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Abstract. The following is a slightly extended version of the mini
course I gave at the Erwin Schrödinger institute in the summer school
of the thematic program “Geometry beyond Riemann: Curvature and
Rigidity”, organized by Ivan Izmestiev, Athanase Papadopoulos, Marc
Troyanov and Sumio Yamada.

We show how integral geometric methods, as introduced by Chern,
Weyl, Alesker and others, can be used to define very natural curvature
quantities associated to certain singular, but tame sets.

In the first lecture, we review the background from integral geom-
etry in flat spaces. The main point is the notion of valuation on convex
bodies. The second lecture generalizes this notion to smooth manifolds.
We introduce the normal cycle of a sufficiently tame set and introduce
the notion of smooth valuations and curvature measures. In the third
lecture we introduce the intrinsic volumes (also called Lipschitz-Killing
curvatures) on Riemannian manifolds. We give two different approaches:
the one due to Allendoerfer-Weil, Weyl and Alesker, based on isometric
embeddings, and the one due to Chern and Fu-Wannerer based on the
Cartan formalism.

In the last lecture, we use these results in order to associate cer-
tain curvature measures to singular sets, in particular a scalar curvature
measure. The classical variational formula for the Einstein-Hilbert ac-
tion can be generalized to the singular setting and allows to define a
distributional Einstein tensor of singular spaces.
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CHAPTER 1

Lecture I: Translation invariant valuations

In this lecture, we introduce the notion of valuation, which will be of
crucial importance in the remaining lectures. We state the most important
theorems concerning translation invariant valuations. Then we extend this
theory to certain classes of singular, but tame, sets.

1. Valuations

Let V be an n-dimensional real vector space. Let K(V ) denote the set
of non-empty compact convex bodies. If we fix a euclidean scalar product
on V with unit ball B, then the Hausdorff distance is defined by

d(K,L) = inf{ϵ : K ⊂ L+ ϵB, L ⊂ K + ϵB},K, L ∈ K(V ).

The distance depends on the choice of B, but the corresponding topology
on K(V ) does not.

Definition 1.1. A valuation is a functional ϕ : K(V ) → R such that

ϕ(K ∪ L) + ϕ(K ∩ L) = ϕ(K) + ϕ(L)

whenever K,L,K ∪ L ∈ K(V ).

Remarks: Many variations are possible.

• Sometimes C-valued valuations are considered. This is not a big
difference. Sometimes valuations with values in some abelian semi-
group are considered, for instance the space of measures on V (this
will be important for curvature measures), the space of measures
on the unit sphere (important for area measures), or the space of
compact convex bodies with the Minkowski addition (Minkowski
valuations).

• Instead of taking K(V ), one can consider valuations on a smaller
set like the set of all polytopes, or the set of integer polytopes. The
first case was considered in Max Dehn’s solution to Hilbert’s 3rd
problem. The second case is relevant in combinatorics (Ehrhart
theory).

• Valuations on function spaces, where union and intersection are
replaced by minimum and maximum, are a very active topic (in
particular in Vienna).

Some properties that valuations may have:
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6 1. LECTURE I: TRANSLATION INVARIANT VALUATIONS

• Continuity: this is with respect to the Hausdorff metric defined
above.

• Translation invariance: ϕ(K + v) = ϕ(K) for all v ∈ V .
• Rotation invariance: ϕ(gK) = ϕ(K) for all g ∈ SO(n) (here we
assume that V is euclidean).

• Homogeneity: ϕ(tK) = tλϕ(K), t ≥ 0 for some λ.
• Parity: µ(−K) = ϵµ(K). ϵ = 1 means even, ϵ = −1 means odd
valuation.

Let Val denote the vector space of continuous translation invariant val-
uations on K(V ). This is an infinite-dimensional space. Let Valϵk denote the
subspace of k-homogeneous valuations of parity ϵ.

Theorem 1.2 (McMullen). There is a decomposition

Val =
⊕

k=0,...,n,ϵ=±
Valϵk .

The spaces Val0 ∼= R · χ and Valn ∼= R · vol are 1-dimensional.

An example for an element ϕ ∈ Val is given by the valuation

ϕ(K) := vol(K +A),

where A is a fixed compact convex body. Using mixed volumes, the decom-
position of ϕ into homogeneous elements is given by

ϕ(K) = vol(K +A) = V (K +A, . . . ,K +A) =
∑
k

(
n

k

)
V (K[k], A[n− k]).

As a corollary, one can prove that

∥ϕ∥ := sup{|ϕ(K)| : K ⊂ B}
defines a norm on Val, where B is any compact convex set with non-empty
interior. The normed space (Val, ∥•∥) is a Banach space, and another choice
of B results in an equivalent Banach space.

2. The intrinsic volumes

Let ωi denote the volume of the i-dimensional unit ball.

Theorem 2.1 (Steiner [21]). Let V be a euclidean vector space of di-
mension n and K ∈ K(V ). Then there are real numbers µ0(K), . . . , µn(K)
such that the volume of the r-tube around K is given by

vol(K + rB) =

n∑
k=0

µk(K)ωn−kr
n−k.

The µi, i = 0, . . . , n are continuous valuations, called intrinsic volumes.
Moreover, if V ⊂ W is an isometric embedding, then µWk |V = µVk (with

the convention that µVk = 0 if k > dimV ).

Examples:
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• µ0(K) = 1. For reasons that will become clear afterwards, µ0 is
called Euler characteristic and denoted by χ.

• µn(K) = vol(K).
• µn−1(K) = 1

2 voln−1(∂K).
• If the boundary of K is smooth, then

µk(K) =
1

(n− k)ωn−k

∫
∂K

σn−1−k(x)dx,

where σn−1−k(x) is the (n−1−k)th elementary symmetric function
of the principal curvatures at x.

Let ValSO(n) be the subspace of rotation invariant elements. Clearly
µk ∈ ValSO(n).

Theorem 2.2 (Hadwiger [18]). The vector space ValSO(n) is spanned by
µ0, . . . , µn, in particular it is of dimension (n+ 1).

We will also need a local version of Steiner’s formula. Let U ⊂ V be a
Borel subset. Inside the r-tube K + rB, consider only those points whose
foot points on K belong to U . Then

vol((K + rB) ∩ π−1(U)) =

n∑
k=0

Φk(K,U)ωn−kr
n−k,

and the coefficient Φk(K,U) is called Lipschitz-Killing curvature measure.
For fixed K, the map U 7→ Φk(K,U) is a measure. For fixed U , the map
K 7→ Φk(K,U) is a (non-continuous) valuation.

3. Alesker’s irreducibilty theorem

The group GL(n) acts naturally on Val by

gϕ(K) = ϕ(g−1K).

It is obvious that the subspaces Valϵk are invariant under this action. A very
deep and important theorem by Alesker shows that these spaces can not be
further decomposed:

Theorem 3.1 (Alesker’s irreducibility theorem). The spaces Valϵk, k =
0, . . . , n, ϵ = ± are irreducible, i.e. every non-trivial GL(n)-invariant sub-
space of Valϵk is dense.

Definition 3.2. A valuation ϕ ∈ Val is called smooth if it is a finite
linear combination of valuations of the form ϕ(K) = vol(K + A) with A a
smooth convex body with positive curvature.

By Alesker’s irreducibility theorem, smooth valuations form a dense sub-
space, denoted by Val∞ in Val.

Remark: there are equivalent definitions. The original one, due to
Alesker, is the following: ϕ is smooth, if the map g 7→ gϕ is a smooth
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map from the Lie group GL(n) to the Banach space (Val, ∥ • ∥). The equiv-
alence of the two definitions was independently shown by Knörr and van
Handel. Later on, we will see another equivalent definition.

4. Algebraic structures

Theorem 4.1 (B’-Fu). There is a (commutative, associative) convo-
lution product on the space Val∞ of smooth valuations that is defined by
bilinearity and the following property: if ϕi(K) = vol(K + Ai), i = 1, 2 with
Ai a smooth convex body with positive curvature, then

ϕ1 ∗ ϕ2(K) = vol(K +A1 +A2).

The neutral element is the volume valuation. The convolution is compatible
with McMullen’s grading in the sense that if ϕi ∈ Val∞ki , then ϕ1 ∗ ϕ2 ∈
Val∞k1+k2−n. It satisfies a version of Poincaré duality: if ϕ ̸= 0 ∈ Val∞k , we
find ψ ∈ Val∞n−k such that ϕ ∗ ψ ̸= 0.

Theorem 4.2 (Alesker). There is a product on the space Val∞ of smooth
valuations that is defined by bilinearity and the following property: if ϕi(K) =
vol(K + Ai), i = 1, 2 with Ai a smooth convex body with positive curvature,
then

ϕ1 · ϕ2(K) = vol2n(∆K +A1 ×A2).

Here ∆ : V → V × V, v 7→ (v, v) is the diagonal embedding and vol2n is the
product measure on V ×V . The neutral element is the Euler characteristic.
The convolution is compatible with McMullen’s grading in the sense that if
ϕi ∈ Val∞ki , then ϕ1 ·ϕ2 ∈ Val∞k1+k2. It satisfies a version of Poincaré duality:
if ϕ ̸= 0 ∈ Val∞k , we find ψ ∈ Val∞n−k such that ϕ · ψ ̸= 0.

In the second theorem, it is not obvious but true that the resulting
valuation is smooth again: the singularities of ∆K and A1×A2 are in some
sense transversal.

Theorem 4.3 (Alesker). There is a Fourier type transform F : Val∞ →
Val∞ such that

F(ϕ1 · ϕ2) = Fϕ1 ∗ Fϕ2.
Moreover, the following Plancherel type formula holds:

F2ϕ(K) = ϕ(−K).

5. Some integral geometric formulas

Some integral geometric formulas follow easily from Hadwiger’s classi-
fication theorem. Sometimes they are taken as definitions of the intrinsic
volumes, and then Steiner’s formula becomes a theorem.

Theorem 5.1 (Crofton formula). Let k + l ≤ n. Then∫
Grn−k(V )

µl(K ∩ Ē)dϕ̄n−k(Ē) =

[
k + l
k

] [
n
k

]−1

µk+l(K),
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where

[
n
k

]
:=

(
n
k

)
ωn

ωkωn−k
and Grn−k(V ) is the Grassmann manifold of

affine (n−k)-planes in V , endowed with a conveniently normalized invariant
measure.

Theorem 5.2 (Kubota’s formula). For 0 ≤ k ≤ l ≤ n we have∫
Grl(V )

µk(πEK)dϕl(E) =

[
n− k
l − k

] [
n
l

]−1

µk(K).

Theorem 5.3 (Kinematic formulas). For K,L ∈ K(V ) andm = 0, . . . , n
we have∫

SO(n)
µm(K ∩ ḡL)dḡ =

∑
k+l=n+m

[
k
m

] [
n
l

]−1

µk(K)µl(L).

Here SO(n) is the group generated by translations and rotations, endowed
with the product measure.





CHAPTER 2

Lecture II: Smooth valuations and valuations on
manifolds

1. The normal cycle construction

Let us assume for simplicity that V is a euclidean vector space.

Definition 1.1. The normal cycle Nor(K) of K is the set of pairs
(x, v) ∈ V × Sn−1 with x ∈ ∂K and v a unit outer normal vector. It is
a Lipschitz submanifold of dimension (n− 1) in V × Sn−1.

We think of Nor(K) as an (n− 1)-dimensional current, i.e. a functional
on the space Ωn−1(V × Sn−1) of differential (n− 1)-forms on V × Sn−1.

Lemma 1.2. The normal cycle has the following properties:

(1) Nor(K) is an integer multiplicity rectifiable current.
(2) Nor(K) is indeed a cycle, i.e. vanishes on exact forms.
(3) Nor(K) vanishes on multiples of α and on multiples of dα.
(4) If K,L are compact convex bodies such that K∪L is convex as well,

then

Nor(K ∪ L) + Nor(K ∩ L) = Nor(K) + Nor(L).

Definition 1.3. A functional µ : K(V ) → R of the form

µ(K) =

∫
K
ϕ+

∫
NorK

ω, ϕ ∈ Ωn(V ), ω ∈ Ωn−1(V × Sn−1)

is called a smooth valuation.

From the last property in Lemma 1.2 one sees that a smooth valuation is
indeed a valuation. Moreover, a translation invariant valuation is smooth in
the sense of Definition 3.2 if and only if it is smooth in the sense of Definition
1.3, and in this case ϕ and ω can be chosen translation invariant. These facts
are not easy to prove.

2. Extension to non-convex sets

A very important fact in the theory of valuations is that smooth valua-
tions can be extended to certain non-convex sets.

Federer has introduced the sets of positive reach.

Definition 2.1. Let V be a euclidean vector space of finite dimension.
A set P ⊂ V is called set of positive reach if there is some r > 0 such that

11
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each point x ∈ V whose distance to P is less than r has a unique foot point
in P . The supremum over all such r is called the reach of P .

Although the reach of P depends on the choice of the euclidean scalar
product on V , the property of being of positive reach does not. More gen-
erally, one can define this notion on a riemannian manifold (or even in any
metric space). A theorem by Bangert [7] says that the image of a set of pos-
itive reach under a diffeomorphism is again of positive reach, in particular
the notion ”set of positive reach” is independent of the riemannian metric.

A manifold is locally modelled on Rn: the charts are maps ϕ : U →
ϕ(U), where ϕ(U) ⊂ Rn is an open set. Moreover, the coordinate change is
smooth. A manifold with boundary is locally modelled over the half space
Rn
+ = {(x1, . . . , xn) ∈ Rn : xn ≥ 0}. The boundary of M is then the set of

points that get mapped to the boundary of Rn
+, and one can show that this

property is independent of the coordinate chart. A manifold with corners
is locally modelled over the octant {(x1, . . . , xn) ∈ Rn : x1, . . . , xn ≥ 0}. It
admits a stratification by types, where the type of a point is determined
by the number of zero coordinates. Finally, a differentiable polyhedron is
locally modelled over a polyhedron in Rn. It also admits a stratification
by types, where the type is determined by the dimension of the face of the
polyhedron.

Definition 2.2. A semialgebraic subset of Rn is a finite union of sets
of the form

{x ∈ Rn|f1(x) = . . . = fl(x) = 0, g1(x) > 0, . . . , gm(x) > 0}
where fi, gj are polynomials.

Example: the semialgebraic subsets of R are precisely the finite union
of intervals.

By definition, finite unions of semialgebraic sets are semialgebraic and
it is easy to see that finite intersections are semialgebraic again. The com-
plement of a semialgebraic set is again semialgebraic: it is enough to check
this for a set of the form

{x ∈ Rn|f1(x) = . . . = fl(x) = 0, g1(x) > 0, . . . , gm(x) > 0},
whose complement is

l⋃
i=1

{fi(x) > 0} ∪ {−fi(x) > 0} ∪
m⋃
j=1

{−gj(x) > 0} ∪ {gj(x) = 0}.

Semialgebraic sets are in general not of positive reach, and convex sets
or sets of positive reach are in general not semialgebraic (however, there are
important classes of sets that are convex and semialgebraic, like spectahe-
dra).

Theorem 2.3 (Tarski-Seidenberg). Let π : Rn → Rk be the projection
onto the first k coordinates. If X ⊂ Rn is semialgebraic, then π(X) ⊂ Rk is
semialgebraic.
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Definition 2.4. A semianalytic subset of Rn is a finite union of sets of
the form

{x ∈ Rn|f1(x) = . . . = fl(x) = 0, g1(x) > 0, . . . , gm(x) > 0}

where fi, gj are real analytic functions (meaning that in a neighborhood of
each point, they agree with their Taylor expansion).

This class is closed under finite unions, finite intersections, and comple-
ment. However, it is not closed under projection.

Definition 2.5. A set X ⊂ Rn is subanalytic if there is some N > n
and a semianalytic set Y ⊂ RN such that X = π(Y ).

It is obvious that a semialgebraic set is semianalytic, and a semiana-
lytic set is subanalytic. See [11] for more information on semianalytic and
subanalytic sets.

A generalization is given by o-minimal structures. We refer to [23] or
[24].

Theorem 2.6. Let X be semialgebraic. Then

(1) X admits a Nash stratification, that is X =
⋃
Sα, where each Sα

is a semialgebraic subvariety such that if Sα ∩ S̄β ̸= ∅ for α ̸= β,
then Sα ⊂ S̄β and dimSα < dimSβ. We let Sd be the union of all
strata of dimension d.

(2) X can be written as a finite disjoint union of semialgebraic sets that
are (semialgebraically) homeomorphic to some open cube (0, 1)d.

It follows that one can define the Euler characteristic of a compact semi-
algebraic set X by χ(X) =

∑
d(−1)dnd, where nd is the number of cubes of

dimension d. In the non-compact case, one can define two different versions
of the Euler characteristic (corresponding to cohomology or to cohomology
with compact support). We will restrict to the compact case.

Important fact 2.7. For each class of tame sets described above, there
is a normal cycle construction. In particular, a smooth valuation µ can be
extended to such tame sets by setting

µ(X) =

∫
X
ϕ+

∫
NorX

ω.

In the case of sets of positive reach, the construction is as for convex bod-
ies. In the case of semialgebraic or subanalytic sets, one has to use stratified
Morse theory to attach certain integer multiplicities to outer normal vectors
in such a way that the resulting current is a cycle, see [13].

Corollary 2.8. The Euler characteristic is finitely additive in the sense
that if X,Y are compact semialgebraic sets, then

χ(X ∪ Y ) + χ(X ∩ Y ) = χ(X) + χ(Y ).
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3. Valuations on manifolds

The theory of valuations on manifolds was mainly developed by Alesker,
see [1, 2, 6, 4, 3, 5, 10].

LetM be smooth manifold. We assume for simplicity thatM is endowed
with a riemannian metric g. Let SM be the sphere bundle of M and π :
SM →M the projection. There is a canonical 1-form α on SM , defined by

α(x,v)(w) := ⟨v, dπ(w)⟩.

This makesM into a contact manifold. This means that kerα is a completely
non-integrable distribution in SM . Alternatively, one has that α∧ dαn−1 is
a nowhere vanishing form on SM . A differential form that is a multiple of
α is called vertical.

We let P(M) denote the set of compact differentiable polyhedra in M
(sets of positive reach or semialgebraic/subanalytic subsets would also work).
Then X ∈ P(M) admits a normal cycle, which is an (n − 1)-dimensional
current in SM .

Lemma 3.1. The normal cycle has the following properties:

(1) Nor(X) is an integer multiplicity rectifiable current.
(2) Nor(X) is a cycle, i.e. vanishes on exact forms.
(3) Nor(X) vanishes on vertical forms.
(4) If X,Y ∈ P(M) such that X ∪ Y ∈ P(M) is convex as well, then

Nor(X ∪ Y ) + Nor(X ∩ Y ) = Nor(X) + Nor(Y ).

(5) π∗Nor(X) = ∂X.

Definition 3.2. A smooth valuation on M is a functional µ : P(M) →
R of the form

µ(X) =

∫
X
ϕ+

∫
NorX

ω,

where ϕ ∈ Ωn(M), ω ∈ Ωn−1(SM). We also write µ = [[ϕ, ω]] in this case.
The space of smooth valuations is denoted by V(M).

A smooth curvature measure onM is a functional Φ : P(M) → Meas(M)
of the form

Φ(X,U) =

∫
X∩U

ϕ+

∫
NorX∩π−1(U)

ω,

where ϕ ∈ Ωn(M), ω ∈ Ωn−1(SM). We also write Φ = [ϕ, ω] in this case.
The space of smooth curvature measures is denoted by C(M). There is an
obvious surjective map C(M) → V(M),Φ 7→ [Φ], where [Φ](X) := Φ(X,M).

If M = V is a euclidean vector space, then V(M) coincides with the
notion from Definition 1.3.

It is important to notice that, by the properties of the normal cycle,
the forms ϕ, ω defining a valuation are not unique. To describe the kernel
precisely, we need the Rumin operator.
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Proposition 3.3 (Rumin operator, [20]). Let ω ∈ Ωn−1(SM). Then
there exists a unique vertical form α∧ ξ ∈ Ωn−1(SM) such that d(ω+α∧ ξ)
is vertical. The Rumin operator is the second order differential operator
D : Ωn−1(SM) → Ωn(SM) defined by Dω := d(ω + α ∧ ξ).

To find ξ, we must solve for the equation

dω + dα ∧ ξ ≡ 0 mod α,

which is possible by basic symplectic linear algebra (dα defines a symplectic
form on kerα), and involves one derivative of ω. Since we take d once more,
D is a second order differential operator.

Lemma 3.4. The Rumin operator has the following properties:

(1) D vanishes on vertical forms.
(2) D vanishes on exact forms.
(3) D vanishes on multiples of dα.

Proof. If ω is vertical, we take α ∧ ξ := −ω. If ω is exact, we take
α ∧ ξ := 0. If ω = dα ∧ τ , we take ξ := −dτ . □

We thus see that there is a strong connection between the forms that lie
in the kernel of D and those that lie in the kernel of each Nor(X). This can
be made precise as follows.

Theorem 3.5 (B’-Bröcker 2007, [10]). The pair (ϕ, ω) induces the trivial
valuation if and only if

(1) Dω + π∗ϕ = 0.
(2) π∗ω = 0.

Here π∗ denotes fiber integration, i.e. π∗ω(x) =
∫
SxM

ω.

The proof uses a local variation argument and Stokes’ theorem.
Remark: Chern has constructed in [16] a pair of differential forms such

that Dω + π∗ω = 0, π∗ω = 1. The corresponding valuation is the Euler
characteristic, i.e. ϕ(X) = χ(X).

An important fact in the theory of valuations on manifolds is the exis-
tence of a product structure on smooth valuations.

Theorem 3.6. There exists a natural commutative, associative product
V(M)× V(M) → V(M) with neutral element given by the Euler character-
istic. It satisfies a version of Poincaré duality: if ϕ ̸= 0 ∈ V(M), we find a
compactly supported ψ ∈ Vc(M) such that

∫
M ϕ · ψ ̸= 0. This last notation

means that we evaluate ϕ ·ψ at M (which is always possible if M is compact,
and still possible if M is non compact but the support of ϕ · ψ is compact).

In the case of M = V a euclidean vector space and translation invariant
valuations, the product coincides with the product from Theorem 4.2.





CHAPTER 3

Lecture III: Weyl’s principle

1. Alesker’s approach

In the previous lectures we have seen that there is a family of nice val-
uations on a euclidean vector space, the intrinsic volumes. On the other
hand, we also have valuations on manifolds, and one may ask whether there
is some version of the intrinsic volumes on a riemannian manifold. A first
partial answer was given by Weyl, who proved a version of Steiner’s formula
for manifolds.

Theorem 1.1 (Weyl [26]). Let M ⊂ RN be a compact submanifold of
dimension n, possibly with boundary. Then the volume of the r-tube around
M is given, for small r > 0, by a polynomial

volN (Mr) =
n∑

k=0

µk(M)ωN−kr
N−k.

The µk(M) do not depend on the embedding, but only on the inner geometry
of the Riemannian manifold (M, g).

Examples: Suppose that ∂M = ∅.
• µ0(M) = χ(M).
• µn(M) = voln(M).
• Important: µn−2(M) = 1

4π

∫
M sd vol, the total scalar curvature of

M . Recall that it plays an important role in GR (Hilbert-Einstein
functional).

• µk(M) = 0 if (n−k) is odd (ifM has a boundary, there are bound-
ary contributions, depending on the second fundamental form of
the boundary).

• µk(M) can be written as the integral over some (rather compli-
cated) polynomial in the Riemann curvature tensor of (M, g).

• µk(M) is a spectral invariant of the Laplacian acting on differential
forms [17]).

Since any riemannian manifold can be isometrically embedded in some
euclidean space by Nash’s theorem, we can associate the intrinsic volumes
µk(M) to any riemannian manifold by choosing an arbitrary isometric em-
bedding. However, these are only the global invariant, not yet the valuations.
However, Alesker noted that the same approach also works for valuations.

17
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Let X ∈ P(M). We use Nash’s embedding theorem to find an isometric
embedding ι : (M, g) ↪→ RN for some N . ιX is then in P(RN ) and as such
it has intrinsic volumes µk(ιX). We set µMk (X) := µk(ιX). One can then

show that this is independent of the choice of ι. The functional X 7→ µMk (X)
is a smooth valuation in the sense of the previous lecture. This follows from
the fact that the restriction of a smooth valuation to a submanifold is again
smooth.

Theorem 1.2 (Enhanced Weyl principle). • If (M, g) → (M̃, g̃)

is an isometric embedding, then µM̃k |M = µMk .
• Conversely, let µ be a functor that associates to each riemannian

manifold a smooth valuation ϕM such that ϕM̃ |M = ϕM whenever

(M, g) → (M̃, g̃) is an isometric embedding. Then there are con-
stants ck such that

µ =

∞∑
k=0

ckµk.

• With respect to the Alesker product of smooth valuations on mani-
folds, we have

µMk · µMl = µMk+l

In particular, the space spanned by the intrinsic volumes is closed
under product, it is called Lipschitz-Killing algebra. (with the con-
vention that µi(M) = 0 if i is out of range).

In other words, there is a universal algebra of intrinsic volumes, isomor-
phic to R[[t]] (formal power series), that restricts to the Lipschitz-Killing
algebra of (M, g) for every riemannian manifold (M, g).

2. Fu-Wannerer approach

Alesker’s approach is simple and geometric. The disadvantage of this
approach is that it uses Nash’s embedding theorem (which may be difficult in
practice) and does not give the differential forms (ϕ, ω) defining the intrinsic
volumes on a riemannian manifold (M, g).

Fu and Wannerer have given a direct approach based on Cartan’s ap-
paratus. We simplify their construction slightly by using double forms. We
refer to [22] for a recent account on double forms and their use in the proof
of the Chern-Gauss-Bonnet theorem.

Let M be a Riemannian manifold of dimension n. We let Ωp,q(M,M)
be the space of double forms on M of bidegree (p, q), i.e. sections of
ΛpT ∗M ⊗ ΛqT ∗M . Then the metric g ∈ Ω1,1(M,M) and the Riemann-
ian curvature tensor R ∈ Ω2,2(M,M). We let Ωp,q(SM,M) be the space of
double forms on SM of bidegree (p, q), i.e. sections of ΛpT ∗SM⊗π∗ΛqT ∗M .
Then the pull-back of the Levi-Civita connection with respect to the projec-
tion map π : SM → M can be used to define a form ω ∈ Ω1,1(SM,M) by
ω(p,v)(X,Y ) := ⟨(π∗D)Xv, Y ⟩. There is an obvious multiplication (wedge
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product in each factor) for double forms. Moreover, a double form in
Ωp,n(M,M) (or in Ωp,n(SM,M)) can be identified, using the Riemannian
volume, with a usual form in Ωp(M) (or Ωp(SM)). Then

ψp = Rp ∧ gn−2p ∈ Ωn,n(M,M) = Ωn(M)

ϕk,p = α∨ ∧Rp ∧ gk−2p ∧ ωn−k−1 ∈ Ωn−1,n(SM,M) = Ωn−1(SM).

Definition 2.1. Define curvature measures

Ck,p :=


ωk

πk(n−k)!ωn−k
[0, ϕkp] k < n

ωk

πk [ψp, 0] k = n

0 k > n

∈ C(M).

Finally we can define the Lipschitz-Killing curvature measures by

Λk :=
πk

k!ωk

∑
j

(k
2 + j

j

)
1

4j
Ck+2j,j ∈ C(M)

and valuations
µk := [Λk] ∈ V(M).

Theorem 2.2 (Weyl principle). If (M, g) → (M̃, g̃) is an isometric
embedding, then

ΛM̃
k |M = ΛM

k , µ
M̃
k |M = µMk .

If we want this theorem to hold, then the constants in the definition of
Λk have to be what they are. A curious fact that is not fully understood is
that this particular choice of constants has another remarkable property: if
we denote by ω the corresponding form on SM (some linear combination of
the ϕk,p), then dω is divisible by α, i.e. we do not need the correction term
in the construction of the Rumin differential.





CHAPTER 4

Lecture IV: Curvature measures

In the previous lecture we have defined the Lipschitz-Killing curvature
measures Λk on any riemannian manifold. In the final lecture we will relate
it to more classical curvature notions in riemannian geometry and show how
this approach can be used to define curvature notions on singular spaces.

1. The scalar curvature measure

Let (M, g) be a riemannian manifold of dimension n. For simplicity we
assume that M is without boundary. Then Λk(M, •) is a signed measure
on M . It follows from the Fu-Wannerer approach that this measure is given
by integration of some polynomial expression in the curvature tensor. More
precisely, Λk(M, •) ≡ 0 if k ̸≡ n mod 2, and Λk(M, •) is given by integrating
a polynomial of degree n−k

2 in the curvature tensor with respect to the
riemannian volume measure on M .

Examples:

(1) Λn(M ; •) equals the n-dimensional riemannian volume measure on
M .

(2) Λn−2(M,U) = 1
4π

∫
U sd vol, where s is the scalar curvature of M .

(3) If M is compact, µ0(M) = Λ0(M,M) is the Euler characteristic of
M (which is 0 if n is odd). The measure Λ0(M, •) is precisely the
Chern-Gauss-Bonnet measure, whose integral is the Euler charac-
teristic.

(4) The measure Λn−4(M, •) is given by integration of some quadratic
expression in the curvature tensor, but the geometric meaning is
less clear.

The second item suggests that even for a non-smooth set X of dimension
n, scal(X, •) := 4πΦn−2(X, •) may be a candidate for a scalar curvature
measure.

Let X ⊂ RN be a closed semialgebraic subset. More generally, we could
take (M, g) a real analytic riemannian manifold of dimension N and X ⊂M
a closed subanalytic set of dimension n. Then X admits a Nash stratifica-
tion, that is X =

⋃
Sα, where each Sα is a semialgebraic connected subvari-

ety such that if Sα ∩ S̄β ̸= ∅ for α ̸= β, then Sα ⊂ S̄β and dimSα < dimSβ.
We let Sd be the union of all strata of dimension d.

21
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Theorem 1.1 ([8]). Let X ⊂ RN be a closed n-dimensional semialge-
braic set with a Nash stratification. Then for Borel subset U ⊂ RN

scal(X,U) =
∑
S∈Sn

∫
S∩U

s(x)d voln(x) + 2
∑

S∈Sn−1

∫
S∩U

tr(IIx)d voln−1(x)

+ 4π
∑

S∈Sn−2

∫
S∩U

(
1

2
+ (−1)n

χloc(X,x)

2
− θn(x)

)
d voln−2

Here tr(IIx) is the sum of the traces of the fundamental forms at x of all n-
dimensional strata that contain S in their boundary, χloc(X,x) = χ(X,X \
{x}) is the local Euler characteristic, which is constant along the stratum,

and θ(x) := limr→0
voln(X∩B(x,r))

ωnrn
is the density of X at a point x.

The signed measure scal(X, •) is a good candidate for the scalar curva-
ture of such a set X. Namely, it is compatible with curvature bounds in the
sense of Alexandrov. Recall that on a riemannian manifold, if the sectional
curvature is bounded from below (or above) by κ, then the Ricci curvature
is bounded by below or above) by (n − 1)κg, which implies that the scalar
curvature is bounded from below (or above) by n(n − 1)κ. Now for metric
spaces, there is notion of being of sectional curvature bounded below by κ
(Alexandrov spaces), whereas being of scalar curvature bounded below will
be interpreted in terms of the scalar curvature measure scal(X, •).

Theorem 1.2 ([8]). Let X be a compact connected semialgebraic set
which is an Alexandrov space with curvature bounded below by κ ∈ R for its
inner metric. Then

scal(X, •) ≥ κn(n− 1) vol .

An analogous theorem holds with upper curvature bounds, but is has
some (necessary) additional topological assumptions on X.

Let us make some more comments. The three main curvature quantities
on a riemannian manifold are the sectional curvature, the Ricci curvature
and the scalar curvature. There have been different attempts to generalize
such quantities to certain singular sets. A well known theory is the metric
approach to (lower and upper) sectional curvature bounds by Alexandrov,
Toponogov, Burago, Gromov, Perelman and many others [12, 14, 15]. The
key idea is to compare triangles in a metric space with triangles in a model
space of constant sectional curvature. Concerning Ricci curvature, the basic
setting is that of a metric measure space, and (lower) Ricci curvature bounds
are expressed using convexity properties of the entropy functional under
optimal mass transport (see for instance [19, 25]). It is known that the
lower sectional curvature bounds (in Alexandrov sense) implies a lower Ricci
curvature bound. It is unknown whether a lower Ricci curvature bound
implies a lower bound on the scalar curvature measure, as in the above
theorem.
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2. Tensor valued measures

LetM be a smooth manifold of dimension n. Let C∞(M) be the Fréchet
space of smooth complex valued functions on M . Let M∞(M) be the
Fréchet space of smooth complex valued measures on M . By a subscript
c we denote the elements with compact support. We then have a map

C∞
c (M)×M∞(M) → C, (f, µ) 7→

∫
M
fµ

that induces an injection with dense image

M∞(M) ↪→ (C∞
c (M))∗ =:M−∞(M).

Elements of the space on the right hand side are called generalized measures.
For example, given x ∈ M , the Dirac delta δ0(f) := f(0) is a generalized
measure. A usual signed measure is also a generalized measure.

More generally, let E → M be a vector bundle over M of finite rank.
Let |ωM | be the line bundle of densities on M (the fiber at a point x is the
space of Lebesgue measures on TxM). Then we have a pairing

C∞(M, E)× C∞
c (M, E∗ ⊗ |ωx|) → R,

just pair an element of Ex with an element of E∗
x , and integrate the remaining

density over M . The induced map

C∞(M, E) ↪→ (C∞
c (M, E∗ ⊗ |ωx|))∗ =: C−∞(M, E)

is continuous, injective, and has dense image. Elements of the space on the
right hand side are called generalized sections.

Definition 2.1. A generalized symmetric 2-tensor on M is an element
of C−∞(M,Sym2(T ∗M)).

(The same definition would work for other tensor spaces, but we only
need this one). If M is a riemannian manifold, then we can trivialize the
bundle of densities, and we can identify Sym2(T ∗M)∗ and Sym2(T ∗M), so
that a generalized symmetric 2-tensor takes a compactly supported symmet-
ric 2-tensor h on M and gives us a real number. If q is a smooth symmetric
2-tensor, then we may consider it as a generalized one by taking the map

h 7→
∫
M
⟨h, q⟩d vol .

3. Variational formulas

Let (M, g) be a compact riemannian manifold of dimension n with scalar
curvature s and volume form vol. Let gt, t ∈ (−ϵ, ϵ) be a variation of the
metric, with h := d

dt |t=0gt, which is a symmetric bilinear form, not neces-
sarily positive definite. Let st and volt be the scalar curvature and volume
form of (M, gt). Then

d

dt
|t=0

∫
M
std volt =

∫
M

〈
h, ric− s

2
g
〉
d vol .
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The tensor E = ric − s
2g is the Einstein tensor. We want to generalize

this formula to tame sets. For this, let (M, g) be a riemannian manifold of
dimension m and X ⊂ M be a fixed tame set of dimension n. Let gt be
a variation of the riemannian metric as above. Since µMn−2(X, •) is up to a
multiple a good candidate for the scalar curvature measure of X, we can

consider d
dt

∣∣
t=0

µ
(M,gt)
n−2 (X, •).

Theorem 3.1 (Variations of intrinsic volumes, [9]). For each riemann-
ian manifold (M, g) and each variation gt with h := d

dt |t=0, there exists a

smooth valuation µ
(M,g),h
k on M such that for all compact tame sets X ⊂M .

d

dt
|t=0µ

(M,g+th)
k (X) = µ

(M,g),h
k (X).

For fixed X, the map h 7→ µ
(M,g),h
k (X) defines a generalized symmetric bi-

linear form on M .

For example, if X is n-dimensional and if the support of h is contained
in an n-dimensional stratum S of X, then

µ
(M,g),h
n−2 (X) =

1

4π

∫
S
⟨h, ric− s

2
g⟩d vol .

However, at lower dimensional strata, there are contributions that are not
smooth symmetric bilinear forms, but generalized ones.

4. Schlaefli’s formula

Let ∆ be a simplex in Rn. Then, according to Theorem 1.1 (or more
easily by looking at the contributions of each face in the Steiner polynomial)
we have

scal(∆) = 4π
∑

F∈Fn−2

voln−2(F )θF ,

where θF is the normalized outer angle at F .
Consider now a smooth family of simplices ∆t, t ∈ (−ϵ, ϵ) in Rn and

compute d
dt |t=0 scal(∆t) in two ways. First it is clear that

d

dt
|t=0 scal(∆t) = 4π

∑
F∈Fn−2

(voln−2(F )
′θF + voln−2(F )θ

′
F ).

But we can also apply the variational formula Proposition 3.1. To do
so, we realize that whenever we have two simplices ∆1,∆2 in Rn, there is
an affine map Φ : Rn → Rn such that Φ(∆1) = ∆2. Since intrinsic volumes
behave well with respect to isometric embeddings, we have

scal(∆2, geukl) = scal(Φ(∆1), geukl) = scal(∆1,Φ
∗geukl)

Hence if we have a family ∆t and ∆ := ∆0, then

d

dt
|t=0 scal(∆t) =

d

dt
|t=0 scal(∆,Φ

∗
t geukl),
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and this is precisely the situation of Proposition 3.1. We then get

d

dt
|t=0 scal(∆t,∆t) = 4π

∑
F∈Fn−2

voln−2(F )
′θF .

Comparing these two expressions, we obtain∑
F∈Fn−2

voln−2(F )θ
′
F = 0.

Since any polytope can be triangulated and the expression in the formula
is finitely additive, we obtain for every smooth variation Pt of polytopes in
Rn ∑

F∈Fn−2(P )

voln−2(F )θ
′
F = 0,

which is known as Schläfli’s equation. The same proof also works for higher
Schläfli formulas (just replace µn−2 by any µk), and on hyperbolic and spher-
ical spaces. See [9] for details.
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