j
] · [DB

Γp,q
] =

κi,jκp,q
k2

and [DB

Γi,j
] · [DB

Hp,q
] =

κi,j
k

and for |{i, j, p}| = 3 by

[DB

Γi,j
] · [DB

Γi,p
] =

{κi,jκi,p
k2

if ai + aj + ap < k

0 otherwise.

Proof. We claim that the pull back of [DB

Γi,j
] is given by

c∗[DB

Γi,j
] = [DQ

Γi,j
] +

∑

p<q, ap+aq>k
p,q/∈{i,j}

κi,j
|κp,q|

[DQ
Lp,q

] +
∑

p<q, ap+aq<k
p,q/∈{i,j}

[DQ
i,jΛp,q

].

To determine the coefficients in the above expression, one may intersect the equation
c∗[DB

Γi,j
] = [DQ

Γi,j
]+
∑

p,q lp,q[D
Q
Lp,q

]+
∑

p,q λp,q[D
Q
i,jΛp,q

] with unknown coefficients

with each of the divisors [DQ
Lp,q

] and [DQ
i,jΛp,q

] in turn. The left hand side vanishes

by push-pull, and the intersection numbers on the right hand side are given by
Lemma 8.3. The claimed intersection numbers involving only Γ-divisors follow
again by Lemma 8.3.

The pull back of the horizontal divisor is given by c∗[DB

Hi,j
] = [DQ

Hi,j
]. The

intersection number [DB

Γi,j
] · [DB

Hp,q
] = [DQ

Γi,j
] · [DQ

Hp,q
] follows from Lemma 7.7 and

Lemma 8.2. Finally by Proposition 4.5 and (51), the normal bundle of [DQ
Hi,j

] is
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given by −ψe in CH(DQ
Hi,j

), where ψe is the ψ-class supported on the half edge of

Hi,j that is adjacent to the vertex with three adjacent marked points. �

Proposition 8.6. The log canonical bundle on B has first Chern class

(56) c1(Ω
1
B
(logDhor)) =

∑

i,j∈Γ

(
k

2κi,j
− 1)[DB

Γi,j
] +

1

2
[DB

hor] inCH1(B)

Its square and the second Chern class are given by

(57) c1(Ω
1
B
(logDhor))

2 = 6− 3
∑

i,j∈Γ

κi,j
k

+ 3
∑

i,j∈L

κ2i,j
k2

+ 3
∑

i,j,p,q∈Λ

κi,jκp,q
k2

and

(58) c2(Ω
1
B
(logDhor)) = 2−

∑

i,j∈Γ

κi,j
k

+
∑

i,j∈L

κ2i,j
k2

+
∑

i,j,p,q∈Λ

κi,jκp,q
k2

.

respectively.

Proof. To derive (56) from Theorem 1.1 we insert into

c1(Ω
1
Q(logDhor)) =

3

k
· ζ +

∑

L

[DQ
L ] +

∑

Λ

[DQ
Λ ]

that 5ξ −
∑

(mi + k)ψi is a sum of boundary terms by the relation (7.8). Consider
Keel’s relation

ψi =
1

6

∑

c<d
i6∈{c,d}

∆cd +
1

2

∑

a 6=i
∆ia ,

where ∆ij is the boundary divisor in M0,5 where the points (i, j) have come to-

gether. We pull back this relation via the forgetful map π : PΞkM0,5(µ) → M0,5.
Since this map is a root-stack construction and the isotropy groups of the divisors
were computed in th proof of Lemma 8.4, we obtain

π∗∆ab =





1
|κab| [D

Q
Lab

] if a+ b < −k

[DHab
] if a+ b = −k

1
κab

[DQ
Γab

] +
∑
i<j, ai+aj<k
i,j /∈{a,b}

1
κab

[DQ
i,jΛa,b

] if a+ b > −k.

Putting everything together we find in CH1(Q) that

(59)

c1(Ω
1
Q(logDhor)) =

∑

i,j∈Γ

(
k

2κi,j
− 1)[DQ

Γi,j
] +

∑

i,j∈L

(
k

2|κi,j |
− 1)[DQ

Li,j
]

+
∑

i,j,p,q∈Λ

(
k

2κi,j
+

k

2κp,q
− 1)[DQ

i,jΛp,q
] +

1

2
[DQ

hor]

and since the divisors DQ
Li,j

and DQ
i,jΛp,q

are smoothly contractible we deduce (56).

To derive (57) we first note that − 1
4 |Γ| +

1
2 |Λ| + 5

4 |H| + 5
4 |L| = 5 and that for

(i, j) ∈ L the relation

1 +
∑

p∈{1,...,5}\{i,j}
{q,r}={1,...,5}\{i,j,p}

(
−
κp,q + κp,r

k
+ 2

κp,qκp,r
k2

+
κ2q,r
k2

)
= 4

κ2i,j
k2
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holds because of
∑

i ai = 2k. Using those relations and the intersection numbers
in Lemma 8.5 squaring (56) yields

c1(Ω
1
B
(logDhor))

2 = 5−
∑

i,j∈Γ

(
2
κi,j
k

+
κ2i,j
k2

)
+ 2

∑

i,j,p,q∈Λ

κi,jκp,q
k2

+ 4
∑

i,j∈L

κ2i,j
k2

and (57) follows because
∑

i ai = 2k implies

(60) 1 +
∑

i,j∈Γ

(
−
κi,j
k

+
κ2i,j
k2

)
+

∑

i,j,p,q∈Λ

κi,jκp,q
k2

−
∑

i,j∈L

κ2i,j
k2

= 0 .

The second Chern class can be computed as

c2(Ω
1
B
(logDhor)) = χ(M0,5)+

∑

i,j∈Γ

χ(DB,◦
Γi,j

)+
∑

i,j∈L

χ(DB

L̃i,j
)+

∑

i,j,p,q∈Λ

χ(DB

i,jΛ̃p,q
),

where χ(DB,◦
Γi,j

) = χ(DQ,◦
Γi,j

) =
κi,j

k be Lemma 7.7 and Lemma 8.2 and the Euler

characteristics of the points are given in Lemma 8.4. �

8.4. The ball quotient certificate. We can finally put together the previous
intersection numbers and use our ball quotient criterion to show that the contracted
spaces are ball quotients.

Proof of Theorem 1.7. We apply Proposition 8.1 and check that first that the only
log-exceptional curves for c1(Ω

1
B
(logDhor)) are the components of Dhor. In fact

since the expression (56) is an effective divisor and since B \D ∼= M0,5 is affine, we
only have to check positivity of c21 and the intersection with DHab

and DB

Γi,j
. For

the DB

Γi,j
-intersections this follows from the intersection numbers in Lemma 8.5. In

fact, the self-intersection number of DB

Γi,j
is negative only if ap + aq ≤ k for any

pair {p, q} disjoint from {i, j}. Using Lemma 8.3 we compute in this case that

[DB

Γi,j
] · c1(Ω

1
B
(logDhor)) =

κij
k

(2ap + 2aq + 2ar − ai − aj
k

− 1
)
,

where {a1, a2, a3, a4, a5} = {ai, aj , ap, aq, aq}. Since ai + aj < k, this expression is
positive. Moreover, one directly computes

[DHa,b
] · c1(Ω

1
B
(logDhor)) = 0 .

That c1(Ω
1
B
(logDhor))

2 > 0 is a consequence of the above, as c1(Ω
1
B
(logDhor)) is

by Equation (56) a linear combination of the divisors DB

Γi,j
and DB

hor with positive

coefficients. �
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