BUILDINGS, VALUATED MATROIDS AND TROPICAL LINEAR SPACES

Kevin Kühn (kuehn@math.uni-frankfurt.de) and Arne Kuhrs (kuhrs@math.uni-frankfurt.de) joint with Luca Battistella, Martin Ulirsch and Alejandro Vargas

THE COMPACTIFIED AFFINE BUILDING

Let K be a complete field with respect to a nonarchimedean valuation val : $K \to \overline{\mathbb{R}} = \mathbb{R} \cup \{\infty\}$ and V a finite-dimensional vector space over K. A norm on V is a map $||.||: V \to \mathbb{R}$ that fulfills the following axioms: (i) For all $v \in V$ we have $||v|| \ge 0$ and ||v|| = 0 if and only if v = 0.

(ii) For all $v \in V$ and $\lambda \in K$ we have

LIMITS OF LINEAR TROPICALIZATIONS

For any linear embedding $\iota = [f_0 : \cdots : f_n] : \mathbb{P}^r \hookrightarrow \mathbb{P}^n$ with $f_0, \ldots, f_n \in (K^{r+1})^*$, we have a continuous and surjective map

 $\pi_{\iota}: \overline{\mathcal{X}}_r(K) \to \operatorname{Trop}(\mathbb{P}^r, \iota)$ $[||.||] \mapsto [-\log ||f_0|| : \cdots : -\log ||f_n||].$

Let I be the category of linear embeddings $\mathbb{P}^r \hookrightarrow$ $U \subseteq \mathbb{P}^n$, where U is a torus-invariant open subset of

REALIZABLE VALUATED MATROIDS

Let $\iota = [f_0 : \cdots : f_n] : \mathbb{P}^r \hookrightarrow \mathbb{P}^n$ with $f_0, \ldots, f_n \in$ $(K^{r+1})^*$ be a linear embedding. Then we can associate to it a **realizable valuated matroid** v of rank $r+1 \text{ on } [n] = \{0, \dots, n\}$ by

 $v \colon \binom{[n]}{r+1} \longrightarrow \overline{\mathbb{R}}$ $\{a_0,\ldots,a_r\} \longmapsto \operatorname{val} \left(\operatorname{det} \left[f_{a_0} \cdots f_{a_r} \right] \right).$

 $||\lambda \cdot v|| = |\lambda| \cdot ||v|| .$

(iii) For all $v, w \in V$ the strong triangle inequality

 $||v + w|| \le \max\{||v||, ||w||\}$

holds.

If in (i) we only require $||v|| \ge 0$ and allow vectors $v \in V - \{0\}$ with ||v|| = 0 we say that ||.|| is a seminorm.

For any basis $B = (b_1, \ldots, b_n)$ of V and $\vec{a} =$ $(a_1,\ldots,a_n) \in \overline{\mathbb{R}}^n$ we obtain a diagonalizable seminorm

 $||\sum_{i=1}^{n} \lambda_i b_i||_{B,\vec{a}} = \max_{i=1,\dots,n} \{|\lambda_i|e^{-a_i}\}.$

Two seminorms $||.||_1$, $||.||_2$ are said to be **homothetic**, if there is a constant c > 0 such $||.||_1 = c \cdot ||.||_2$.

Definition

The (bordified) Bruhat–Tits building $\overline{\mathcal{B}}_r(K)$ of PGL_r is defined to be the quotient space of nontrivial diagonalizable seminorms on $(K^{r+1})^*$ by homothety. We equip $\overline{\mathcal{B}}_r(K)$ with the topology of pointwise convergence.

Likewise, we define the (compactified) Goldman-**Iwahori space** $\overline{\mathcal{X}}_r(K)$ to be the quotient space of all nontrivial seminorms on $(K^{r+1})^*$ by homothety.

 \mathbb{P}^n , with toric morphisms commuting with the respective embeddings. Toric morphisms functorially yield continuous maps on the respective tropicalizations.

Theorem A [BKKUV23]

The tropicalization maps induce a natural homeomorphism

 $\overline{\mathcal{X}}_r(K) \xrightarrow{\sim} \varprojlim \operatorname{Trop}\left(\mathbb{P}^r, \iota\right).$

Hence, for K spherically complete we have:

Slogan: The (compactified) building $\overline{\mathcal{B}}_r(K)$ is the limit of all **linear** tropicalizations.

FAITHFUL TROPICALIZATION

Theorem B [BKKUV23]

Let $\iota \colon \mathbb{P}^r \hookrightarrow \mathbb{P}^n$ be a linear embedding. Then there is a natural piecewise linear embedding J: $\operatorname{Trop}(\mathbb{P}^r, \iota) \to \mathcal{B}_r(K)$ that makes the following

To any valuated matroid v on [n] one can associate a tropical linear space $\mathcal{L}(v) \subset \mathbb{TP}^n$ which is a polyhedral complex $\mathcal{L}(v)$ of pure dimension r. By [Spe08, Proposition 4.2] we have

 $\mathcal{L}(v) = \operatorname{Trop}(\mathbb{P}^r, \iota).$

INFINITE TROPICALIZATION

Let v be a valuated matroid of rank r+1 on a possibly infinite ground set E. We can associate to it the tropical linear space $\mathcal{L}(v) \subset \mathbb{TP}^E$ defined as the set of $(u_e)_{e \in E} \in \mathbb{TP}^E$ such that for any $\tau \in \binom{E}{r+2}$ the minimum $\min_{e \in \tau} v(\tau \setminus \{e\}) + u_e$ is attained at least twice. The tropical linear space can be written as an inverse limit of all full rank restrictions of v to finite subsets of E, hence it comes naturally equipped with a limit topology.

Theorem C [BKKUV23]

For the universal realizable valuated matroid $w_{\text{univ}} \colon \begin{pmatrix} E = K^{r+1} \\ r+1 \end{pmatrix} \longrightarrow \overline{\mathbb{R}}$

While $\overline{\mathcal{X}}_r(K)$ turns out to be compact, $\overline{\mathcal{B}}_r(K)$ need not be in general. If K is spherically complete, e.g. discretely valued, we have $\overline{\mathcal{B}}_r(K) = \overline{\mathcal{X}}_r(K)$.

The building $\overline{\mathcal{B}}_1(K)$ of a trivially valued field K. Homothety classes of seminorms correspond to flags of subspaces of $(K^2)^*$ together with a single coordinate $c \in \overline{\mathbb{R}}_{>0}$. A norm in the homothety class corresponding to (V_1, c) has generic value 1, and value e^{-c} on $V_1 \setminus \{0\}$. In the case of $c = \infty$, we have a proper seminorm with kernel V_1 . The central point η corresponds to the class of the seminorm that is 1 everywhere except at 0.

diagram commute $\overline{\mathcal{B}}_r(K) \xleftarrow{J} \operatorname{Trop}\left(\mathbb{P}^r, \iota\right)$

An apartment $\overline{\mathcal{A}}(B)$ of $\overline{\mathcal{B}}_r(K)$ associated to a basis B of $(K^{r+1})^*$ is given by the homothety classes of seminorms diagonalized by B. The map π_{ι} induces a piecewise linear homeomorphism between the union of apartments $\bigcup \overline{\mathcal{A}}(B)$, where B ranges over the bases of the matroid associated to ι , and the tropicalized linear subspace $\operatorname{Trop}(\mathbb{P}^r, \iota)$.

Example: The Bruhat-Tits tree $\overline{\mathcal{B}}_1(\mathbb{Q}_2)$

induced by the permutation-invariant map val \circ det: $K^{(r+1)\times(r+1)} \to \overline{\mathbb{R}}$ we have

 $\overline{\mathcal{X}}_r(K) = \mathcal{L}(w_{\text{univ}}).$

Hence, for K spherically complete we have:

Slogan: The (compactified) building $\overline{\mathcal{B}}_r(K)$ is the tropical linear space associated to the universal realizable valuated matroid w_{univ} .

ANALYTIFICATION

To an algebraic variety X over K one can functorially associate a larger "analytic" space, the **Berkovich** analytification $X^{an} \supset X(K)$. If X is quasiprojective, X^{an} maps continuously and surjectively onto any tropicalization $\operatorname{Trop}(X,\iota)$, where $\iota : X \to \mathbb{P}^n$ is an embedding of X into a projective space.

[Pay09]: The analytification X^{an} of a quasiprojective algebraic variety X over K is the inverse limit of all tropicalizations with respect to all the

TROPICALIZATION

To any quasiprojective K-variety $X \stackrel{\iota}{\hookrightarrow} \mathbb{P}^n$ one can associate an (embedded) tropicalization

 $\operatorname{Trop}(X,\iota) \subset \mathbb{TP}^n$, where $\mathbb{TP}^n = \overline{\mathbb{R}}^{n+1} \setminus \{(\infty, \dots, \infty)\} / \mathbb{R} \cdot (1, \dots, 1)$ denotes the tropical projective space. The tropicalization is essentially given by taking coordinate-wise valuations.

The affine building $\mathcal{B}_r(\mathbb{Q}_p)$ has the description as a flag simplicial complex whose vertices correspond to (equivalence classes of) lattices, i.e. free \mathbb{Z}_p submodules of \mathbb{Q}_p^{r+1} of rank r+1. Concretely, $\mathcal{B}_1(\mathbb{Q}_p)$ is an infinite trivalent tree. An apartment $\mathcal{A}(B)$ associated to a basis $B = (b_1, b_2)$ of \mathbb{Q}_p^2 is an infinite path in the tree which uses all \mathbb{Z}_p -lattices with basis $(p^{u_1}b_1, p^{u_2}b_2)$ where $(u_1, u_2) \in \mathbb{Z}^2$. The boundary of $\overline{\mathcal{B}}_1(\mathbb{Q}_2)$ can be identified with $\mathbb{P}^1(\mathbb{Q}_2).$

embeddings in toric varieties.

There is a natural continuous surjective restricition map $\tau : \mathbb{P}^{r,\mathrm{an}} \to \overline{\mathcal{X}}_r(K)$ that factors the tropicalization map. If K is a local field, there is a natural embedding of $\overline{\mathcal{B}}_r(K) = \overline{\mathcal{X}}_r(K)$ into $(\mathbb{P}^r)^{\mathrm{an}}$. Theorem A then tells us that the collection of all linear re-embeddings $\mathbb{P}^r \hookrightarrow \mathbb{P}^n$ recovers exactly $\overline{\mathcal{B}}_r(K) = \overline{\mathcal{X}}_r(K)$. The main result of [Pay09], on the other hand, tells us that, once we also allow non-linear algebraic re-embeddings of \mathbb{P}^r into suitable toric varieties, we recover $(\mathbb{P}^r)^{\mathrm{an}}$.

References: [BKKUV23] L. Battistella, K. Kuehn, A. Kuhrs, M. Ulirsch, and A. Vargas. Buildings, valuated matroids, and tropical linear spaces. 2023. arXiv: 2304.09146 [math.AG]. [Pay09] S. Payne. "Analytification is the limit of all tropicalizations". In: Math. Res. Lett. 16.3 (2009), pp. 543–556. ISSN: 1073-2780.

[Spe08] D. E. Speyer. "Tropical linear spaces". In: SIAM J. Discrete Math. 22.4 (2008), pp. 1527–1558. ISSN: 0895-4801.