FUNCTORIAL TROPICALIZATION OF LOGARITHMIC SCHEMES OVER VALUATION RINGS

Kevin Kühn (kuehn@math.uni-frankfurt.de)

ABSTRACT POLYHEDRA

Let $\Gamma \subseteq \mathbb{R}$ be a subgroup, Δ be a topological space and Aff a group of real-valued continuous functions on Δ such that

- For all $\gamma \in \Gamma$ the constant function $\Delta \to \mathbb{R}, x \mapsto \gamma$ lies in Aff.
- The quotient $\operatorname{Aff}/\Gamma$ is finitely generated.

The setting one should think about is that Δ is a subset of a vector space and Aff is the group of Γ -affine linear

DIVISIBLE FINITENESS

Goal: Find sufficient and necessary conditions such that for an inclusion of monoids $\Gamma^+ \hookrightarrow P$ there is a polyhedron (Δ, Aff) with $P \simeq Aff^+$ under Γ^+ . We need a "correct" finiteness condition on P. A first idea could be the following

Definition

Let $f: P \to Q$ be a morphism of monoids. We call f finite, if for some $l \in \mathbb{N}$ there exists a surjective

TROPICALIZATION

Let *K* be a non-archimedean field with value group $\Gamma \subset \mathbb{R}$ and *R* its valuation ring. Let \mathcal{X} be a scheme of locally finite type over *R* with generic fiber $X = \mathcal{X} \times_R K$.

The Raynaud Generic Fiber

First, let $\mathcal{X} = \operatorname{Spec} A$ for a finite type algebra A. Then we define its **Raynaud generic fiber** \mathcal{X}° as the space of all seminorms $|.|: A \to \mathbb{R}_{\geq 0}$ extending

functions on the vector space restricted to Δ .

We define the lattice $N = \text{Hom}(\text{Aff} / \Gamma, \mathbb{Z})$ and $N_{\mathbb{R}} = N \otimes \mathbb{R} = \text{Hom}(\text{Aff} / \Gamma, \mathbb{R})$. Then

Hom_{Γ}(Aff, \mathbb{R}) = { $x : Aff \to \mathbb{R} \mid x|_{\Gamma} = id$ } is an $N_{\mathbb{R}}$ -torsor. Each $\varphi \in Aff$ induces a function Hom_{Γ}(Aff, \mathbb{R}) $\to \mathbb{R}$ and cuts out the half plane $\varphi^+ =$

 $\{x \in \operatorname{Hom}_{\Gamma}(\operatorname{Aff}, \mathbb{R}) \mid \varphi(x) \ge 0\}.$

Definition

We call the pair $(\Delta, \operatorname{Aff})$ a Γ -rational (abstract) polyhedron, if the product map $\Delta \to \operatorname{Hom}(\operatorname{Aff}, \mathbb{R})$ maps Δ homeomorphically onto a Γ -rational polyhedron in the $N_{\mathbb{R}}$ -torsor $\operatorname{Hom}_{\Gamma}(\operatorname{Aff}, \mathbb{R})$, which means that it is cut out by finitely many half-planes $\Delta = \bigcap_{i} \varphi_{i}^{+}$ with $\varphi_{i} \in \operatorname{Aff}$.

A **morphism** of Γ -rational polyhedra is a continuous map of the underlying topological spaces such that the pullback on the respective function groups is a well-defined group homomorphism.

Zero sets of the φ_i cutting out Δ are called **faces**. Faces themselves are Γ -rational polyhedra. We call Δ **pointed**, if it has a zero-dimensional face.

morphism of monoids $P \oplus \mathbb{N}^l \to Q$ restricting to f on P.

Problem: Let $\Gamma = \mathbb{Z} + \pi \mathbb{Z}$ and $\Delta = \left\{\frac{1}{2}\right\} \subset \mathbb{R}$. Then Δ is a Γ -rational polyhedron, but the morphism $\Gamma^+ \hookrightarrow \operatorname{Aff}^+ = \left\{\frac{a}{2} + b\pi \mid a, b \in \mathbb{Z}, \frac{a}{2} + b\pi \ge 0\right\}$

is not finite. This can be fixed in the following way:

Definition

We call f divisibly finite, if the induced morphism $D(P) \rightarrow Q \oplus_P D(P)$ is finite and f^{gp} is finite.

EQUIVALENCE OF POLYHEDRA AND MONOIDS

Let Γ^+ -*DFMon* denote the category whose objects are injective, divisibly finite monoid morphisms $\Gamma^+ \hookrightarrow P$, where P is integral, saturated and sharp.

Theorem There is a **categorical equivalence** between Γ^+ -*DFMon* and the category of Γ -rational pointed polyhedra: the norm on R with $|.| \leq 1$. There is a canonical morphism $\mathcal{X}^{\circ} \to X^{\mathrm{an}}$ into the Berkovich analytification after basechanging to K. In the general case, we can obtain a Raynaud generic fiber \mathcal{X}° by gluing.

Equip Spec R with the divisorial log structure of its closed point, assume that $\mathcal{X} = \operatorname{Spec} A$ is affine and that we have a log structure $M_{\mathcal{X}}$ such that

• $M_{\mathcal{X}}$ is associated to a chart $\alpha: P \to \mathcal{O}_{\mathcal{X}}$,

• $P = \overline{M}_{\mathcal{X}}(\mathcal{X})$, and

• $\{x \in \mathcal{X} \mid P = \overline{M}_{\mathcal{X},x}\}$ is non-empty and connected.

Given a morphism of log schemes $\mathcal{X} \to \operatorname{Spec} R$ such that the induced morphism $\Gamma^+ \to P$ is in Γ^+ -*DFMon*, we define the tropicalization map

trop : $\mathcal{X}^{\circ} \to \overline{\Delta} = \operatorname{Hom}_{\Gamma^{+}}(P, \overline{\mathbb{R}}_{\geq 0})$ $|.| \mapsto [p \mapsto -\log |\alpha(p)|].$

Example: Let $\mathbb{Z} \subset \Gamma$ and assume that there is a section of the valuation $s : \Gamma^+ \to R$. Denote by $t \in R$ the image of 1 under this section. Consider $\mathcal{X} = \operatorname{Spec} A$, where A = R[x, y]/xy - t and let $P = \Gamma^+ \oplus_{\mathbb{N}} \mathbb{N}^2$ via the diagonal morphism $\mathbb{N} \to \mathbb{N}^2$. We equip \mathcal{X} with the log structure $M_{\mathcal{X}}$ associated to $P \to R, (\gamma, (a, b)) \mapsto s(\gamma)x^ay^b$. Then there is a unique point $x \in \mathcal{X}$ with $P = \overline{M}_{\mathcal{X},x}$ and the image of the tropicalization map is the polyhedron

Example: Let $\Gamma = \mathbb{Z}$. Consider the Γ -rational polyhedron $\Delta = [0, 1]$. Then

 $Aff = \{mx + b \mid m \in \mathbb{Z}, b \in \Gamma\}.$

Let $\Delta' = [\frac{1}{2}, \frac{3}{2}]$, then their groups of affine functions are isomorphic, but the polyhedra are not.

MONOIDS: A QUICK REMINDER

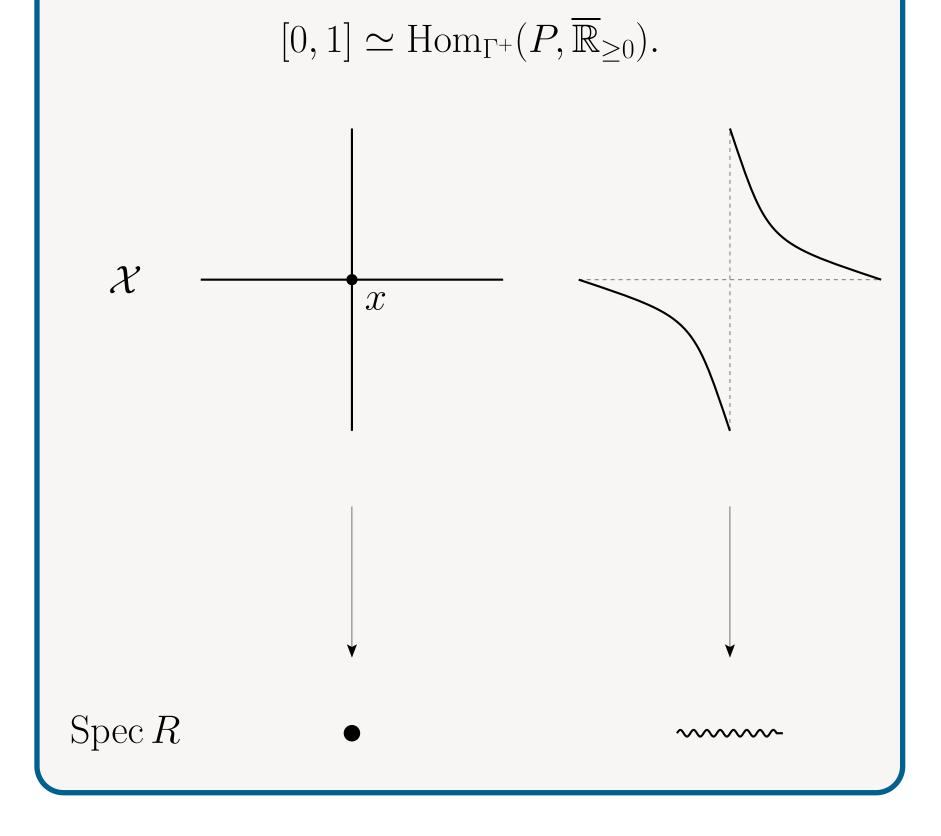
A (commutative) monoid is a set P with an associative and commutative binary operation + and a neutral element 0, e.g., $\Gamma^+ = \Gamma \cap \mathbb{R}_{\geq 0}$. To every monoid we can associate its Grothendieck group $P^{\text{gp}} \coloneqq \{p - q \mid p, q \in P\}$. We call a monoid P

- integral, if the inclusion morphism $P \to P^{\rm gp}$ is injective.
- saturated, if it is integral and for any natural number $n \in \mathbb{N}$ and $p \in P^{gp}$ we have that $np \in P$ implies $p \in P$.
- torsion-free, if np = 0 for some $n \in \mathbb{N}_{>0}, p \in P$ already implies p = 0.
- sharp, if 0 is the only invertible element in P.

 $[\Gamma^{+} \hookrightarrow P] \longmapsto (\operatorname{Hom}_{\Gamma^{+}}(P, \mathbb{R}_{\geq 0}), P^{\operatorname{gp}})$ $[\Gamma^{+} \hookrightarrow \operatorname{Aff}^{+}] \longleftrightarrow (\Delta, \operatorname{Aff}).$

This equivalence of categories above allows us to extend polyhedra: if $\Delta = \operatorname{Hom}_{\Gamma^+}(P, \mathbb{R}_{\geq 0})$ define $\overline{\Delta} = \operatorname{Hom}_{\Gamma^+}(P, \overline{\mathbb{R}}_{\geq 0})$.

Example: Let $\Gamma \subset \mathbb{R}$ be arbitrary with $\mathbb{Z} \subset \Gamma$ and let P be the monoid under Γ^+ generated by a, b, c with relations a + b + c = 1. Then $P^{\text{gp}} \simeq$ $\Gamma \oplus \langle a, b \rangle_{\mathbb{Z}}$ and one can check that P is both integral and saturated. We can identify $\text{Hom}_{\Gamma}(P^{\text{gp}}, \mathbb{R})$ with \mathbb{R}^2 , as we have no relations in P^{gp} on a, b. For any point $x \in \Delta = \text{Hom}_{\Gamma^+}(P, \mathbb{R}_{\geq 0})$ we thus have $x(a) \geq$ $0, x(b) \geq 0$, and $x(c) = x(1) - x(a) - x(b) \geq 0$. We thus can identify Δ with the triangle $\{(x_1, x_2) \in \mathbb{R}^2 \mid x_1 \geq 0, x_2 \geq 0, x_1 + x_2 \leq 1\}$.



OUTLOOK

The following is currently in progress.

• divisible, if for all $p \in P$ and $n \in \mathbb{N}$ there exists an element $q \in P$ with nq = p.

From now on we will assume all monoids to be integral and saturated. For any torsion-free monoid P we can assign a divisible monoid $D(P) \coloneqq \{\frac{p}{n} \mid p \in P, n \in \mathbb{N}_{\geq 1}\}$ containing P. Denote by $Q \oplus_P Q'$ the fibered sum of two morphisms $P \to Q$ and $P \to Q'$ in the category of integral and saturated monoids.

Remark: Let Δ be a Γ -rational polyhedron. Then the monoid of non-negative affine functions, denoted by Aff⁺, is integral, saturated, and sharp. We have $(Aff^+)^{gp} = Aff$ if and only if Δ is pointed.

 $\gamma \ge -a$

 $\gamma \ge 0$

The right hand side sketches the monoid P, which we identify with the subset of $\Gamma \oplus \langle a, b \rangle_{\mathbb{Z}} \subset \mathbb{R}^3$.

• Glue together the tropicalization maps to a (generalized) polyhedral complex when the log structure on \mathcal{X} is given by étale local charts of the form above.

• Show **functoriality** and continuity of the the tropicalization map.

• Explore applications to **polystable degenerations** of moduli spaces.

• Explore applications to toroidal **bordifications of reductive algebraic groups** over valuation rings.

 Interpret the tropicalization as a skeleton of the Berkovich space.