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Abstract. We propose a notion of multi-scale stability conditions with the
goal of providing a smooth compactification of the quotient of the space of
projectivized Bridgeland stability conditions by the group of autoequivalence.
For the case of the 3CY category associated with the An-quiver this goal
is achieved by defining a topology and complex structure that relies on a
plumbing construction.

We compare this compactification to the multi-scale compactification of
quadratic differentials and briefly indicate why even for the Kronecker quiver
this notion needs refinement to provide a full compactification.
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1. Introduction

Spaces of Bridgeland stability on a triangulated category D have been intro-
duced in [Bri07]. By definition these spaces Stab(D) are non-compact, in fact they
admit a C-action that allows to rescale the central charges. The projectivizations
PStab(D) = C\ Stab(D) are still non-compact, since the ratio of masses of some ob-
jects may go to zero. Recently several partial compactifications have been proposed
([BDL20; Bol20; KKO22; BPPW22]), whose merits we compare at the end of the
introduction. Our goal is to provide a generalized notion of stability conditions that
could provide a smooth compactification in the sense of orbifolds of the quotient
C\ Stab(D)/Aut(D). In this paper we achieve this goal for the CY3-categories D3

Q

where Q is a quiver of An-type.
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Our approach is motivated by the isomorphism of Bridgeland-Smith [BS15] of
Stab(D3

Q) with spaces of quadratic differentials with simple zeros and the generaliza-
tion of this isomorphism to differentials with higher order zeros constructed in our
previous paper [BMQS22]. Its main result states that these are isomorphic to spaces
of stability conditions on quotient categories D3

Q/D3
QI

for some subquivers QI ⊂ Q.
In both contexts, simple and higher order zeroes, part of the isomorphism is given
by identifying central charges of (simple and stable) objects with the distance be-
tween zeroes with respect to the metric induced by a quadratic differential. A first
and naive idea would be to interpret collision of zeroes of a quadratic differential
as the vanishing of central charges. To get a smooth compactification this idea has
to be refined.

Our approach is also motivated by the smooth compactification [BCGGM3] of
strata of differentials by multi-scale differentials. From there we take the idea that
if central charges go to zero we ’zoom in’, i.e., we rescale and get another non-zero
’central charge’ on a subcategory. This ’central charge’ in turn might vanish on
some simple objects and forces us to rescale again, thus arriving at a filtration of
subcategories. From multi-scale differentials we also borrow the observation that
the result of the rescaling process is only well-defined up to multiplication by a
common scalar factor, resulting in the definition of equivalence below.

Combining these ideas we can now paraphrase our main notion, see Definition 4.1
for the precise formulation. A non-split multi-scale stability condition (A•, Z•) on
a triangulated category consists of

• a multi-scale heart A• = (Ai), i.e., a collection AL ⊂ · · ·A1 ⊂ A0 of abelian
categories, and
• a multi-scale central charge, i.e., a collection Z• = (Zi)L

i=0 of non-zero Z-
linear maps on the Grothendieck groups Zi : K(Ai)→ C, where Zi factors
through Ker(Zi−1),

with the following properties. First, the categories Ai are hearts of the ’vanishing’
triangulated subcategories VZ

i ⊂ D generated by objects E ∈ Ai−1 such that the
central charge of the previous filtration step vanishes, i.e. Zi−1(E) = 0. Second, the
central charges Zi map simples in Ai \Ai+1 to the semi-closed upper half-plane H.
(This implies that VZ

i+1 ∩ Ai is a Serre subcategory of Ai.) Third, the induced
quotient heart with quotient central charge (Ai, Zi) is a stability condition in the
usual sense of [Bri07] on the quotient category VZ

i /VZ
i+1. We say that two non-split

multi-scale stability conditions are equivalent if the induced quotients (Ai, Zi) are
projectively equivalent for all i ≥ 1. We denote by MStab(D) the set of equivalence
classes of those multi-scale stability conditions and add a circle (e.g. MStab◦(D))
to denote a specific connected component or a set of reachable stability conditions.

In this paper we only consider multi-scale stability conditions that are non-split
and thus drop this adjective from now on. In Section 1.2 below we will explain
why this notion needs refinements to provide compactifications for more general
categories D, even for other CY3 quiver categories D3

Q.
We recall that for D3

Q of type An the group of autoequivalences Aut ◦(D3
An

)
preserving a connected component of Stab(D3

An
) (modulo those acting trivially) is

an extension of Z/(n+3)Z by the spherical twist group ST(An), which is isomorphic
to a braid group, see Section 3.3.
Theorem 1.1. The quotient MStab◦(D3

An
)/Aut ◦(D3

An
) of the space of multi-scale

stability conditions has a structure of a complex orbifold. The projectivization of
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this orbifold C\MStab◦(D3
An

)/Aut ◦(D3
An

) is a compactification of the space of pro-
jectivized stability conditions up to autoequivalence C\ Stab◦(D3

An
)/Aut ◦(D3

An
)

As a complex orbifold, the space C\Stab◦(D3
An

)/Aut ◦(D3
An

) is simply the mod-
uli space of curves M0,n+2. The compactification C\MStab◦(D3

An
)/Aut ◦(D3

An
) is

however not equal to the Deligne-Mumford compactification M0,n+2. It is rather
a blowup of the latter, as we explain in Section 6.

1.1. Techniques. One important technique is the plumbing of a multi-scale sta-
bility condition, depending on complex numbers τi for i = 0, . . . , L, that builds a
usual stability condition. If τi ∈ iR− is purely imaginary for all i the result is just
the top level heart A0 together with a central charge that is a rescaled linear com-
bination of the Zi. One should envision that the size of Zi is e−πiτi , thus very small
for τi close to −i∞ and this is continuously completed by declaring that τi = −i∞
means no plumbing at all. The process of plumbing becomes interesting for τi not
purely imaginary. This involves rotating Ai. The higher level hearts Ai−1 etc.
then have to be modified to still contain the rotated heart while still providing the
same quotient heart. This modification of the representative however causes that
the plumbing action of (τ1, . . . , τL) ∈ −HL is not the action of a semigroup: the
semigroup addition and the action only almost commute, with an error that goes
to zero as τi → −i∞.

In this way, we give MStab◦(D3
An

) a topology by declaring neighborhoods of a
multi-scale stability conditions to be plumbings with ti := e−πiτi small composed
with a small deformation of the stability condition. However, this space is not
locally compact. In fact, for n = 2 the space is isomorphic to H ∪ P1(Q) with the
horoball topology, as we will explain in Section 6.4.

The complex orbifold structure on the quotient MStab◦(D3
An

)/Aut ◦(D3
An

) is lo-
cally given by the functions ti together with the central charges Zi. This statement
requires to control the stabilizer of a neighborhood of the multi-scale stability con-
dition. We show that this stabilizer contains a finite index subgroup isomorphic
to ZL.

For compactness of C\ Stab◦(D3
An

)/Aut ◦(D3
An

) the obvious idea is to normalize
in a given sequence of multi-scale stability conditions the mass of the largest simple
to be one, and then define an order on the set of simples corresponding to the
speed in which their central charges go to zero. The level sets for this order will
then correspond to the index set of the limiting multi-scale stability condition. The
challenge for this idea arises, if the central charge of a stable but non-simple object
tends to zero despite the normalization while the central charge of its simple factors
do not. This forces the central charge of some simple object to tend to the positive
real axis.

Consider for example the sequence σn = (A, Zn) of stability conditions on D3
A2

,
all supported on a fixed heart A and with

Zn(S1) = −1 + i/n, Zn(S2) = 1 + i/n . (1)

see Figure 1 for the picture of the corresponding quadratic differential. In the
limit n → ∞, the central charge vanishes precisely on the subcategory generated
by the non-trivial extension E of S1 by S2. Since E is not simple, it does not define
a non-trivial Serre subcategory of A, contradicting a consequence of our definition
of multi-scale stability condition.
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S2

S1

E

S2[1]

S1E

Figure 1. Quadratic differential illustrating a degenerating se-
quence in Stab◦(D3

A2
) and a rotated situation

The solution to find the limiting object is to rotate the sequence by λn so that
Zλnσn(S2) ∈ H−, see Figure 1 on the right. The heart A is replaced by A0 := µS2A,
the tilt one would usually perform also inside Stab(D3

A2
) if the central charge of

the simple S2 approaches the positive real axis. Now E is simple and the vanishing
category VZ

1 generated by E has the property that VZ
1 ∩ A0 is Serre in A0. The

limiting multi-scale stability condition consists of the filtration A0 ⊃ A1 = ⟨E⟩
together with Z0(S2[1]) = −1 and Z0(E) = 0 as well as Z1(E) arbitrary non-zero
in view of the notion of equivalence.

1.2. Obstructions to generalization. Continuing the idea of proof for compact-
ness we consider one of the simplest cases beyond An-type quivers, stability con-
ditions on the CY3-category of the Kronecker quiver, or, in the language of qua-
dratic differentials (see [BS15, Example 12.5]), the stratum Q(−3,−3, 1, 1) with two
triple poles and two simple zeros. We again consider a situation where the central
charge of a stable but non-simple object tends to zero within the normalization that
the mass of the largest simple is approximately one. Now using a small rotation
does not seem to help. The compactification of strata of differentials ([BCGGM3;
BCGGM2]) that we recall in Section 6 hints to the reason for this problem.

The boundary strata of the compactification are encoded by level graphs, whose
vertices correspond to components of stable curves and where a vertex v1 is above
a vertex v2 if the differential tends to zero on v2 more quickly than on v1. In terms
of multi-scale stability conditions we find the same level structure (given by index
of Ai) and components (given by the components of the ext-quiver on the simples
in Ai). However, for differentials we allow for horizontal degenerations, i.e., edges
between vertices on the same level. In this degeneration of the Kronecker quiver
alluded to above (with central charge as in (1)) we should normalize the sequence
to keep the length of the ’short’ stable object E (i.e. the extension of S1 by S2 or
geometrically the length of the core curve of the cylinder) constant. This happens
at the expense of letting the mass of both simples go to infinity. In the geometric
picture, the surface splits into two subsurfaces with quadratic differentials of type
(−3,−2, 1). It would be interesting to enlarge the concept of non-split multi-scale
differentials so as to include this ’splitting’ of the category.

It seems quite plausible that the current definition of (non-split) multi-scale
stability condition provides a partial compactification of C\ Stab◦(D3

Q)/Aut ◦(D3
Q)

to a complex orbifold for general quiver categories (or whenever Stab◦(D) is of tame
type). This requires to overcome several technical problems that we highlight along
with the definition of the topology in Section 4. Currently we rely on the fact that
hearts in D3

An
have finitely many indecomposables.
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1.3. Comparison to other compactifications. We are aware of four other pa-
pers aiming to compactify spaces of stability conditions. Bolognese [Bol20] uses
a metric completion to give a partial compactification. The Thurston-type com-
pactifications of Bapat, Deopukar and Licata [BDL20] and Kikuta-Koseki-Ouchi
[KKO22] use the tuple of all masses to get a map from the space of projectivized
stability conditions to some projective space and take the closure there. The space
of lax stability conditions of Broomhead, Pauksztello, Plog, Woolf [BPPW22] al-
lows some of the masses of semistable objects to be zero, but requires a modified
support property and zero being an isolated point of the set of all masses.

Common to all these approaches is that they aim to (partially) compactify the
space P Stab(D) of projectivized stability conditions whereas we compactify its quo-
tient by Aut ◦(D3

An
). Moreover in all these four papers the boundary or boundary

strata are real codimension one, whereas in our approach the boundary has com-
plex codimension one, since we construct a complex orbifold. We mention that
[BCGGM3, Section 15] proposes a real-oriented blowup of the complex orbifold,
thus a real manifold with corners, to which the GL+

2 (R)-action extends. This real-
oriented blowup construction can certainly also be incorporated into a modified
definition of multi-scale stability conditions. In this real blowup there are real codi-
mension one boundary strata, which parametrize stability conditions on a quotient
category by a rank one subcategory together – this is effect of the real blowup –
with the phase of the simple with vanishing mass. This seems to agree with the
codimension one boundary strata of [BPPW22]. Since both approaches, ours and
[BPPW22], use stability conditions on quotient categories and the difficulties often
stem from lifting problems, it would be interesting to compare or combine them.
However this does not seem to solve the problem of getting a compact space in a
more general setting, as we see no subsitute for the missing ’horizontal degenera-
tions’.

Acknowledgments. We thank Dawei Chen and Yu Qiu for inspiring discussions.

2. Background and notation

In this section we recall basic material about stability conditions, quivers and
their CY3-categories D3

Q. References for this includes [HRS96; GM03; BBD82;
Bri07; Bri09; Nee14; DWZ08; Kel11].

2.1. Notation and fundamental assumptions. We fix some notation that will
be used throughout. Let k denote an algebraically closed field, and any category
is additive, k-linear, and essentially small. We deal with finite-dimensional abelian
and triangulated categories of modules (resp., dg modules) over a finite-dimensional
algebra (resp., a dg algebra). Whenever we define a subcategory, we mean that there
is a fully faithful functor that we assume to be the embedding.

Given subcategories A1,A2 of an abelian or a triangulated category C, and a set
of objects B, we define (usually omitting the subscript C)

A1 ⊥C A2 := {M ∈ C | ∃ s.e.s or triangle T →M → F s.t. T ∈ A1, F ∈ A2},
if Hom(H1, H2) = 0 for any H1 ∈ A1 , H2 ∈ A2,
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We define ⟨B⟩ depending on the context to be the abelian category generated by B,
the thick triangulated category generated by B, the torsion-free class or the torsion
class generated by B.

Let A be an abelian category. It is called a (finite) length category if any object
E ∈ A admits a finite sequence of subobjects

0 = E0 ⊂ E1 ⊂ · · · ⊂ Em = E

such that all Ei/Ei−1 are simple. It is called finite if moreover it has finitely many
simple objects. If an abelian category is finite, its Grothendieck group is generated
by the isomorphism classes of its simples.

Let D be a triangulated category. For simplicity we make the strong assumption
that its Grothendieck group is a finite rank lattice K(D) ≃ Z⊕n. This is not the
general situation, though it will hold for the most relevant categories considered
later. The main reason for such an hypothesis is to simplify the definition of a
(multi-scale) stability condition.

Definition 2.1. A bounded t-structure on a triangulated category D is the datum
of a full additive subcategory P ⊂ D stable under positive shift such that P ⊥ P⊥ =
D, and moreover D is generated by ∪m∈Z

(
P[m]∩P⊥[−m]

)
. The heart of a bounded

t-structure is the subcategory P ∩ P⊥[1].

The heart A of a bounded t-structure is an abelian category. The cohomological
functor H0 : D → A realizes an isomorphism at the level of Grothendieck groups

H0
∗ : K(A) ≃ K(D).

Moreover, a bounded t-structure is uniquely determined by its heart as P =
⟨H[i], i ≥ 0⟩. For this reason we will speak about a t-structure or its heart in-
terchangeably.

There is a partial order on hearts A1 ≤ A2 defined by P1 ⊃ P2 or equivalently
P⊥

1 ⊃ P⊥
2 . A heart H will be called intermediate with respect to a fixed heart A if

A ≤ H ≤ A[1].

2.2. Torsion pairs and tilting. A torsion pair for an abelian category A consists
on a pair (T ,F) of full additive subcategories of A called torsion class and torsion-
free class, such that A = T ⊥ F . In other words, a torsion pair mimics a bounded
t-structure at abelian level. In fact, a torsion pair in the heart of a bounded t-
structure A in a D defines new bounded t-structures with hearts

µ♯
FA := T ⊥D F [1], µ♭

TA := F ⊥D T [−1]

They are called respectively the forward tilt at F (resp. backward tilt) at T , [HRS96].
They are related by µ♯

T [−1]µ
♭
TA = A and µ♭

F [1]µ
♯
FA = A. The forward tilt of A at

a torsion-free class is intermediate with respect to A; the backward tilt of A at a
torsion class is intermediate with respect to A[−1].

In a finite abelian category torsion and torsion free classes are closed under
extensions and are characterized by being closed under quotients and subobjects
respectively. This implies that any Serre subcategory is both torsion and torsion-
free class. When we tilt at a torsion(-free) class ⟨S⟩ generated by a simple object S,
we speak about a simple tilt and we simplify the notation to µ♯

SA and µ♭
SA. Suppose

A is a finite heart with simple objects Sim(A) := {S1, . . . , Sn}, which are rigid, i.e.,
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have no non-trivial self-extensions, and let S ∈ Sim(A). Then

Simµ♯A = {S[1]} ∪ {Cone
(
S

ev→ S[1]⊗ Ext1(T, S)∗)
[−1], S ̸= T ∈ SimA}

Simµ♭A = {S[−1]} ∪ {Cone
(
S[−1]⊗ Ext1(S, T ) ev→ T ), S ̸= T ∈ SimA} ,

see e.g. [KQ15]. Note also that the simple tilting of a finite heart in D is an-
other finite heart. In some cases tilting at a torsion (or torsion-free) class can be
decomposed into a finite sequence of simple tilts.

Proposition 2.2. Suppose that A is a finite heart.
(1) Tilting at torsion theory in A containing only finitely many indecomposables

is equivalent to performing a sequence of simple forward tilts.
(2) Conversely, suppose a1, . . . , ak is a finite sequence of objects in A such

that ai ∈ A is simple in µ♯
ai−1

. . . µ♯
a1
A. Then µ♯

ak
. . . µ♯

a1
A = µ♯

FA where
F = ⟨a0, . . . , ak⟩.

(3) More generally, for any two torsion-free classes F1 ⊂ F2 with F2 having
finitely many indecomposables, there is a sequence of simple tilts at objects
ai such that µ♯

F2
= µ♯

ak
· · ·µ♯

a1
µ♯

F1
and F2 = ⟨F1, a1, · · · , ak⟩.

Proof. For the proof of the first two items see [Woo10, Proof of Proposition 2.4]
and use the relation µ♯

T [−1](µ
♭
TA) = A to convert the statement about backward

tilts in loc. cit. to the given version. The last statement follows from [HLŠV22,
Section 7.1] (see in particular Proposition 7.5). □

2.3. Bridgeland stability conditions. Recall from [Bri07] that a stability con-
dition σ on a triangulated category D is a pair σ = (A, Z), consisting of the heart
of a bounded t-structure A, together with a central charge Z ∈ Hom(K(A),C),
i.e., a group homomorphism that maps the class of non-zero elements in A to the
semi-closed half plane H := {reπiθ ∈ R|r ∈ R>0, 0 < θ ≤ 1} and that satisfies the
support property and Harder-Narasimhan condition of loc. cit. We fix a finite rank
lattice K and a surjective morphism ν : K(A) → K and require that Z factors
through ν. In the case K(A) ≃ Zn we require that K = K(A) and ν = id.

We use that stability conditions can equivalently be specified as a σ = (P, Z)
using a central charge and a slicing, compatible in the sense that E ∈ P(ϕ) implies
Z([E]) = m exp(πiϕ) for some positive m ∈ R.

An object E ∈ D is called σ-semistable if E ∈ P(ϕ) for some ϕ ∈ R. It is called
σ-stable if it is simple in P(ϕ). This notion makes sense because any subcategory
P(ϕ) is abelian if P = {P(ϕ)}ϕ∈R is a slicing compatible with Z ∈ Hom(K(D),C).

Let λ ∈ C and suppose 0 < ϵ = Re(λ) ≤ 1. We observe, and will use later, that
σ-semistable objects X in the heart A (equivalently Z-semistable objects) with
1 − ϵ ≤ ϕ(X) < (≤)1 and those with 0 < ϕ(X) ≤ (<)1 − ϵ, for ϵ ∈ (0, 1), form a
torsion pair (Tλ,Fλ) in A due to the Harder-Narasimhan condition.

The space of stability conditions is a complex manifold Stab(D). There are two
natural commuting actions:

• a left action by C, by rescaling the central charge and tilting the heart, if
0 < Re(λ) ≤ 1,

λ · (A, Z) = (µFλ
A, e−πiλZ) ,

• and a right action by Aut(D) via pullback,
Φ.(A, Z) =

(
ΦA, Z ◦ [Φ]−1)

)
,
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where [Φ] is the map induced by Φ on K(D).
In particular the shift [1] acts as λ = 1. Note that the C-action does not change
the notion of semistability and stability.

We denote by Stab◦(D) be a connected component, specified by the context.
The stability manifold Stab(D) is tiled into subsets Stab(A) of stability conditions
supported on the heart A. The component Stab◦(D) is called finite type if is the
union of Stab(A) over finite hearts. It is called of tame type, if the C-orbits of
Stab(A) for all finite type hearts cover Stab◦(D).

We let Aut◦(D) be the subgroup of Aut(D) consisting on autoequivalences of D
that preserve the component Stab◦(D) and we define Nil◦(D) ⊂ Aut◦(D) the sub-
group of negligible autoequivalences, i.e. those that act trivially on Stab◦(D). We
use fancy fonts like

Aut ◦(D) = Aut◦(D)/Nil◦(D) (2)
to denote the quotient groups by negligible autoequivalences. It’s the quotient
spaces C\ Stab(D)/Aut(D) by these actions that we want to compactify.

2.4. Quivers with potential, module and Ginzburg categories. In this paper
(Q,W ) is a quiver Q = (Q0, Q1, s, t) with potential W (i.e., a formal sum of cycles)
up to right-equivalence, see [DWZ08; KY11] for standard results. We assume that
(Q,W ) has no loops and no 2-cycles, that the set of vertices Q0 and the set of
arrows Q1 are finite, and that the potential defines a bilateral ideal ∂W = ⟨∂aW |
a ∈ Q1⟩ ⊂ kQ such that the Jacobian algebra

J (Q,W ) := k̂Q/∂W,

obtained by quotienting the completed path algebra by the ideal defined by the po-
tential, is finite dimensional. Note that in our case of interest, k̂Q/∂W = kQ/∂W .
For a ring J , we denote by ModJ the abelian category of left modules and
by modJ the abelian category of finitely generated left modules. The category
modJ (Q,W ) is finite with simple objects Sim(modJ (Q,W )) = {S1, . . . , Sn},
where n = |Q0|.

If I ⊂ Q0 is a collection of vertices of (Q,W ), by (QI ,WI) we mean the restriction
of (Q,W ) to I. It is another finite quiver with potential, possibly disconnected,
defined by (QI)0 = I, (QI)1 = {a : i→ j ∈ Q1 | i, j ∈ I}, and with source, tail
functions, and potential obtained by restriction from (Q,W ) to I. We call it a
(full) subquiver. The complement of I in Q0 will be denoted Ic.

The mutation of a quiver with potential (Q,W ) at a vertex i is an operation
that produces another quiver with the same set of vertices and new set of arrow
and new potential, defined as follows. From Q1, keep all arrow not incident to i;
replace any arrow a with either s(a) or t(a) equal to i with its opposite; add an
arrow [ab] : k1 → k2 for any pair of consecutive arrow a : k1 → i and b : i → k2;
finally, remove any two-cycles. The new potential is the formal sum of W and∑

a,b∈Q1
[ab]b∗a∗.

The Ginzburg algebra of (Q,W ) is a dg algebra denoted Γ(Q,W ) and introduced
in [Gin06; KY11]. It does not depend on the mutation class of a quiver with
potential.

Definition 2.3. The perfectly-valued derived category pvd(Γ) associated with a dg
algebra Γ is the subcategory of the derived category D(Γ) consisting on dg modules
with finite dimensional total cohomology.
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Once we fixed (Q,W ) and I ⊂ Q0, we write J = J (Q,W ), Γ = Γ(Q,W ), and
JI = J (QI ,WI), ΓI = Γ(QI ,WI). We have the following inclusion of triangulated
categories, [KY11]

pvd(Γ) ⊂ per(Γ) ⊂ D(Γ).

It is proven in [KY11] that the standard t-structure with heart ModJ in the derived
category D(Γ) restricts to per(Γ) and pvd(Γ), on which it defines a bounded t-
structure with heart modJ , that we call standard as well.

The perfectly-valued derived category of the Ginzburg algebra of a quiver with
potential is 3-Calabi-Yau, which means that for any objects E,F ∈ pvd(Γ) there
is a natural isomorphism of k-vector spaces ν : Hom(E,F ) ∼→ Hom(F,E[3])∨.
Moreover, the simple objects in the standard heart modJ are spherical in pvd(Γ),
see [Kel11, Lemma 4.4] and [KQ15, Corollary 8.5].

If two quivers with potential (Q,W ) and (Q′,W ′) are related by mutations,
then D(Γ(Q,W )) ≃ D(Γ(Q′,W ′)) and pvd(Γ(Q,W )) ≃ pvd(Γ(Q′,W ′)). Therefore
modJ (Q′,W ′) is viewed as another heart of bounded t-structure of pvd Γ(Q,W ).
We recall that in general not all bounded t-structures have this shape.

It is clear that any property of pvd(Γ) and mod(J ) also holds for pvd(ΓI) and
modJI .

As explained in [KY18], the Ginzburg algebra ΓI is isomorphic to Γ/ΓeΓ, where
e =

∑
i∈Ic ei is the idempotent in Γ associated to the complement Ic = Q0 \ I. On

the other hand the dg algebra eΓe is the endomorphism algebra of the projective
module Γe =

∑
i∈Ic Γei in D(Γ) and the Verdier quotient D(Γ)/D(ΓI) coincides

with D(eΓe). Similarly JI = J /J eJ and the quotient perfectly valued and abelian
categories that will be relevant in the rest of the paper are pvd eΓe and mod eJ e:

0 // pvd ΓI
//

H0

��

pvd Γ

H0

��

// pvd eΓe //

H0

��

0

0 // modJI
// modJ // mod eJ e // 0.

The last line is part of a recollement of abelian categories, described for instance in
[Psa18].

In the rest of the paper we let
• D3

Q be the 3-Calabi-Yau triangulated category pvd Γ(Q,W ).
The case of primary interest will be quivers of type An, i.e., that can be obtained
with by finite sequence of mutations from the quiver

An := •1 // •2 // · · · // •n , n ≥ 1.

Any restriction of a quiver of type An is a union of quivers of type Am’s.
Given an An-configuration, and the abelian category modJ (An), we denote by

Si the simple module associated with the vertex i. For i ≤ k, we denote by Si...k

the J (An)-module defined inductively as the indecomposable fitting into the short
exact sequence

0→ Sk+1 → Si...(k+1) → Si...k → 0. (3)

The Si...k, are the projective resolutions Pi of Si in the abelian subcategory ⟨Si, . . . , Sk⟩
which is of A(k−i)-type by construction.
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3. Stability manifolds for marked surfaces

Decorated marked surfaces are one of the natural sources for quiver categories.
They are well-studied thanks also to the Bridgeland-Smith isomomorphism [BS15]
to spaces of quadratic differentials with simple zeros. We recall this result here,
together with the generalization in our previous paper [BMQS22]. This setup con-
tains our main case study, the An-quiver, and serves as motivation for the use
of quotient categories. Triangulations of decorated marked surfaces will serve as
reference point to pick out the right connected components of stability manifolds
needed in the later sections.

3.1. The stability manifold of a decorated marked surface. A natural way
to construct quivers is from triangulations of surfaces and we will use this formalism
to keep track of connected components of stability spaces and later the multi-scale
stabilty conditions.

A marked surface S = (S,M,P) consists of a connected bordered differentiable
surface with a fixed orientation, with a finite set M = {Mi}b

i=1 of marked points
on the boundary ∂S =

⋃b
i=1 ∂i, and a finite set P = {pj}p

j=1 of punctures in its
interior S◦ = S− ∂S, such that each connected component of ∂S contains at least
one marked point.

A decorated marked surface S∆ (abbreviated as DMS) is obtained from a marked
surface S by decorating it with a set ∆ = {zi}r

i=1 of points in the surface interior S◦.
These points are called finite critical points or finite singularities.

An open arc is an (isotopty class of) curve γ : I → S∆ such that its interior is in
S◦

∆ \∆ and its endpoints are in the set of marked points M. An (open) arc system
{γi} is a collection of open arcs on S∆ such that there is no (self-)intersection
between any of them in S◦

∆ \∆. A triangulation T of S∆ is a maximal arc system
of open arcs, which in fact divide S∆ into triangles.

The quiverQT with potentialWT associated to a triangulation T is constructed as
follows. The vertices correspond to the open arcs in T, the arrows of QT correspond
to oriented intersection between open arcs in T, so that there is a 3-cycle in QT
locally in each triangle, and the potential WT is the sum of all such 3-cycles.

For a fixed initial triangulation T0 we denote by ΓT0 = Γ(QT0 ,WT0) the Ginzburg
algebra associated with the quiver associated with T0 we let D3

QT0
= pvd(ΓT0) or

simply D3
Q the corresponding CY3-category. Finally, we define Stab◦(D3

Q) to be
the connected component of the space of Bridgeland stability conditions on D3

Q

containing stability conditions supported on the standard heart H0 of QT0 .
In this paper we fix throughout a DMS S of type An. It is a disc with b = 1

boundary component, which has n + 3 marked points, r = n + 1 finite critical
points in its interior, and no punctures. We use this reference surface and a refer-
ence triangulation on it to define the component Stab◦(DAn). Recall from [BS15,
Theorem 9.9 and Section 12.1] that the subgroup Aut◦(DAn) ⊂ Aut(DAn) preserv-
ing a connected component of Stab(DAn

) is an extension of Z/(n + 3)Z by the
spherical twist group ST(An).

In this language the main theorem of Bridgeland-Smith (for a general CY3-quiver
category D3

Q associated with a triangulation of S∆, see [BS15] for the excluded
cases) reads:



A SMOOTH COMPACTIFICATION: THE An-CASE 11

Theorem 3.1 ([BS15; KQ20]). There is an isomorphism of complex manifolds

K : FQuad◦(S∆)→ Stab◦(D3
Q) . (4)

This map K is equivariant with respect to the action of the mapping class group
MCG(S∆) on the domain and of the automorphism group Aut ◦(D) on the range.
These groups act properly discontinuously on domain, resp. range.

Here FQuad◦(S∆) is a space of framed quadratic differentials with simple zeros
at ∆, whose definition we recall along with the examples in Section 6. Its general-
ization to non-simple zeros motivates the notion of collapse and the use of quotient
categories, which we recall in Section 3.2.

As technical tool we introduce the exchange graph EG(S∆), the directed graph
whose vertices are the triangulations of S∆ and whose edges are given by (forward)
flips of the triangulation. The exchange graph EG(D) of a triangulated category
is the directed graph whose vertices are the finite hearts and whose edges are give
by forward tilts at simples in the heart. We denote by EG◦(S∆) the connected
component containing the initial triangulation T0 and by EG◦(D3

Q) the connected
component corresponding to the standard heart modJ (QT0 ,WT0). A key step in
the proof of Theorem 3.1 is the isomorphism

EG◦(S∆) ∼= EG◦(D3
Q) (5)

of exchange graphs.

3.2. Stability manifolds of certain quotient categories. Higher order zeros
are modeled by the collapse of a subsurface Σ ⊂ S∆ in a DMS. We use this to
deduce information on certain components of the stability manifold of the quotient
categories D3

Q/D3
QI

. We decompose Σ into connected components Σi, provide each
boundary component of Σi with an integer enhancement κij . To match hypothesis
with [BMQS22] we suppose throughout that κij ≥ 3 and consider Σ as a marked
surface with κij points on each boundary component.

To topologically formalize the collapse of Σ we define a weighted DMS (wDMS
for short) to be a DMS with a weight function w : ∆→ Z≥−1 where the total weight
is required to be ||w|| = 4g − 4 + |M| + 2b. Contracting Σ ⊂ S∆ and replacing
each boundary component by a decoration point in ∆ with weight wij = κij − 2
defines a wDMS that we usually denote by Sw. In the sequel (as in [BMQS22]) we
restrict to the case of no punctures p = 0, no unmarked boundary components and
w : ∆→ Z≥1.

To categorify the collapse we homotope the initial triangulation T0 such that
the arcs intersect the boundary of Σ in the marked points and such that T0|Σ is a
triangulation of this subsurface. In this way Σ becomes a DMS with a triangulation
and we may form the CY3-category D3(Σ). We define the Verdier quotient category

D(Sw) := D3(S∆)/D3(Σ) (6)

As in Section 3.1 there are two exchange graphs associated with this situation,
one based on “flips” and topology and the other based on tilts of hearts. The
isomorphism (7) below between these graphs is one of reasons to work with the
quotient categories.

A partial triangulation A of Sw is a collection of open arcs that triangulates the
subsurface of S∆ whose complement is homeomorphic to Σ, and such that each
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boundary component cij of Σ is homeomorphic in Sw \A to a (κij = wij + 2)-gon,
possibly with ends points identified.

On the set of partial triangulation A there is an operation of forward flip of an arc
γ ∈ A, defined by moving both endpoints counterclockwise one edge bounding the
subsurface of S∆\(A\{γ}) that contains γ. This generalizes the usual notion of flip
of triangulations, see [BMQS22, Figure 2]. We define the exchange graph EG(Sw)
to be the (infinite) directed graph whose vertices are the partial triangulations of
the decorated surface Sw and whose edges are given by forward flips.

Definition 3.2. Let V ⊂ D be a thick triangulated subcategory. We say that a
heart A of D is V-compatible, if A ∩ V is a Serre subcategory of A.

We call a heart A of D/V of quotient type if there is a V-compatible heart A
of D whose essential image in D/V is A.

We define the principal component EG•(Sw) to be the full subgraph of partial
triangulations that admit a refinement to a triangulation in EG◦(S∆), i.e. the full
subgraph given by triangulations reachable by a finite number of flips from T0. We
define the principal component EG•(D(Sw)) to be the full subgraph of EG(D(Sw))
consisting of hearts of quotient type that admit a representative in the distigu-
ished component EG◦(D(S∆)). It is a priori not clear that these definitions yield
connected components. This is proven along with [BMQS22, Theorem 5.9], which
moreover states that

EG•(Sw) ∼= EG•(D(Sw)) (7)
and that both graphs are (m,m)-regular.

We now define the principal component of the stability manifold Stab(D(Sw)) to
be

Stab•(D(Sw)) = C ·
⋃

H∈EG•(D(Sw))

Stab(H). (8)

The terminology is justified by the following results:

Proposition 3.3 ([BMQS22]). The space Stab•(D(Sw)) is union of connected
components of Stab(D(Sw)).

Referring to Section 6 for the definition of framed quadratic differentials we
recall here the generalization of the Bridgeland-Smith isomorphism that serves as
motivation for definition of multi-scale stability conditions using the comparison to
compactification of strata, see Section 6.

Theorem 3.4 (Theorem 1.1 of [BMQS22]). There is an isomorphism of complex
manifolds

K : FQuad•(Sw)→ Stab•(D(Sw))
between the principal part of the space of Teichmüller-framed quadratic differentials
and the principal part of the space of stability conditions on D(Sw).

3.3. Braid groups and spherical twists. Motivated by the relation to groups
of autoequivalences given in (17) and (18) below we recall a few basic properties of
the braid groups Bn+1 on n+ 1 strands, see e.g. [FM12, Section 9]. The standard
generators are the τi twisting the strands i and i + 1. They satisfy the defining
standard braid relations.

τiτjτi = τjτiτj if |i− j| = 1, and τiτj = τjτi if |i− j| ≥ 2, (9)
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The pure braid group is the kernel of the homomorphism recording the strand
permutation, i.e. sits in the exact sequence

0→ PBn+1 → Bn+1 → Sn+1 → 0 . (10)
The center of Bn+1 is cyclic, generated by the element

θn = (τ1τ2 · · · τn)n+1 (11)
except for the case where of n = 1, since B2 is cyclic where thus θ2 is the square of
the generator. In all cases the element θn as defined above also belongs to the pure
braid group PBn+1. As a special case of the Birman exact sequence we obtain

1→ Fn+1 → PBn+1 → PBn → 1 , (12)
where Fn+1 is the free group on n + 1 generators. This exact sequence is split by
adding the extra strand. Iterating this we obtain for each r consecutive integers a
natural homomorphism

φr,n : PBr+1 → PBn+1 (13)
Via this homomorphism we define for I = {1, . . . , r} the elements θI,n := φr,n(θr) ∈
Bn+1. These correspond to a full rotation of a disc encircling precisely the points
in I.

More generally we will define the braid group BQ associated with a quiver Q,
see [Qiu16, Definition 10.1 and Proposition 10.4]. It is generated by an element τ̃i

for each vertex of the quiver and defined by the relations
τ̃iτ̃j τ̃i = τ̃j τ̃iτ̃j if |i− j| = 1

τ̃iτ̃j = τ̃j τ̃i if |i− j| ≥ 2,
Ri = Rj for each cycle 1→ 2→ · · · → m→ 1 ,

(14)

where Ri = τ̃iτ̃i+1 · · · τ̃mτ̃1 · · · τ̃i−1. In the case Q = An we retrieve the above
definition of BAn

= Bn+1. We will be most interested in the case that Q is of
type An though not necessarily equal to An. Suppose the vertices in the index
set I form a subquiver of type Ar. Then the braid group of the restricted quiver
BQI

∼= Br+1 and we let θr be its central element. Inclusion of strands again defines
a natural homomorphism φI,n : BQI

→ Bn+1 and we define in this more general
context θI,n := φI(θr).

Given a quiver (Q,W ) and its Ginzburg algebra Γ, we let ST(Γ) ≤ Aut(pvd(Γ))
be the spherical twist group (see Seidel-Thomas [ST01]) of pvd(Γ), that is the
subgroup generated by the set of spherical twists ΦS for all simples S of Γ, where
the twist functor ΦS is defined by

ΦS(X) = Cone (S ⊗Hom•(S,X)→ X) . (15)
This uses that in the case D = D3

Q, as a consequence of [KQ15, Corollary 8.5], all
the simples in any heart of D are spherical.

Remark 3.5. For a heart A with simples S1, ..., Sn listed in an order such that
dim(Ext1(Sj , Si)) = 0 for j < i and dim(Ext1(Si, Sj)) = 0 for j > i the mutated
heart µ♯

Si
(A) has simples

S1, ..., Si−1, Si[1],Φ−1
Si

(Si+1), ...,Φ−1
Si

(Sn) ,
compare [BS15, Proof of Proposition 7.1]. Moreover,

µ♯
S[1]µ

♯
SA = Φ−1

S A . (16)
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We write ST(An) for spherical twist group of a quiver of type An.

Proposition 3.6 ([ST01; Qiu16; Qiu18]). There is an isomorphism ST(Γ) ∼= BQ

between the twist groups, sending the standard generators τi → ΦSi to the standard
generators. In particular the group ST(An) is isomorphic to the braid group Bn+1.

We now apply this to understand the groups of autoequivalences for D = pvd(Γ).
By [BS15, Theorem 9.9] there is an exact sequence

1→ ST (D3
Q)→ Aut ◦(D3

Q)→ MCG(S)→ 1, (17)

where ST (D3
Q) is the quotient of ST(D3

Q) by its subgroup of negligible automor-
phisms. In the special caseD3

Q = D3
An

the mapping class group is MCG(∆,Mn+3) ∼=
Z/(n+ 3), so there is an exact sequence

1→ Bn+1 → Aut ◦(D3
An

)→ Z/(n+ 3)→ 1 (18)
see e.g. [BS15, Section 12.1],

In Section 5.3 we need the following action on Grothedieck groups to control the
effect of the action of θI,n.

Lemma 3.7 ([Ike17, Section 4]). On K(D3
Q), a spherical twist ΦSi

induces a group
homomorphism [Φi] defined by

[Φi]([E]) = [E]− χ([Si], [E])[Si], (19)
where χ(·, ·) denotes the Euler pairing.

4. Multi-scale stability conditions

We start with a definition that makes sense for general triangulated categories
with finite rank Grothendieck group. We will then define a C-action and a notion
of plumbing stability conditions that will be used to give a topology on the set
of multi-scale stability conditions. In all these steps we have to be much more
restrictive, essentially restricting to D = D3

An
. We indicate the technical difficulties

needed to overcome in order to generalize to CY3-quiver categories or beyond.

Definition 4.1. Let D a triangulated category with rank(K(D)) < ∞. A multi-
scale stability condition on D consists of an equivalence class of the following data:

• a multi-scale heart A• = (Ai), i.e., a collection AL ⊂ · · ·A1 ⊂ A0 of
abelian categories, and

• a multi-scale central charge, i.e., a collection Z• = (Zi)L
i=0 of non-zero

Z-linear maps on the Grothendieck groups Zi : K(Ai)→ C,
with the property that

• the abelian category Ai is generated by the non-zero objects E in Ai−1 with
Zi−1(E) = 0 for all i ≥ 1,

• the abelian category Ai is a heart of Vi, which is defined as V0 = D and for
all i ≥ 1 as the thick triangulated subcategory of Vi−1 generated by Ai,

• the map Zi factors through Ki−1 := Ker(Zi−1),
• the induced heart Ai = Ai/Ai+1 together with the induced central charge
Zi : K(Vi/Vi+1) → C form a stability condition in the usual sense on
Vi/Vi+1 for all i = 0, . . . , L.

Two multi-scale stability conditions (A•, Z•) and (A′
•, Z

′
•) are equivalent, if

i) there is equality of triangulated categories Vi = V ′
i for i = 0, . . . L,
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ii) the induced stability conditions (Ai, Zi) and (Ai
′
, Z

′
i) are projectively equiv-

alent for i = 1, . . . , L, and are equal for i = 0.
Two multi-scale stability conditions (A•, Z•) and (A′

•, Z
′
•) are projectively equiv-

alent if the projective equivalence in ii) above holds for i = 0, . . . , L.

We write [A•, Z•] for an equivalence class, and (A•, Z•) for a representative of a
multi-scale stability condition. Moreover we denote by V• the collection of nested
triangulated subcategories (Vi) defined by (A•, Z•). Sometimes write VZ

i for the
categories Vi defined above to indicate the dependence on Z•.

The definition relies on the following lemma for the quotient hearts to be mean-
ingful.

Lemma 4.2. The subcategory Ai+1 is Serre in Ai and Ai+1 = Vi+1 ∩ Ai for
all i, i.e., Ai+1 is Vi+1-compatible in the sense of Definition 3.2. In particular, the
inclusion ι : Vi+1 → Vi is t-exact with respect to Ai+1 and Ai, and Ai induces a
quotient heart in Vi/Vi+1. Moreover, K(Vi/Vi+1) = Ki/Ki+1 so that Zi descends
to Zi, as required.

Proof. Serreness of Ai+1 ⊂ Ai follows from the additivity of Zi on short exact se-
quences and the fact that Zi takes values in a strictly convex sector in C. The second
statement follows from the observation that Zi(X) = 0 for any X ∈ Vi+1. Serre-
ness of Ai+1 ⊂ Ai guarantees that Vi+1 consists on objects of Vi whose cohomology
with respect to Ai is concentrated in Ai+1, and that the t-structure restricts, so
the next claim follows from [AGH19, Proposition 2.20] or [CR17, Lemma 3.3]. For
the last observe that Ki+1 is the image of ι∗ : K(Ai+1) → Ki and that the right
exact sequence K(Ai+1) → K(Ai) → K(Ai/Ai+1) → 0 is used to compute the
Grothendieck group of the quotient category. □

Let MStab(D) be the set of all multi-scale stability conditions on D. The inte-
ger L in Definition 4.1 will be referred to as the number of levels below zero of the
stability condition. A usual stability condition has L = 0.

Reachability. We now fix a component Stab◦(D) of the stability manifold of D.
If D = D3

Q3 is a quiver category we use an initial triangulation T0 of a DMS as in
Section 3.1 to single out this components.

A multi-scale stability condition (A•, Z•) is called reachable if the top level
heart A0 supports stability conditions in Stab◦(D). We denote the set of all reach-
able multi-scale stability conditions on D by MStab◦(D), and the set of reachable
multi-scale stability conditions with the same V• by MStab◦(D,V•).

In the next section, we will informally call a multi-scaled stability conditions with
at least one level below zero a boundary point, and finally prove this is actually the
case.

Groups of autoequivalences. For general D we define the group Aut(D,V) to
be the autoequivalences that stabilize V. For D = D3

Q we use bullets to denote
those autoequivalences that moreover stabilize the principal components defined in
Section 3.2.

Lemma 4.3. The factor group

Aut lift(D/V) := Aut •(D,V)/Aut •(V) (20)

acts properly discontinuously on Stab•(D/V).
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The stabilizer H[σ] ⊂ Aut lift(D/V) of a projectivized stability condition [σ] is a
finite extension of a subgroup Z in the center of Aut lift(D/V). In case D = D3

An

the group Z is the center, generated by θn defined in (11).

Proof. The first statement is shown in the proof of [BMQS22, Theorems 8.1, 8.2],
summarized here in Theorem 3.4, (see in particular the part about the orbifold
structure, together with Equation (5.7)).

For the second statement we may pass, thanks to the first statement, to the finite
index subgroup of the stabilizer H[σ] of a projective stability condition that acts
trivially on a neighborhood of the unprojectivized σ. As in the proof of [BMQS22,
Theorems 8.2], since the action of C and Aut lift(D/V) commute, the second state-
ment follows. The last claim is a restatement of braid group properties from Sec-
tion 3.3. □

4.1. Numerical data of multi-scale stability conditions of type An. From
here on we restrict to the case D = D3

An
. In this case we can completely describe

the subcategories and hearts that appear in a multi-scale stability condition.

Lemma 4.4. If (A•, Z•) is a multi-scale stability condition and A0 = modJQ,
then A1 = modJQI

where I is a subset of the vertices of Q, and V1 = pvd ΓI .
Moreover, there is a bijection of the subcategories VZ

1 with homotopy classes of
decorated marked subsurfaces Σ ⊂ S∆, such that each component Σj for j ∈ J is of
type Anj , i.e. a disc with nj + 1 decoration points in its interior and nj + 3 marked
points at its boundary. Here nj ≥ 1 and the decomposition is constrained precisely
by

∑
j∈J(nj + 1) ≤ n+ 1, where equality is allowed if and only if |J | ≥ 2.

Using this notation we say that VZ
1 is a subcategory of type ρ := (n1, . . . , n|J|).

Iterating this over all Vi appearing in a multi-scale stability condition, we say that
[A•, Z•] is of type ρ = (ρi)L

i=1, where ρi is the type of Vi.

Proof. Consider A1 ⊂ VZ
1 . Since A1 ⊂ A0 is Serre, it is generated by a subset S1 ⊂

Sim(A0) of the simples of A0, those whose Z0-image is zero. By the correspondence
summarized in Section 2.4 this defines the subquiver QI and shows A1 = modJI .

For the second claim, we show the chain of equalities
V1 = pvdJI

(Γ) = pvdΓ/ΓeΓ(Γ) = pvd(ΓI) ,

where pvdR(D) ⊂ pvd(D) is the full subcategory with cohomologies in modR. The
first follows using the characterization of A0 as a heart in terms of a decomposition
of objects in pvdJI

(Γ) into triangles and Serreness of modJI inA0, as in Lemma 4.2.
For the second we just intersect ΓI = Γ/ΓeΓ with H0Γ = J . The last equality
follows from [KY18, Corollary 6.4 (b)], where we can take B = Γ/ΓeΓ = ΓI thanks
to Theorem 7.1 in loc. cit.

Conversely, choosing Z0 to be zero for any subset of the simples and H-valued
for the complementary set of simples defines a subcategory VZ

1 that can be be
completed to a multi-scale stability condition.

We now translate into the language of Section 3. Let T be the triangulation of
the DMS S∆ corresponding to A0. Dual to the open arcs forming the triangulation
there are closed arcs connecting the decorating points. These are in canonical
bijection to the simples in A0, see e.g. the summary in [BMQS22, Theorem 7.2].
Let A∨

1 = {ηS , S ∈ S1} be the closed arcs corresponding to A1 and A1 the set of
dual closed arcs. Let Σ = Σ1 be the subsurface consisting of a tubular neighborhood
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of A∨
1 and let Σ(j) denote its connected components. They are all homotopic to a

disc containing a certain number, say nj + 1, of simple zeros with one boundary
component. Homotoping the open arcs in A0 so that they intersect Σ minimally, we
deduce from duality that precisely those in A1 have non-trivial intersection with Σ.
We may thus mark κ(j) = nj +3 points on the boundary of Σ(j) and restrict the arcs
in A1 to arcs in Σ connecting these boundary points so that A1|Σ is a triangulation
of Σ. In fact the quiver associated with each subsurface Σ(j) is of type Anj

.
The constraints for nj reflect that the total number of decoration points in S∆

has to be at least two and the fact that there is at least one simple outside A1,
i.e. a closed arc not contained in Σ. This arc has to connect Σ with a decoration
point outside Σ (the case of strict inequality) or connects two components (the case
|J | ≥ 2). □

As a consequence we may associate with each subsurface Σ(i)
j a subcategory V(j)

i

of Vi, that jointly give an orthogonal decomposition of Vi. We refer to V(j)
i as the

components of Vi.
Recall the notion of principal components from Section 3.2.

Corollary 4.5. Suppose that (A•, Z•) ∈ MStab◦(D3
An

). Then the quotient hearts
Ai ⊂ Vi/Vi+1 support a stability condition in the principal component Stab•(Vi/Vi+1)
of the stability manifold of Vi/Vi+1 for all i = 0, . . . , L.

Proof. In fact they belong to the one corresponding to the triangulation Ai|Σi
,

extending the notation of the previous proof in the obvious way. □

4.2. The C-action. Extending the C-action from usual stability conditions to
multi-scale stability conditions is a crucial ingredient for the subsequent plumb-
ing construction.

Proposition 4.6. Recall that we suppose D = D3
An

. Then there is an action of C
denoted by (λ, [A•, Z•]) 7→ λ · [A•, Z•] =: [A′

•, Z
′
•] on MStab◦(D), such that

(i) the collection of subcategories VZ
i = VZ′

i =: Vi is preserved,
(ii) Z ′

i = e−
√

−1πλZi, and
(iii) λ.(Ai, Zi) = (A′

i, Z
′
i) is the usual C-action on Stab(Vi/Vi+1).

Thanks to Proposition 4.6, proven below, we define the projectivized space of
multi-scale stability conditions PMStab◦(D) = MStab◦(D)/C. In this language
note that retaining just the filtration steps from a level j onward, i.e. the datum of
tuples (A≥j , Z≥j) together with the ambient triangulated category VZ

j−1 gives by
definition an element in PMStab◦(VZ

j−1) with L− j + 1 levels below zero.
The restriction D = D3

An
stems from two requirements in the proof. First, we

need finite type. Second, we need a way to lift tilts from quotient categories to D
itself. We have shown this for quiver categories in [BMQS22] and isolate this step
in the following notion.

Definition 4.7. Given a thick triangulated subcategory V ⊂ D, a heart A of D and
a simple object S in A \ (V ∩A), we call a heart A′ with A = A′ := A′/(V ∩A′) a
convenient representative with respect to (the forward tilt at) S if A′ is V-compatible
and if

ext1(T, S) := dim(Ext1(T, S)) = 0 for all simples T ∈ V ∩ A′ . (21)
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It means that a simple tilt of A at S induces a simple tilt of A at S.

Lemma 4.8. Suppose D = D3
Q. For every V-compatible finite heart A and every

simple S there exists a convenient representative A′, which can be obtained from A
by a finite sequence of simple tilts at simples in A ∩ V.

If A′ is a convenient representative for S, then µ♯
SA′ is V-compatible and

µ♯
SA′ = µ♯

SA′ . (22)

Proof. See [BMQS22, Proposition 5.8]. □

In the following we will give an explicit procedure for finding a convenient rep-
resentative if D = D3

An
, that will be useful later.

Lemma 4.9. Recall that we suppose D = D3
An

. Let A be a heart compatible
with V and let S0 ∈ A\A ∩ V be simple. Then there exist a (possibly empty)
set of indecomposables {S1, . . . , S1...m, S

′
1, . . . , S

′
1...m′} ⊂ A ∩ V explicitly defined

in the proof below, such that (µ♯
S′

1...m′
· · ·µ♯

S′
1
)(µ♯

S1...m
· · ·µ♯

S1
)(A) is a convenient

representative of A with respect to S0.

Proof. Observe that for any simple S ∈ A the number of (isomorphism classes of)
simples T in A satisfying ext1(T, S) = 1 is at most 2, since A = rep(Q,W ) with
(Q,W ) a quiver of An-type or, more generally, since it comes from a triangulation
of a surface. If there are no simples in A∩V with this property, then A is convenient
with respect to S0 and we are done. Otherwise, we fix a simple S1 ∈ A ∩ V with

ext1(S1, S0) = 1, (23)

and we define S1, . . . , Sm as the maximal collection of simples in A ∩ V, with

ext1(Si, Si−1) = 1 and ext1(Si+1, Si−1) = 0 (24)

for i ≥ 1. Note that the second condition in (24) singles out exactly one among the
two possible objects with non-trivial extension with Si. Consequently the collection
is uniquely specified for a given A, and the definition is well-posed. See Figure 2
for an example of the corresponding ext-quiver.

Sm Sm−1

...

S2 S1 S0

Figure 2. (Partial) ext-quiver containing the Am+1-configuration
of S0, S1, . . . , Sm defined in the text. The small red dots correspond
to simples in A∩ V, while the big blue dots correspond to simples
of A not in V.

Tilting A at S1 produces a configuration of simples in µ♯
S1
A ∋ S0 such that the

sequence of objects defined by (23),(24) in µ♯
S1
A has length m− 1 and consists on

S12, S3, . . . , Sm, as displayed in Figure 3 using the correspondence between simple
tilts and mutations.

Tilting inductively at S1...i (recall the notation from (3)), the procedure leads to
a configuration where such a sequence has length 0, as desired, see Figure 4. We
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Sm Sm−1

...

S12 S1[1]

S0

Figure 3. Mutation at S1 of the ext-quiver of Figure 2.

S1...m[1]
...

S3 S2

S0

Figure 4. The result of mutating at S1, S12, . . . , S1...m the ext-
quiver of Figure 2.

define X = ⟨S1...m, . . . , S1⟩ so that µ♯
X := µ♯

S1...m
· · ·µ♯

S1
by Proposition 2.2. By

construction, X ⊂ A ∩ V and µ♯
XA = A ⊂ D/V.

Suppose now that there exists another simple S′
1 ̸= S1 satisfying (23). Proceed-

ing in the same way we define S′
i using (23) and (24) and define inductively S′

1...i for
i = 1, . . . ,m′ as above. They are not in ⟨S1, . . . , Sm+1⟩, due to the second condition
in (24). Then, with X ′ = ⟨S′

1...m, . . . , S
′
1⟩,

µ♯
X ′µ

♯
X (A) = (µ♯

S′
1...m′

· · ·µ♯
S′

12
µ♯

S′
1
)(µ♯

S1...m
· · ·µ♯

S12
µ♯

S1
)(A)

is a convenient representative of A with respect to S0. □

Proof of Proposition 4.6. Here and in many cases in the sequel, all aspects of the
proof are visible in the situation with just two levels, i.e., L = 1, and for expository
simplicity we restrict to this case and if needed we mention briefly in the end how
to proceed by induction. Suppose Reλ ≥ 0, the other case is analogous.

For a rescaling by e−πiλ with λ ∈ iR and for a rotation (λ ∈ R) so that the phase
of no simple in A0 with non-zero central charge exceeds (0, 1], we just apply (ii) to
the multi-scale central charge and all the other conditions still hold. It thus suffices
to consider general rotations, i.e. λ ∈ (0, 1], repeating the process ⌊λ⌋ many times.

We denote by F1
λ ⊂ A1 the torsion-free class induced by the action of λ on (A1, Z1).

Similarly we let Fλ ⊂ A0 be the analogous torsion-free class for the λ-action
on (A0, Z0). We can decompose the tilt at Fλ as a composition of tilts at finitely
many simple torsion-free classes F i = ⟨Xi⟩ ⊂ A0 according to Proposition 2.2.

The subcategory F1
λ is a torsion-free class in A0 and we first forward-tilt A0

and A1 at F1
λ. Then we inductively “lift” the simple tilt at Xi at µ♯

Fi−1
A0

(i−1)

(with A0
(0) = A0) to the upper level in the following way. If S = X1, we apply

Lemma 4.8 and forward tilt A0 to arrive at a convenient representative A′
0 = µ♯

XA0
for S. Second, we tilt forward at S, and third, we perform the backward tilt at
X [1]. At the end we arrive at a heart A′′

0 on which Z0 is still well-defined, and with
the following properties:

(1) V ′′
0 = V0, since after each of the three steps the simples annihilated by Z0

generate the same category;
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(2) the quotient heart A′′
0 coincides with µ♯

SA0, thanks to (22);
(3) the intersection A′′

0 ∩V0 = A1, since the forward and backward tilts cancel
on A1.

Repeating this process for all i, in the end we change the central charge as required
by (ii). Using (1) at each step ensures (i), and (2) together with (3) at each step
ensure (iii). This procedure indeed defines an action of C, since the equivalence
class of the multi-scale stability condition is uniquely determined by the conditions
(i)–(iii). It obviously agrees with the C-action on Stab(V0/V1). □

For later use we record that the “lifts” of the tilts at F i used in the previous
proof are actually tilts at explicit torsion-free classes Fi.

Lemma 4.10. Recall that D = DAn
, let A• = (A0,A1) and Z• = (Z0, Z1). For

λ ∈ R≥0 such that
• λ · (A0, Z0) = (µ♯

S0
A0, e

−πλZ0) in Stab◦(D/V), and
• there are no indecomposables in A1 with phase ϕZ1

less than or equal to λ,
the action by λ on [A•, Z•] gives [A′

•, Z
′
•] with nested hearts

A′
0 = µ♯

FA0, A′
1 = A1,

for F = ⟨S′
01...m′ , . . . S′

01, S01...m, . . . S01, S0⟩, using the same notation as in proof of
Lemma 4.9. Moreover F ⊂ ⟨S0,A1⟩ \ A1.

Proof. Suppose for simplicity m > 0, m′ = 0 in the notation of Lemma 4.9. We
know that A′

0 = µ♭
X [1]µ

♯
S0
µ♯

XA0 by the procedure described in the proof of Propo-
sition 4.6. Since

⟨S0, S01, . . . , S01...m, S1, . . . , S1...m⟩ = ⟨S1, S12, . . . , S1...m, S0⟩
we deduce that

(µ♯
S1...m

· · ·µ♯
S1

)(µ♯
S01...m

· · ·µ♯
S01

)µ♯
S0

(A) = µ♯
S0

(µ♯
S1...m

· · ·µ♯
S1

)(A)

and hence µ♯
F (A) = µ♭

X [1]µ
♯
S0
µ♯

X (A). □

We use the subsequent lemma as a preparation for Proposition 5.2 below.

Lemma 4.11. Let Fi for i = 1, . . . , r be the torsion-free classes lifting the classes
F i ⊂ A0

(i−1) appearing in the proof of Proposition 4.6 and explicitly described by
Lemma 4.10. Then Fj ∩ Fi[1] = {0} for any j > i. Moreover, for any r′ ≤ r, the
result of the sequence of forward-tilts at Fi of A0 for i = 1, . . . , r′ is intermediate
with respect to A0.

Proof. By Lemma 4.10 the class Fi is generated by a simple object X in A(i−1)

together possibly with extensions of X with A(i−1) ∩ V1. Similarly is Fi−1 for an
object Y , with π(X) ̸= π(Y ) in D/V1, hence X ̸= Y , and also X ̸= Y [1] (since the
central charge defines a stability condition on the quotient). None of the extensions
of X with A1 can be in V1, nor they can just be extensions of Y [1] with V1. Hence
Fi ∩Fi−1[1] = {0} and Fi−1[1] ⊂ ⊥Fi. This is the start for an inductive argument.
In fact, we deduce that µ♯

F2
µ♯

F1
A0 ⊃ F2[1],F1[1]. Now the previous argument

shows that F3 does not intersect F2[1] and F1[1] non-trivially and we may proceed
with the induction.

The last part of the statement then follows from standard facts in tilting theory.
□
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5. The topology on the space of multi-scale stability conditions

The goal of this section is to provide the space of multi-scale stability conditions
MStab◦(D3

An
) with a natural topology so that the quotient by autoequivalences ac-

quires a complex structure (Section 5.3) and so that the further taking the quotient
by the C-action gives a compact space (Section 5.4) . The definition of neighbor-
hoods is based on the plumbing construction of Section 5.1 and explicitly given in
Section 5.2. The name of the construction is derived from [BCGGM3], see also
Section 6 where a plumbing construction is performed on Riemann surfaces and
where we will see that the constructions are analogous.

5.1. Plumbing of stability conditions. The plumbing construction takes as in-
put a multi-scale stability condition (Z•,A•) and a collection τ = (τ1, . . . , τL) ∈
−HL and outputs an honest stability condition. More generally, we will allow τ
to take the formal value τj = −i∞ for j any fixed subset J ⊂ {1, . . . L} and let
−H∞ = −H∪{−i∞}. The result of the plumbing construction will then be a multi-
scale stability condition with |J | levels below zero, the extreme case τ = (−i∞)L

being the identity, no plumbing at all. Using all tuples τ with each entry of large
(or infinite) imaginary part and then allowing small deformations of the result-
ing generalized stability conditions at each level will provide a neighborhood of
(A•, Z•).

For simplicity we start with a multi-scale stability conditions (A•, Z•) with L = 1
and let V = VZ

1 .

Proposition 5.1. Suppose that the representative (A•, Z•) of a multi-scale stabil-
ity condition has precisely one level below zero. For τ ∈ −H there is a (honest)
stability condition (A′, Z ′) = τ ∗(A•, Z•), the plumbing of (A•, Z•) with τ , uniquely
determined by the conditions

• (A′ ∩ V, Z ′|K(V)) = τ · (A1, Z1) for the usual C-action,
• the quotient central charges agree Z ′ = Z ∈ Hom(K(D/V),C), and
• the hearts A′ = A0 coincide in D/V.

Note that the plumbing procedure depends on a chosen representative. For the
definition of the topology we will use that the set {τ∗(A•, Z•), − Im(τ) > C} for any
fixed C does not depend on this representative, since the change of representative
results in translation of the corresponding τ by a real number. We use that

K(A0) = K(A0)⊕K(A1) given by Sim(A0) = Sim(A0)
∐

Sim(A1), (25)

(see e.g. the survey [Psa18, Proposition 2.9]) to define two projections

π0 : K(D) ≃ K(A0)→ K(A0), π1 : K(D) ≃ K(A0)→ K(A1) . (26)

Using these projections we combine central charges as

Z0 ⊕ Z1 := Z0 ◦ π0 + Z1 ◦ π1 .

Proof. The heart of τ · (Z1,A1) equals µFA1 for some torsion-free class F ⊂ A1 ⊂
A0. We take A′ = µFA0 and by [BMQS22, Lemma 5.6] the last condition holds.
Since µFA1 ⊂ A′ and since A′ is a finite heart thanks to D = D3

An
we can use

the observation (25) to get the decomposition K(A′/µFA1)⊕K(µFA1) and define
Z = Z0 ⊕ e−πiτZ1. This is indeed a central charge, since Z(S) ∈ H for all simples
S ∈ A1 by the hypothesis on Z0 and Z1. □
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Next we generalize to the action of τ = (τ,−i∞, . . . ,−i∞) on a multi-scale
stability condition (A•, Z•). In this case we apply Proposition 5.1 to the first two
levels ((A0,A1), (Z0, Z1)) and record as τ -image the tuple

(τ,−i∞, . . . ,−i∞) · (A•, Z•) = (A′,A2,A3 . . . , Z
′, Z2, Z3, . . .) , (27)

i.e. the top two levels have been merged to obtain a multi-scale stability condition
with L− 1 levels below zero.

This construction also gives a recipe for the plumbing τ ∗(A•, Z•) of a multi-scale
stability condition (A•, Z•) by a general τ ∈ −HL

∞. We take j to be the highest
index with τj ̸= −i∞. Then we apply the preceding construction to the multi-scale
stability condition (A≥j , Z≥j) on VZ

j and iterate with the action of the remaining
coordinates τ ′ = (τ1, · · · , τ̂j , · · · ). It will turn out that the plumbing procedure is
not quite independent of the order of the levels at which we perform the plumbing
step, only nearly so. The reason is that already one-level plumbing and rotation
are only nearly compatible. We need a quantitative version of this fact.

Proposition 5.2. Let (A•, Z•) be a fixed representative of a multi-scale stability
condition with L = 1. Let τ ∈ −H, λ ∈ C, with

0 ≤ Reλ, 0 ≤ Re τ, and 0 ≤ Re(λ+ τ) < 1. (28)
Then the hearts of the two stability conditions

σ̃ := (Ã, Z̃) := λ · (τ ∗ (A•, Z•)) and σ̂ := (Â, Ẑ) := τ ∗ (λ · (A•, Z•)) (29)
are intermediate hearts with respect to A0, and the difference of the central charges
may be coarsely estimated by∣∣∣(Ẑ − Z̃)(Sj)

∣∣∣ ≤ ℓ · |e−πi(λ+τ)|
∑

Si∈A1
simple

|Z1(Si)| (30)

for any simple Sj ∈ Sim(A0), where ℓ is the number of classes of indecomposables
in K(A0).

We recall from [Bri16, Proposition 7.4] that the local homeomorphism given by
the forgetful map Stab(D)→ Hom(K(D),C) is actually injective when restricted to
all hearts that are intermediate with respect to a given heart A0, i.e., in [A0,A0[1]].
Consequently, to show that σ̃ and σ̂ are nearby it suffices to estimate the differences
of the central charges if Ã, Â ∈ [A0,A0[1]].

Proof. The result of plumbing is given by definition as (A, Z) := τ ∗ (A•, Z•) with

A = µ♯
Fτ
A0 ⊃ µ♯

Fτ
A1, Fτ = ⟨E ∈ A1, Z1-semistable s.t. ϕZ1(E) ≤ Re τ⟩

Z := Z0 ⊕ e−iπτ · Z1 .

We first consider the case where
(⋆) there is exactly one isomorphism class [S0] ∈ K(A) of a Z-stable object in
A with phase 0 < ϕZ(S0) ≤ Reλ, and moreover [S0] ̸∈ K(V) .

(Note that S0 must be simple in A.) In this case the stability condition σ̃ is
given by Z̃ = e−iπλZ and Ã = µ♯

S0
A = µ♯

F̃
A0 with F̃ = ⟨Fτ , S0⟩. In particular

Ã ∈ [A0,A0[1]].
On the other hand the heart Â is obtained by τ -plumbing the multi-scale heart

(A1 ⊂ µ♯
FA0), where F = ⟨S0, S01, . . .⟩ ⊂ A0 is explicitly described in Lemma 4.10,
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since assumption (⋆) implies that the torsion-free class in A0 of objects with phase
0 < ϕZ0

≤ Reλ is generated by S0. Consequently,

Â = µ♯
Gµ

♯
FA0, where G = ⟨E ∈ A1, Z1-semistable s.t. ϕZ1(E) ≤ Re τ⟩

Since G ⊂ µ♯
FA0 ∩ V1 and µ♯

FA1 = A1 we deduce G ∩F [1] = {0} and consequently
(by the same arguments as in Lemma 4.11) we deduceA0 ≤ µ♯

FA ≤ Â = µ♯
Gµ

♯
FA0 ≤

A0[1] in the partial order from Section 2.1.
To compare central charges note that the plumbing procedure happens over two

different decompositions of K(D): one induced by K(A0/A1) ⊕K(A1), the other
induced by K(µ♯

FA0/A1) ⊕ K(A1). The change of basis K(µ♯
FA0) ≃ K(A0) =

K(A0/A1)⊕K(A1) has the form of a block lower-triangular matrix

[µF ]−1 =
(
Cn−k 0
B10 1k

)
,

where the entries of B10 = (bij)ij have absolute value at most 1, where we hardly
control the block Cn−k, and where the block 1k expresses that V is preserved. Using
the projections π0 and π1 onto the summands K(A0/A1)⊕K(A1) we find

Z̃ = e−πiλZ0 ◦ π0 + e−πi(λ+τ)Z1 ◦ π1

and
Ẑ = e−πiλZ0 ◦ π̂0 + e−πi(τ+λ)Z1 ◦ π̂1

= e−πiλZ0 ◦ π0 + e−πi(τ+λ)Z1 ◦ (π1 +B10π0),
(31)

where we see B10 as a map K(A0/A1)→ K(A1). Now consider the simples in A0.
For Sj ∈ A1, the two expressions agree. For Sj a simple of A0 not in A1, we find∣∣∣(Ẑ − Z̃)(Sj)

∣∣∣ =
∣∣∣ ∑
Si∈A1
simple

(e−πi(λ+τ)bij)Z1(Si)
∣∣∣ ≤ |e−πi(λ+τ)| ·

∑
Si∈A1
simple

|Z1(Si)|.

We now drop the assumption (⋆) and allow for multiple indecomposables X ∈ A
with 0 < ϕZ(X) ≤ Reλ .

The assumption (28) still guarantees that Ã ∈ [A0,A0[1]], and Z̃ = e−πiλZ0 ◦
π0 + e−πi(λ+τ)Z1 ◦ π1, as before.

The result of λ ·(A•, Z•) is a multi-scale stability condition σ′ with nested hearts
A′

1 ⊂ A′
0 that can be explicitly obtained as in the proof of Proposition 4.6 by

performing a forward-tilt at F1
λ and a sequence of forward-tilts at torsion-free classes

Fi described in Lemma 4.10 and Lemma 4.11. At each step, at the 0 level, the
matrix of the change of basis has the form of a block lower triangular matrix, with
a block B10̄ =

∏
i B

(i)
10̄ , whose entries have absolute value ≤ ℓ′

i, bounded by the
number ℓ′

i of classes of indecomposables in F1
λ or Fi. Lemma 4.11 guarantees that

the heart A′
0 is intermediate with respect to A0, and so is the heart of τ ∗σ′ thanks

to assumption 28. Similarly to (5.1), we obtain∣∣∣(Ẑ − Z̃)(Sj)
∣∣∣ ≤ |e−πi(λ+τ)| · ℓ

∑
Si∈A1
simple

|Z1(Si)|,

where ℓ is the number of classes of indecomposables in K(A0). Last, the case
Reλ = 0 is just easier, and the argument above shows that in such a case λ · (τ ∗
(A•, Z•)) = τ ∗ (λ · (A•, Z•)). □



24 ANNA BARBIERI, MARTIN MÖLLER, AND JEONGHOON SO

Remark 5.3. The same observation shows that the plumbing (with fixed parameter
τ ∈ −H) of a path γ ∈ MStab◦(D3

An
) \ Stab◦(D3

An
) is not continuous. Discontinu-

ities occur when some simple (not at bottom level) is tilted. However the size of the
jumps decreases with |e−πiτ |. More precisely, suppose that L = 1 and that γ is a
path for which at precisely one value t0 ∈ [0, 1] such a tilt occurs. Then the hearts
of the two stability conditions

σ+ := (A+, Z+) := lim
t→t+

0

(τ ∗ γ(t)) and σ− := (A−, Z−) := lim
t→t−

0

(τ ∗ γ(t))

are intermediate hearts with respect to the top level heart A0 of limt→t−
0
γ(t0) and

the difference of the central charges may be coarsely estimated by∣∣(Z+ − Z−)(Sj)
∣∣ ≤ ℓ · |e−πiτ |

∑
Si∈A1
simple

|Z1(Si)| (32)

for any simple Sj ∈ Sim(A0), where ℓ is the number of classes of indecomposables
in K(A0). The proof is exactly the same as for the previous proposition.

Let again 0 ≤ Re(τ) < 1 and decompose τ = τR + iτI into its real and imaginary
part. We observe that the plumbing in Proposition 4.6 can be viewed a composition
of three steps: First we apply the action of τR, resulting in a tilt at a torsion-free
class F ⊂ A1 and turning Z1 by e−πiτR resulting in some other representative
(ARe(τ)

• , Z
Re(τ)
• ) of the multi-scale stability condition. Second we rescale e−πiτRZ1

by eπτI , and finally we form the direct sum Z and drop the lower levels to get
an honest stability condition. The observation that [µF ]−1 in the previous proof
preserves V1 and the first step just described does preserve V1 as well, together
imply the following corollary where we relax the bound for Re(τ) appearing in
Proposition 5.2.

Corollary 5.4. Let (A•, Z•) be a fixed representative of a multi-scale stability
condition with L = 1. Let τ ∈ −H, λ ∈ C, with 0 ≤ Re(λ) < 1. Then the
hearts of the two stability conditions

σ̃ := (Ã, Z̃) := λ · (τ ∗ (A•, Z•)) and σ̂ := (Â, Ẑ) := τ ∗ (λ · (A•, Z•))

are intermediate hearts with respect to ARe(τ)
0 and the difference of the central

charges may be coarsely estimated as in (30).

Remark 5.5. For λ ∈ 2Z and any τ ∈ −H plumbing and the λ-action commute,
i.e. the hearts σ̃ and σ̂ from (29) agree.

5.2. Neighborhoods in the space MStab◦(D3
An

). We work here with a repre-
sentative (A•, Z•) of a multi-scale stability condition and let

δ = (δ1, . . . , δL)

be a tuple of (small) positive real numbers where δj will control the size of plumbing
of level j. Moreover we fix a collection of positive real numbers

ε = (εJ) for any J ⊂ {0, . . . , L},

e.g., for J = [01], we write ϵ01 for ϵJ . The following Definition 5.6 captures
the idea that neighborhoods of boundary points consist of the multi-scale stability
conditions, described heuristically as follows. Suppose L = 1 for simplicity. Then
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• we may plumb by τ with large negative imaginary part (so that the lower
level stability condition (A1, e

−πiτZ1) stays small in size) and wiggle the
result in Stab◦(D3

An
) by a small amount (by a size controlled by ε01);

• alternatively we may not plumb (i.e. τ = −i∞) and wiggle in Stab◦(V1)
and Stab◦(D/V1) a bit (by sizes controlled by εi) on level i, for i = 0, 1.

We say that a stability condition (A′
•, Z

′
•) with L′ ≤ L levels below zero arises by

plumbing of size at most δ from (A•, Z•) if there is τ ∈ (−H∞)L) with |e−πiτj | < δj

for j = 1, . . . , L and (A′
•, Z

′
•) = τ ∗ (A•, Z•). For a such a stability condition we

denote the new vanishing categories by V ′
i. Say levels in the interval Ji = {j1, . . .} ⊂

{0, . . . , L} have been plumbed to form the new level i. (This implies by definition
that τj1 = −i∞.)

We define the natural inner product on K(V ′
i/V ′

i+1)∨ = Hom(K(V ′
i/V ′

i+1),C)
by using as an orthonormal basis the basis ZSi

dual to the simples of A0. (Note
that this norm depends on the heart A0 and its simples, but the norm around
any other multi-scale stability condition σ† = (A†

•, Z
†
•) is comparable, scaling by a

factor C = C(σ, σ†) given by the operator norm of the identity map with respect
to the to norms.)
Definition 5.6. We define the set Vε,δ(A•, Z•) to be the set of all multi-scale
stability conditions (A′′

• , Z
′′
• ) with L′ levels below zero such that

(1) there is a multi-scale stability condition (A′
•, Z

′
•) with L′ ≤ L levels that

arises by plumbing of size at most δ from (A•, Z•), and
(2) the multi-scale stability condition (A′′

• , Z
′′
• ) is in a neighborhood of (A′

•, Z
′
•)

in
∏

Stab◦(V ′
i/V ′

i+1) which maps to the product of εJ -balls on K(V ′
i/V ′

i+1)∨

under the forgetful map retaining just the quotients of the multi-scale central
charges. Here J is the interval that is plumbed to produce level i.

A neighborhood of (A•, Z•, ) is a set in MStab◦(DAn
) that contains Vε,δ(A•, Z•, )

for some ε and δ.
This definition includes the case that L = 0 and that (Z,A) is an honest stability

condition, in which case the neighborhoods have to contain the ε-balls in the norm
with orthonormal bases given by the simples of A, since the deformation of stability
conditions is locally controlled by the deformation of the central charge. This gives
the second part of the following lemma.
Lemma 5.7. The system of neighborhoods given in Definition 5.6 defines a topology
on MStab(D3

An
) whose restriction to Stab(D3

An
) is the usual topology where the

forgetful map retaining the central charge is a local homeomorphism.
Proof. The only axiom whose verification is non-trivial is the following. Let U be a
neighborhood of σ = [A•, Z•], in the sense of Definition 5.6. Then there is a smaller
neighborhood V of this point, such that U is a neighborhood of each σ† = [A†

•, Z
†
•]

in V . We continue with the case L = 1, the general case works with the same
argument. By definition U contains some Vε,δ(A•, Z•). The rough idea is to take
V = Vε∗,δ∗(A•, Z•) for some (ε∗, δ∗) smaller than (ε, δ) in each entry, so that U
contains V(ε−ε∗)/C,δ−δ∗(σ†), just as if we’d be working plainly in vector spaces,
where C = C(σ, σ†) ≥ 1 accounts for the change of basis in the definition of the
norms. We will prove that V(ε−ε∗)/C,δ−δ∗(σ†) is indeed contained in Vε,δ(σ) for ε∗

carefully chosen. We have to avoid that ε∗
0, ε∗

1 are large compared to ε∗
01 so that

any plumbing after deforming (A†
•, Z

†
•) of the order of ε0, ε1 doesn’t fail of being

near σ.
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We may thus first take the pair (ε∗
0, ε

∗
1) so small that any point in the (ε∗

0, ε
∗
1)-ball

in Stab◦(D/V1)×Stab◦(V1) can be reached from σ by a path γ(t) involving at most
one tilt, at t = 0. Suppose the chosen σ† = (A†

•, Z
†
•) ∈ Vε∗,δ∗(σ) has also L = 1

levels below zero and let γ†(t) be the straight path connecting σ and σ†. Let τ
in −H of magnitude at most δ∗, and σ̂ = τ ∗ σ†, σ′ = τ ∗ σ. By the argument in
Proposition 5.2 and the one-tilt hypothesis, the hearts Â and A′ are intermediate
with respect to A0 so the distance between σ̂ and σ′ is controlled by their central
charges. If the plumbing of the path γ† is continuous, then

||Ẑ − Z ′|| ≤ ε∗
0 + δ∗

1ε
∗
1 . (33)

In the general case of a single tilt use Remark 5.3 and compare σ′ = σ− with
σ+ := (A+, Z+) = limt→0+ τ ∗ γ†(t). Now (32) and the previous estimate in the
new notation give the rough estimate

||Ẑ − Z+|| ≤ ε∗
0 + δ∗

1ε
∗
1 and ||Z+ − Z ′|| ≤ ℓnδ∗

1 . (34)

The triangle inequality shows that requiring moreover ε∗
01 ≤ ε∗

0 + δ∗
1(ε∗

1 + ℓn) does
the job. □

The next lemma will be used in the proofs at the end of this section. We consider
a sequence {σj}j of multi-scale stability conditions in MStab◦(D3

An
).

Lemma 5.8. Fix λ ∈ C with 0 < Re(λ) < 1 and consider the C-action given in
Proposition 4.6. Then a sequence {σj}j converges to σ in MStab◦(D3

An
) if and only

if {λ · σj}j converges to λ · σ.

Proof. Again we give the details in the case that σ has L = 1 levels below zero.
Extracting subsequences we may assume that all σj have the same number of levels
below zero. If they are strict multi-scale stability conditions, the claim follows from
the corresponding statement in Stab◦(V1) × Stab◦(D3

An
/V1). The interesting case

is that σj ∈ Stab◦(D3
An

) for all j.
Convergence and the definition of neighborhoods implies that σj is in a open set

Vεj ,δj
(σ′

j), where σ′
j = τj ∗σ for some fixed representative of σ and for both εj → 0

and δj = |e−πiτj | → 0 as j → ∞. We apply the action of λ to this sequence and
use Corollary 5.4 to see that λ · (τj ∗ σ) is close to τj ∗ (λ · σ) in a way controlled
by (30). We conclude that λ · σj is in an ε′

j-ball of λ · (τj ∗ σ) for ε′
j = εj + ℓδj ,

which certifies convergence. □

The Hausdorff property. We now start proving that MStab◦(D3
An

) is a nice
topological space.

Lemma 5.9. The space MStab◦(D3
An

) is second countable.

Proof. The basis of neighborhoods consisting of Vε,δ(A•, Z•) with (A•, Z•) such
that the Zi map the collection of simples to a (projectivized) tuple of rational
numbers, and with all entries of (ε, δ) being rational obviously generates the same
topology as the one using real numbers. □

Theorem 5.10. For any subgroup G ⊂ Aut◦(D3
An

) the quotient MStab◦(D3
An

)/G
and the projectivized version PMStab◦(D3

An
)/G are Hausdorff topological spaces.
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Proof. Since the relevant (quotient) spaces are second countable, being Hausdorff is
equivalent to uniqueness of limits, which we now show. Suppose that the sequence
σj = [A•,j , Z•,j ] of multi-scale stability condition converges to σ = [A•, Z•] and
that the sequence σ′

j = Φj [A•,j , Z•,j ], with Φj ∈ G, converges to σ′ = [A′
•, Z

′
•] in

MStab◦(D3
An

). We need to show that [A′
•, Z

′
•] = Φ[A•, Z•] for some Φ ∈ G. We

restrict our argument to the cases that all the σj are honest stability conditions,
that [A•, Z•] has L = 1 level below zero and that [A′

•, Z
′
•] has L′ ∈ {0, 1}, leaving

the inductive arguments to treat the general case to the reader. Note that the mass
Mmax(σj) of the longest and the mass Mmin(σj) of the shortest stable object in σj

is a notion that is invariant under the action of Aut◦(D3
An

).
The case L′ = 0 is absurd, since this implies that Mmin(σj)/Mmax(σj) is bounded

below, while the convergence to σ implies that this ratio tends to zero.
In general, for a sequence σj converging to σ with L = 1 and for some cut-off

parameter M > 1, we say that a simple S is ’short’ if its mass is less that 1/M
times the largest mass of a simple, and ’long’ otherwise.

In the case L′ = 1 consider the set of short stable objects in the sequences σj

and σ′
j respectively. By definition of the topology, these short stable objects even-

tually (as C → ∞) generate the vanishing subcategories V and V ′. Consequently,
ΦjV = V ′ for j ≥ N for someN large enough. Replacing Φj by Φ−1

N ◦Φj we may sup-
pose from now on that V = V ′ and Φj ∈ G∩Aut◦(D3

An
,V) for all j ≥ N . Using the

triangle inequality and the definition of the metric, it is easy to show that also the
sequence Φj(σ) converges to σ′ in MStab◦(D3

An
). Since all these objects are now in

fact in MStab◦(D3
An
,V), this implies that Φj(A0, Z0)→ (A′

0, Z
′
0) in Stab◦(D3

An
/V)

and Φj [A1, Z1]→ [A′
1, Z

′
1] as projectivized stability conditions in PStab◦(V). Since

Aut◦(D3
An
,V) acts on Stab◦(D3

An
/V) via Aut lift(D/V), by Lemma 4.3 the image

Im(G) ⊂ Aut◦(D3
An
/V) acts properly discontinuously on Stab◦(D3

An
/V). By defi-

nition the stabilizer in a neighborhood of (A0, Z0) is finite, hence after passing to a
sub-sequence, we may assume (again for j ≥ N , which we assume now throughout)
that Φj ≡ Φ(N) ∈ Im(G) ⊂ Aut◦(D3

An
/V) with Φ(N)(A0, Z0) = (A′

0, Z
′
0).

On lower level the stabilizer of [A1, Z1] is not finite. Let H be the stabilizer
of the un-projectivized (A1, Z1). We recall that, by Lemma 4.3 the group H is a
finite extension of Z(Brank(K(V))), which in turn acts trivially on the projectivized
[A1, Z1]. This implies that, at the cost of passing to a sub-sequence, there are zj ∈
Z(Brank(K(V))) such that Φj

(
zj [A1, Z1]

)
is in fact the same converging sequence,

but we can now work with their representatives in Stab◦(D3
An
/V) that have finite

stabilizer. We can extract a convergent subsequence with Φj |V(A1, Z1) ≡ (A′
1, Z

′
1).

Taken together, this means that there is N large enough so that ΦNσ• = σ′
•.

The case PMStab◦(D3
An

) is similar: one then has to correct also the top level by
a central element to ensure convergence to some Φ(0). □

5.3. The complex structure on quotients of boundary neighborhoods in
MStab◦(D3

An
). Next we upgrade from a topology to a structure of complex orbifold.

This will not be possible on MStab◦(D3
An

), but only the quotient by the group of
autoequivalences, see Section 6.4 for an illustration in the case of the A2-quiver. The
first step in this direction is to exhibit a subgroup Tws(V•) in the stabilizer of the
boundary such that the quotient MStab◦(D,V•)/Tws(V•) is a complex manifold.
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We then determine the full stabilizer of these boundary neighborhoods and exhibit
the orbifold structure.

We fix once for all a multi-scale stability condition σ• = [Z•,A•] with L levels
below zero, and let V• be the associated sequence of nested vanishing subcategories
of D = D3

An
.

The simple twist group Tws(V•). Recall the numerical data associated with a
multi-scaled stability conditions of type An from Section 4.1 and suppose σ• is of
type ρ. We focus at a level i and let V(j)

i be the components of Vi. Suppose that
V(j)

i has type n
(j)
i , i.e. the heart V(j)

i ∩ Ai has n(j)
i simples S1, . . . , Sn

(j)
i

in the
subset S = S(i, j) of Sim(A0). We recall the definition in Section 3.3 of the group
elements θI,n.

For I denoting the closed arcs in the subsurface Σ(j)
i we let

ci,j =
{
θI,n if n(j)

i is odd
θ2

I,n if n(j)
i is even.

(35)

From ρ we derive another collection of integers (ℓi)L
i=1. Recall that we define

κ
(j)
i = n

(j)
i + 3 to be the number of marked points on the boundary of Σ(j)

i . We let

κ̂
(j)
i =

{
(n(j)

i + 3)/2 if n(j)
i is odd

(n(j)
i + 3) if n(j)

i is even
(36)

(This notation is consistent with the enhancements in Section 6.) We define

ℓi = lcm{κ̂(j)
i , j = 1, . . . , si} . (37)

For each level i and each j we now define the elements

ci :=
∏

j

c
ℓi/κ̂

(j)
i

i,j :=
∏

j

θ
ℓi/κ

(j)
i

I(i,j),n. (38)

and we define the simple twist group to be Tws(V•) := ⟨c1, . . . , cL⟩.

Proposition 5.11. For each level i the element ci ∈ PBn preserves the neighbor-
hoods Vε,δ(A•, Z•) for all (ε, δ) small enough.

Implicit in the notation is that the elements ci,j for fixed j commute. In fact:

Lemma 5.12. The elements ci,j for all (i, j) commute. In particular the simple
twist group Tws(V•) = ⟨c1, . . . , cL⟩ is a free abelian group of rank L.

Proof. For fixed i the elements ci,j and ci,j′ commute by (14) since they correspond
to disjoint subsurfaces and hence any two vertices, one in I(i, j) and one in I(i, j′),
cannot be connected by an edge in the corresponding quiver. For different level
indices i < i′, the elements ci,j and ci′,j′ commute for the same reason if QI(i′,j′) is
not a subquiver of QI(i,j). If it is a subquiver, the elements commute since θI,n is
(the image of) the central element in the braid group corresponding to QI(i,j). □

Proof of Proposition 5.11. Focusing on the subcategories above and below i we may
reduce to the case that (A•, Z•) has L = 1 and we consider i = 1, thus writing
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V = V1. Suppose the connected components V(j) have type nj and correspond to
the subsurfaces Σ(j). We claim that

c1,j(A1 ∩ V(j)Z1|K(V(j))) = κ̂
(j)
1 · (A1 ∩ V(j), Z1|K(V(j))),

c1,jZ0 = Z0 ∈ Hom(K(D3
An
/V),C),

c1,jA0 = A0 ∈ D3
An
/V .

(39)

Granting the claim, we conclude that c1 acts like the shift by ℓ1 on A1 ∩ V(j) for
every j, thus on the whole (A1, Z1). Since adding κ̂

(j)
1 to τ does not change the

norm used in (1) of the topology definition, the elements stabilize the neighborhoods
as claimed. Since τ + κ̂

(j)
1 realizes a plumbing of size at most δ, if τ does so, the

elements stabilize the neighborhoods (as defined by (1)-(2) in Definition 5.6) as
claimed.

The first equality of (39) is [ST01, Lemma 4.14] applied to the subquiver QI(1,j).
The second equality holds by definition of the induced actions on Grothendieck
groups, see (19). For the third equality we write each spherical twist appearing
in the definition of c1,j as a composition of tilts at simples in V using (16). The
claim then follows since such tilts do not change the quotient heart, see [BMQS22,
Lemma 5.6]. □

The complex structure on boundary neighborhoods. Consider a neighbor-
hood Vε,δ(A•, Z•) as given in Definition 5.6. As we stated after (39) the element ci

acts as the shift by ℓi on the i-th level of (A•, Z•). Consequently, plumbing by τ
and plumbing by τ + ℓiei (where ei is the i-th unit vector) give the same stability
condition in the quotient Vε,δ(A•, Z•)/Tws(V•). Therefore, on this quotient space
the parameters

• ti = exp{2π
√
−1 τi

ℓi
} for i = 1, . . . , L,

• the ratios of central charges of simples on P Stab◦(Vj/Vj+1) for j > 0,
• the central charges of the simples on Stab◦(D3

An
/V1),

all together give a complex chart.
Instead of using ratios of central charges we may equivalently fix a representative

(A•, Z•) of the multi-scale stability condition such that a (’pivot’) simple Si in each
Ai for i > 0 has Z(Si) = 1 and use central charges of the remaining (non-pivot)
simples in Sim(Ai) \ Sim(Ai+1) together with the ti as coordinates.

Next we check compatibility, i.e., we compare two charts defined around points in
Vε,δ(A•, Z•)/Tws(V•) and V ′

ε′,δ′(A′
•, Z

′
•)/Tws(V ′

•) with L ̸= L′, in the case of non-
trivial intersection of the neighborhoods. In particular we check compatibility with
the existing complex structure on Stab◦(D3

An
). Fix σ = (A•, Z•) with L = 1 and

consider a point σ′ = (A′
•, Z

′
•) ∈ Vε,δ(A•, Z•) and suppose first that L = 1 and σ′ =

(Z,A) is actually an honest stability condition. We now use the definition of the
plumbed central charge according to Proposition 5.1 and the ’pivot’ viewpoint for
coordinates. We find that the central charge Z ′

0(S) of a simple S ∈ Sim(A) is equal
to Z0(S) if S ̸∈ Sim(A1) or equal to t1Z1(S) if S ∈ Sim(Ai). Since t1 ̸= 0 near σ′,
this coordinate change is a biholomorphism. Similarly, the compatibility holds if
L > 1 and if the neighboring point σ′ has L′ > 0 below zero, the coordinate change
map being given by a product of tj ’s times Zi(S) for S ∈ Sim(Ai)\Sim(Ai+1). We
summarize this discussion:
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Proposition 5.13. The quotients of the boundary neighborhoods Vε,δ(A•, Z•) by
the simple twist group Tws(V•) admit a complex structure compatible with the com-
plex structure around any point (A′

•, Z
′
•) ∈ Vε,δ(A•, Z•) with less that L levels below

zero.

The orbifold structure. The following proposition ensures that the complex
structure on Tws(V•)-quotients of neighborhoods actually gives the structure of
an orbifold on the quotient space MStab◦(D3

An
)/Aut(D3

An
).

Proposition 5.14. The stabilizer in Aut(D3
An

) of a multi-scale stability condition
σ• = (A•, Z•) contains Tws(V•) as a finite index subgroup.

Proof. For the intended finiteness assertion we may restrict attention from Aut(D3
An

)
to the group of spherical twists ST(An) ∼= Bn+1 thanks to (18).

Suppose that L = 1 and suppose moreover that the lower level is connected.
Consider the intersection G of the stabilizer Hσ• with ST(An). We know that any
ρ ∈ G stabilizes V and fixes the (lower level) stability condition on V projectively.
This implies as in the proof of Lemma 4.3 that after passing to a finite index
subgroup of G = Hσ• ∩ ST(An) we may assume that ρ|V as an element of Aut◦(V)
is central, i.e., a power of θI,n, since the C-action and the action of autoequivalences
commute. Consequently ⟨c1⟩ = Tws(V•) ⊂ G of finite index.

Suppose still L = 1 but now that the lower level has say k connected compo-
nents V(j). Now the preceding argument implies that after passing to a finite index
subgroup G of the stabilizer (thereby getting rid of potential non-trivial pointwise
stabilizers of (Z1,V1)) any ρ|V(j) for ρ ∈ G is central in the autoequivalence group
of each component of V(j), i.e. a power of the c1,j . We now use that moreover the
elements in G act by simultaneously rescaling the restrictions of (Z1,V1) to the
components V(j) by definition of the equivalence relation of multi-scale stability
condition. We deduce that G is a cyclic group. Since the exponents in the defini-
tion of c1 were chosen to projectivize simultaneously (raise the first equation of (39)
to the right power), the claim follows in this case.

For L > 1 a new phenomenon occurs: Suppose Ai∩V(j)
i = Ai+1∩V(j′)

i+1 for certain
components V(j)

i and V(j′)
i+1 of the vanishing subcategories at level i and i+ 1. This

is possible if Zi|Ai∩V(j)
i

= 0 and the required non-vanishing of Zi is ensured on

some other component V(k)
i of V. Then the condition ’projectively equivalent’ in

the definition of a multi-scale stability condition imposes no constraint relating the
action on (Ai ∩ V(j)

i , Zi|V(j)
i

) and (Ai ∩ V(k)
i , Zi|V(k)

i

). We capture this problem as
follows:

We write G for the finite index subgroup of the stabilizer that acts trivially on
each (Vi, Zi). Let E be the set of (homotopy classes of) seams of the subsurfaces
corresponding to the components V(j)

i and identify ZE with the group generated
by the θI(i,j),n, i.e., the group generated by the twist around these seams. Then
there is a natural embedding G → ZE . The image is contained for each level i by
Ci − 1 constraints due to simultaneous projectivization, where Ci is the number of
components where Ai ∩ V(j)

i ̸= Ai+1 ∩ V(j′)
i+1 , i.e., where the seam of the subsurface

at level i does not agree with the seam of the subsurface at level i + 1. Since∑L
i=1 Ci = E and since these constraints are obviously independent we conclude
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that G is a free group of rank L. Since Tws(V•) ⊂ G is also free group of rank L,
this must be an inclusion of finite index. □

The group G appearing in the last paragraph of the proof should be called the full
twist group Tw(V•) in analogy with the full twist group of level graphs appearing
in [BCGGM3, Section 6], see also Section 6. The factor group Tw(V•)/Tws(V•) is
thus responsible for the orbifold structure of MStab◦(D3

An
)/Aut(D3

An
).

5.4. Compactness. Our goal is:

Theorem 5.15. For any finite index subgroup G ⊂ Aut(D3
An

) the quotient space
PMStab◦(D3

An
)/G is compact.

Proof. Since PMStab◦(D3
An

)/G is second countable, because G is countable, com-
pactness is equivalent to being sequentially compact. Given a sequence σm of
stability conditions we want to extract a convergent sub-sequence after rescal-
ing the family appropriately. Since the quotient space Stab◦(D3

An
)/G has finitely

many chambers (given by undecorated triangulations of the disc) and since the
stability spaces of quotient categories involved in PMStab◦(D3

An
)/G have the same

property (corresponding to partial triangulations, see [BMQS22]) we may mod-
ify σm by suitable elements of G and pass to a subsequence and assume that
all elements of σm belongs to a single chamber. We will moreover assume that
σm = [A, Z(m)] ∈ P Stab(A) ⊂ P Stab◦(D3

An
) are honest stability conditions. At

the end of the proof it will be clear that the general case follows by the same ar-
gument, just using an extra index for the levels of the initial multi-scale stability
conditions.

We define a (weak) full order ≽ on Sim(A) by

S1 ≽ S2 if inf
m∈N
|Z(m)(S1)|/|Z(m)(S2)| > 0 ,

Equivalently, S1 is strictly smaller than S2 if the ratio of central charges tends to
zero. Since there are finitely many simples, we may index the level sets of this
order by integers 0, 1, . . . , L and use these to generate Serre subcategories of A.
For consistence of indexing we assume that AL is generated by the set of smallest
simples (with respect to ≽), that AL−1 is generated by Sim(AL) and the set of
second smallest simples, etc., thus arriving at a nested sequence

AL ⊂ AL−1 ⊂ · · · ⊂ A1 ⊂ A0 = A .

Let’s order the simples of A so that (S1, . . . , Sr0) ̸∈ Sim(A1), using implicitly
the definition r0 = rank(K(A0)) − rank(K(A1)) ≥ 1. Since Pn−1 is compact,
we may assume after passing to a sub sequence and choosing appropriated rep-
resentatives (Z(m),A) of the projectivized stability conditions that the sequence
(Z(m)(S1), . . . , Z(m)(Sn)) converges, in fact to a point Z0 where precisely the first r0
entries are different from zero by definition of ≽. Since Z(m)(Si) ∈ H we know that
Z0(Si) ∈ H ∪ R>0 ∪ {0}. Suppose that Z0(Si) ∈ R>0 for none of the Si. Then we
iterate the construction: We consider (Z(m)(Sr0+1), . . . , Z(m)(Sn)) ∈ Pn−r0−1 and
use rescaling by real numbers and passage to a subsequence so that this converges
to a point Z1. If again Z1(Si) ∈ R>0 holds for none of the Si ∈ Sim(Ai) we continue
to construct Z2, . . . ZL, which we consider as functions Zi : K(Ai) → C. It is now
obvious that the tuple σ := (A•, Z•) is a multi-scale stability condition and that
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σn → σ by definition of the plumbing procedure (in fact plumbing with τi ∈ −iR
purely imaginary suffices as the lower levels just need to be rescaled appropriately).

Finally we have to deal with the case that Zi(S) ∈ R>0 for some S we excluded so
far. We’d like to rotate by some λ ∈ S1 and apply Lemma 5.8. We have to be careful
since this rotation has to be applied to (Z(m),A) (not just the central charge) and
might change the heart and alter our basic assumption. To circumvent this problem
we use that for D = D3

An
the heart A has only finitely many stables. Passing to a

subsequence we may assume that there are only finitely many problematic phases
P ∈ S1 that arise as limits of phases ϕ such Pm(ϕ) ̸= ∅ for the slicing Pm associated
with σm and that (possibly iteratively) tilting at the torsion pairs defined by those
slices we stay in the same fundamental domain of PMStab(D3

An
) with respect to

the action of G. Now we just apply the C-action to the initial sequence for some λ
such that 1 ̸∈ eiλP and run the argument of the previous paragraph. □

Theorem 5.10, Propositions 5.13 and 5.14 together with Theorem 5.15 complete
the proof of Theorem 1.1.

6. The BCGGM-compactification and examples

In this section we recall the main features and notions of the smooth compactifi-
cation (as orbifold or DM-stack) of the strata of abelian differentials and quadratic
differentials by multi-scale differentials, as constructed in [BCGGM3] together with
[CMZ19] (see also [CGHMS23] for the log geometry viewpoint on this compactifi-
cation). We focus on the case of the stratum Qn corresponding to the An-quiver
and denote the multi-scale compactification by Qn and its projectivization by PQn.
At the end of this section we will assert an isomorphism

Kn : C\Qn/Sn+1
∼=−→ C\MStab◦(D3

An
)/Aut ◦(D3

An
) (40)

of complex orbifolds and give a sketch of proof.
As complex variety the labeled version of the projectivized stratum PQn is iso-

morphic to the moduli space M0,n+2 of pointed genus zero surfaces and as such
comes with its Deligne-Mumford compactificationM0,n+2. This kind of compacti-
fication of quadratic differential strata is available only for genus zero differentials.
One of the goals in this section is to explain why PQn is not isomorphic toM0,n+2.

Spaces of quadratic differentials. Let w = (w1, . . . , wr) be a tuple of integers ≥
−1 and let w− = (wr+1, . . . , wr+b) be a tuple of integers ≤ −2 in the quadratic case.
Let Quadg,r+b(w,w−) be the moduli space of quadratic differentials (X, z, q) on a
pointed curve (X, z) where z = (z1, . . . , zr+b) such that q has signature (w,w−).
In this space the critical points are labeled. The unlabeled version is denoted by
Quadg(w,w−), i.e., without the subscript. We abbreviate

Qn = Quad0,n+2(1n+1,−n− 3) and Q[n] = Quad0(1n+1,−n− 3) = Qn/Sn+1 .

All these spaces come with their projectivized versions, the quotient by the C∗-
action, denoted by a letter P in front. Occasionally we will compare with spaces
of abelian differentials, denoted by ΩMg(w,w−). For a fixed weighted DMS Sw
as in Section 3.2 we denote by FQuad(Sw) the moduli space of framed quadratic
differentials (X, z, q, ψ) of signature (w,w−) with a (Teichmüller) marking ψ of the
real oriented blowup of X at the poles by the surface Sw. (We suppressed w− in
the notation.)
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6.1. Enhanced level graphs. Recall (e.g. from [ACG11]) that boundary strata
of the Deligne-Mumford compactificationMg are indexed by the dual graphs of the
corresponding stable curves.

Abelian case. The first datum to characterize points in a boundary stratum of the
multi-scale compactification of ΩMg(w,w−) is the following. An enhanced level
graph Γ̂ (for abelian differentials) is the dual graph of a pointed stable curve (X̂, ẑ),
with a weak total order on the vertices and a natural number κe, the enhancement,
assigned with each edge. In particular Γ̂ is connected, unless specified otherwise.
The weak total order is usually given arranging the vertices in levels, indexed by
non-positive integers, the top level being level zero. We call an edge horizontal if
it starts and ends at the same level, and vertical otherwise. We write E = E(Γ̂) =
Eh ∪ Ev for this decomposition of the set of edges. We require that κ̂e = 0 if and
only if e is horizontal.

The enhancement encodes the orders of zeros and poles of the collection of differ-
entials ωv on the pointed stable curve (X̂, ẑ). On the vertex v ∈ Γ̂ the differential ωv

is required to have order wi, if the i-th marked point (i = 1, . . . , r + b) is adjacent
to v. At (the node corresponding to) a horizontal edge e adjacent to v the differ-
ential has a simple pole and the residues at the two ends of e match, i.e., they add
up to zero. At the upper end of a vertical edge e the differential has a zero of order
κ̂e − 1, at the lower end a pole of order −κ̂e − 1. In particular at each edge the
orders add up to −2. Such a collection of differentials ω = (ωv) is called a twisted
differential (of signature (w,w−)) compatible with Γ̂ if moreover the global residue
condition (GRC) from [BCGGM1] holds. An enhanced level graph comes with a
vertex genus gv for each v ∈ V , defined by the requirement that 2gv − 2 is the
sum of the adjacent zero and pole orders. For each signature there is only a finite
number of enhanced level graphs (in particular a finite number of enhancements)
for which the space of twisted differentials on each vertex is non-empty.

Quadratic differentials. We can view the space of quadratic differentials inside
the space of abelian differentials (via the canonical cover construction) as a subspace
of surfaces with an involution, see e.g. [CMZ19]. Due to the involutions only some of
the (abelian) enhanced level graphs appear, encoded as follows. An enhanced level
graph Γ (for quadratic differentials) is the dual graph of a stable curve (X, z) with
a level structure as above and enhancements κe associated with the edges e ∈ E(Γ)
with the only difference that we now aim for twisted quadratic differentials q =
(qv) compatible with Γ, which comprises the vanishing according to the signature
(w,w−) at the points of z and the following three conditions: at horizontal edges
qv should have a double pole with matching 2-residues, at vertical edges the order
are κe − 2 at the upper end and −κe − 2 at the lower end, and the collection q
satisfies the global residue condition. This condition (see [BCGGM2] depends on a
double cover of enhanced level graphs π̂ : Γ̂ → Γ, which is a graph morphism with
the following conditions. Edges with even κe have two preimages with enhancement
κ̂e = κe/2. Edges with odd κe have one preimage with enhancement κ̂e = κe. The
preimage of a vertex with an adjacent leg (marked point or edge) that carries an
odd label is a single vertex. The preimage of a vertex without such an adjacent leg
consists of two vertices, if the vertex genus is zero, and one or two vertices otherwise.
Here the vertex genus gv is defined by the requirement that 2(2g − 2) equals the
sum of the adjacent zero and pole orders. (All these conditions are necessary for
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Γ̂ to be an enhanced level graph compatible with a twisted differential ω = (ωv)
on a cover, abusively also denoted by π̂ : X̂ → X which is on each vertex v the
canonical cover corresponding to qv and such that π̂∗qv = ω2

v .) See [BCGGM2] for
an example where the double cover is not uniquely determined by Γ. Again, for
given ρ the number of enhanced level graphs that allow a compatible q is finite.
Figure 5 shows the double covers of enhanced level graphs for the boundary divisors
where two resp. three simple zeros have come together.

g
2

4

−6

11

π̂←−

ĝ − 1
1

2

−3

1

2

−3

22

g
3

5

−7

1 1 1

π̂←−

ĝ − 1

1

4

5

−6

2 2 2

Figure 5. Level graphs of two (left) resp. three (right) zeros com-
ing together and their double covers. Simple zeros and the pole
of order −n− 5 on top level are omitted. The boxed numbers are
the κe.

Adjacency of boundary strata. For an enhanced level graph Γ̂ we denote by D◦
Γ̂

the open boundary stratum of multi-scale differentials (defined below) compatible
with Γ̂. The boundary strata contained in the closure DΓ̂ of D◦

Γ̂
can be described

by the process of degeneration, or more easily starting with the converse process of
undegeneration. Note that DΓ̂ is in general not irreducible: the connected compo-
nents of strata of meromorphic differentials that make up the twisted differential,
or more generally components of strata with residue conditions, are one source that
can create irreducible components

A horizontal undegeneration selects a subset H of the horizontal edges and con-
tracts them. This results in a morphism δH of enhanced level graphs. To define
the i-th vertical undegeneration view the i-th level passage as a line in the level
graph just above level −i and contract all the edges crossing that level passage.
Again this results in a morphism δi of enhanced level graphs. This can obviously
be generalized for any subset I = {i1, . . . , in} of the set of levels to yield a graph
contraction map δI . These two notions of undegeneration commute and a general
undegeneration is a composition of the two. A degeneration of level graphs is the
inverse procedure.

The complex codimension of a boundary stratum given by a level graph Γ̂ with
L levels below zero and h horizontal edges is h+ L.

Boundary strata of Qn. For these type of strata the level graphs are strongly
constrained.

Lemma 6.1. For the spaces Qn i.e. with type (w,w−) = (1n+1,−n− 3) the level
graphs are trees without horizontal edges and with all vertex genera gv = 0. In
particular for boundary strata of Qn the graph Γ determines the double cover Γ̂.
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Proof. For the statement about horizontal edges, undegenerate all but one hori-
zontal edge and all levels. Now note that each top level vertex must have at least
one pole of order ≥ 2 or positive genus. For the second statement, the only ambi-
guity for Γ̂ given Γ is the ’criss-cross’ ([BCGGM2, Example 4.3]), which requires
π1(Γ) ̸= {e}. □

6.2. Examples. We list the boundary components of PQn and their adjacency in
the two examples of lowest complexity.

The A2-quiver. The projectivized space PQ2 is a smooth compactification of
M0,4. Since the construction introduces no orbifold structure in codimension one
(see [BCGGM3, Section 6]), it agrees with M0,4. The three boundary points cor-
respond to the two-level graph with one edge, two vertices, and the pole together
with one of the three simple zeros on top level. The action of S3 permutes the three
boundary points.

The A3-quiver. In this case the projectivized labeled space PQ3 is a surface, the
largest dimension that can be visualized on a piece of paper. There are three types
of boundary divisors, namely

D1 =


−8

1

−7

3

1
1

1

 , D2 =


−8

1

1

−6

2

11

 , D3 =


−8

−6

2

−6

2

11 11

 .

The dual graphs are associated with labeled stable curves and this requires labeling
the simple zeros. We distinguish the enhanced graph further by remembering the
one (case D1) or two (case D2) simple zeros on top level, or the grouping in pairs
at the end of each cherry (case D3), see also Figure 6 where each of these boundary
divisors occurs.

The codimension two strata are thus given by ’slanted cherries’ (one of the lower
ends of the level graph D3 pushed down further to level −2), which are the inter-
section point of a D3-divisor and a D2-divisor, and a chain over three levels, with
the pole and one zero on top, one on middle and two on bottom level, giving an
intersection point of D1 and D2. It is easy to check that the boundary strata are
all irreducible here, as depicted in Figure 6.

The action of S4 is by permutation of the marked zeros and thus on boundary
strata by the natural permutation action on the additional indices of each boundary
divisor type Di.

The Deligne-Mumford compactification. For comparison recall that boundary
divisors of M0,5 are in bijection with 2-element subsets of {1, . . . , 5}. This shows
that for the A3-quiver the boundary divisors ofM0,n+2 are in bijection with those
of type D1 and D2. There is a natural forgetful map PQ3 →M0,5 that contracts
the divisors of type D3. The existence of ’cherry shaped’ divisors like D3 shows
that PQn is not isomorphic to M0,n+2 for any n ≥ 3. See [CGHMS23, Section 7]
for more on this birational map.
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D2,(23)

D2,(13)

D1,3 D2,(24)
D2,(12)

D1,1

D1,4

D2,(14)D2,(34)

D1,2

D3,(13)(24)

D3,(14)(23)D3,(12)(34)

Figure 6. The boundary of the stratum PQ3 = PQuad0,5(14,−8)

6.3. Multi-scale differentials. We now give the key definition and explain the
remaining terminology subsequently. A quadratic multi-scale differential of type
(w,w−) on a stable pointed curve (X, z) consists of

(i) an enhanced level structure on the dual graph Γ of (X, z),
(ii) a twisted quadratic differential q = (qv)v∈V (Γ) of type (w,w−) compatible

with the enhanced level structure,
(iii) and a prong-matching ℘ for each node of X joining components of non-equal

level.
Two quadratic multi-scale differential are considered equivalent if they differ by the
action of the level rotation torus.

We make the same definition for abelian multi-scale differentials, skipping the
word ’quadratic’ everywhere, replacing q by ω = (ωv) and applying the abelian
conventions for enhanced level graphs. To motivate the notion of ’prong-matching’
and ’level rotation torus’ we start with the

Proof of the isomorphism (40), Part I. Our main goal is to define K−1
n as a map of

sets, starting with a multi-scale stability condition. If σ = [A•, Z•] is an honest sta-
bility condition, we associate with it a quadratic differential using the Bridgeland-
Smith isomorphism recalled in Theorem 3.1.

Suppose from now on that σ is a strict multi-scale stability condition and suppose
that the number of levels below zero is L = 1, leaving the bookkeeping for larger L to
the reader. By Lemma 4.4 we may associate with V = VZ

1 a type ρ = (n1, . . . , n|J|)
where J is an index set for the components of V. We associate with σ the level
graph Γ consisting of a tree with one vertex on top level (carrying the unique pole)
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and |J | vertices on bottom level, each of them carrying nj + 1 markings for simple
zeros and enhancement κj = nj + 3. As part of the bijectivity claim for the map
σ 7→ (X, z,Γ,q, ℘) we are about to construct, we observe that all possible level
graphs with L = 1 for quadratic differentials of type An arise in this way. We
now apply the isomorphism from Theorem 3.4 (for the quotient category D/V) to
the stability condition (A0, Z0) on top level. We get the complex structure of the
irreducible component of (X, z) corresponding to the top level vertex v0 together
with the quadratic differential qv0 on this components. Similarly we apply this
isomorphism (for each Vj) to each stability condition (A1 ∩ Vj , Z1|Vj ) on lower
level to get the complex structure and the quadratic differential corresponding to
the vertices vj of Γ on lower level. (For L = 1 there is no further quotient, so we can
as well apply Theorem 3.1 on lower level.) The enhancements of Γ were chosen so
that the collection q = (qv)v∈V (Γ) is indeed a twisted differential compatible with
the enhanced level structure. We let z be the unordered tuple of zeros and poles
(different from the nodes of X) of the various differentials qv. (We have no canonical
way to label the points z, and this fits with our target being the Sn+1-quotient of
Qn.)

We need to be more precise about automorphisms in the application of Theo-
rem 3.4 (or Bridgeland-Smith) at each level. In fact, above we were using that this
isomorphism is equivariant with respect to the action of the mapping class group
MCG(S∆) on the domain and of the group Aut ◦(D) on the range (see [BMQS22,
Theorem 7.2]). So far we have given a well-defined map σ 7→ (X, z,Γ,q) with z
considered up to the Sn+1-action. □

The missing notions will be motivated by making this map bijective thanks to the
prong ℘ and well-defined on equivalence classes. First observe that the above assign-
ment depended on the stability conditions up to G := Aut ◦

lift(D/V)×
∏

j∈J Aut(Vj).
However the group fixing the boundary stratum of σ is A := Aut(D,V) and its
natural map φ : A → G is not surjective. In fact each Aut(Vj) has an exact se-
quence (18), and the braid groups Bnj+1 for each j as well as Aut ◦

lift(D/V) are in
the image of φ, but the product of cokernels (each isomorphic to Z/(nj +3)Z) is not
hit surjectively. (Apply (18) to Aut(D,V) and use that the cokernel is generated
by the shift to prove this.) As a conclusion the equivalence relation generated by
autoequivalences on multi-scale stability conditions is coarser than what is expected
for Theorem 3.4 to be a bijection. We thus need an additional datum. To motivate
the following definition, recall that the shift acts (via the correspondence to framed
quadratic differentials) by cyclically shifting the marked points at each pole.
Prong matchings in the abelian case. A prong at a zero of order m of an
abelian differential is a tangent vector that coincides with one of its κ = m + 1
outgoing horizontal directions. A prong at a pole of order |m| is a tangent vector
that coincides with one of its κ = |m| − 1 incoming horizontal direction. (For
poles this is the same as choosing one of the marked points in Mi as defined in
Section 3.1.) The prongs are labelled cyclically (by embedding in the plane) in
clockwise order in the case of zeros (resp. counterclockwise order in the case of
poles). Given an enhanced level graph Γ̂ a prong-matching ℘̂ = (℘̂e)e∈Ev is a
bijection of the prongs at the upper and lower even of each edge that reverses the
cyclic order. Consequently, there are K̂Γ̂ =

∏
e∈Ev κ̂e different prong matchings

for Γ̂.
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The level rotation torus. The lower level differential should be projectivised,
since only in this way limits are well-defined (compare with the proof of Theo-
rem 5.15) and since only in this way the σ 7→ (X, z,Γ,q) will pass to the equivalence
class of σ. However just rescaling the lower level by C∗ is no longer well-defined,
as this comprises rotation and changes the horizontal direction that the notion of
prong relies on. There is a finite unramified cover of C∗ (of course: still abstractly
isomorphic to C∗) that naturally acts by rotation on the differentials ω and on ℘
simultaneously so that the preimages of 1 ∈ C∗ fix the differential and permute
cyclically each ℘e. This algebraic torus (for general σ isomorphic to (C∗)L) is
called level rotation torus, see [BCGGM3, Section 6] for the full definition.

Prong matchings and level rotation torus in the quadratic case. Prongs
and their matchings are defined as in the abelian case, noting that a zero order m
of a quadratic differential has κe = m + 2 outgoing horizontal directions (to be
counted on a local square root!) and a pole of order |m| has κe = |m| − 2 incoming
horizontal directions. There are KΓ =

∏
e∈Ev κe prong matchings.

To understand the action of the level rotation torus, the easiest way is to pass
to the canonical cover and use that a prong-matching of the quadratic differential
induces a prong-matching of an abelian differential. Now the equivalence relation
given by the level rotation torus is just defined as in the abelian case, restricted
to those abelian multi-scale differentials that actually arise as double covers. See
[CMS23, Section 7] for full details.

Proof of the isomorphism (40), Part II. Finally we show how to associate with σ a
prong-matching ℘. We continue with the setting above, in particular L = 1. Con-
sider the ray obtained by plumbing (it) ∗ σ ∈ Stab◦(DAn

) with a purely imaginary
parameter, i.e., without rotation. The limit t→∞ of the Bridgeland-Smith preim-
ages K−1(it ∗ σ) is a multi-scale differential with underlying (X, z,Γ,q) as above,
by definition of plumbing and of the topology on Qn. It thus comes with a prong-
matching ℘ and we now set K−1

n (σ) = (X, z,Γ,q, ℘). (We remark that this ℘
is the only choice if we want K−1

n to be continuous. Formally, in the language
of [BCGGM3, Section 7] this is the only prong-matching so that the comparison
diffeomorphisms between the welding of the limiting stable curve and the nearby
plumbed curves is almost turning-number preserving. Informally, when |J | ≥ 2 the
right choice of ℘ differs from a wrong choice of ℘′ by rotating say one prong for
the subsurface j = 1 on lower level. With the wrong ℘′ the turning numbers near
the subsurface j = 1 do not work out. By rotating the whole lower level using
the C-action, turning numbers can be fixed for j = 1, but then since |J | ≥ 2 the
turning numbers will not work out at some other subsurface of lower level.)

To see that K−1
n is bijective note that both the initial failure (due to the cokernel

of φ : A → G) and the additional datum ℘ capture the possibility of rotating a
lower level component independently of other components. We leave the details to
the reader.

To show continuity (and well-definedness mod Aut ◦(D3
An

)) it is best to first lift
the map K−1

n to a map from MStab◦(D3
An

) to the Teichmüller-framed version of Qn,
the augmented Teichmüller space in the sense of [BCGGM3, Section 7]. This is a
bordification of FQuad(Sw) on which the mapping class group acts. One now needs
to check that this lifted K

−1
n is a homeomorphism using the respective definition
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of topologies and the equivariance with respect to the mapping class group and
Aut ◦(D3

An
)-action.

To show compatibility with the complex structure one needs to recall that the
complex structure on Qn is defined using plumbing (in the sense of complex geome-
try). This gives a collection of periods that defines local coordinates (the perturbed
period coordinates in [BCGGM3, Section 9], in fact no modification of the differ-
ential is needed for An-type since all the residues are zero) and one only needs to
check that they correspond to the coordinates defined in Section 5.3. We leave
again the details to the reader. □

6.4. Why taking Aut ◦(D3
An

)-quotients? The A2-quiver revisited. In this
subsection we revisit PMStab(D3

A2
) to show that prior to taking the Aut ◦(D3

An
)-

quotient is neither a compact space (contrary to the Thurston-type compactifica-
tions in [BDL20]) nor carries a complex structure.

In fact PMStab(D3
A2

) coincides with the upper half plane with cusps H̃ = H∪P1
Q

provided with the horoball topology where a neighborhood basis of ∞ consists of
the sets UC = {τ : Im(τ) > C} and a neighborhood basis of z ∈ Q are the images
of UC under a Möbius transformation mapping ∞ to z. Here P1

Q = Q ∪ {∞} and
it is known that P Stab(D3

A2
) ≃ H, see e.g., [Sut11].

To prove this we start with a classification of the boundary strata. In this case
necessarily L = 1. Since the Grothendieck group of a vanishing subcategory V of
D := D3

A2
has rank 1, all stability conditions on it are projectively equivalent.

Next we list the possible V. Recall that a heart suporting a stability condition on
the space Stab(D)/ sph(D) can be identified with one of the following: the standard
heart H0 = ⟨S1, S2⟩ or its shift H0[1], or ⟨S1[1], E⟩, ⟨S1, S2[1]⟩, ⟨S2, E[1]⟩, where
S2 → E → S1 is a short exact sequence. In fact, the vanishing category A1 arising
from one of the hearts above is generated by one of the indecomposables S1, S2, E
of H0, those appearing in Figure 1. Therefore in Stab(D), we associate with any
such V the image of a generating simple in P1(K(D)) ∼= P1

Q and call this map c.
We let H0 be the standard heart of the A2-quiver and let V1 = ⟨S2⟩, corresponding
to c(V1) =

(
0
1

)
∈ K(D). This subcategory obviously corresponds to any central

charge with Z0(S1) ∈ ±H and Z0(S2) = 0.
We first consider the action of the Seidel-Thomas group sph(D) ∼= B3 on H0

and V1. The element τ2 stabilizes V1. The generator of center θ2 of B3 acts by
the shift by [±5] and thus trivially on V1. Given that B3/⟨θ2⟩ ≃ PSL2(Z) [FM12]
and that τ2 acts as

(
1 1
0 1

)
on K(D3

A2
), the orbits of the action sph(D) on V1 are in

bijection (of cosets) with
B3/⟨θ2, τ2⟩ ∼= PSL2(Z)/⟨

(
1 1
0 1

)
⟩ ∼= P1

Q (41)
The quotient Aut(D)/ sph(D) is generated by [−1], which also acts trivially

on any V. To summarize, the orbit Aut(D) · V1 is in natural bijection with P1
Q

via the map c. The resulting space PMStab(D)/Aut(D) is the compact orbifold
H̃/PSL2(Z).
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