

5. Übungsblatt (erschienen am 13.5.2024)

Wir betrachten in den ersten drei Aufgaben dieses Blattes das **Gradientenverfahren mit Armijoregel** mit Parametern $\gamma = 0.5$ und $\beta \in (0.5, 1)$ betrachten. Dazu sei stets $f : \mathbb{R}^n \to \mathbb{R}$, $f(x) = \frac{1}{2}x^{\mathsf{T}}Cx$, mit $C \in \mathbb{R}^{n \times n}$ symmetrisch positiv definit. Dann wählen wir als Suchrichtung $d_k = -\nabla f(x_k)$ und die Schrittweiten $s_k \in \{1, \beta, \beta^2, ...\}$ werden bestimmt als die größte Zahl, so dass

$$f(x_k + s_k d_k) - f(x_k) \le \frac{1}{2} s_k \nabla f(x_k)^T d_k.$$

Aufgabe 5.1 (Votieraufgabe)

- (a) Überzeugen Sie sich, dass $\bar{x} = 0$ das (eindeutige) globale Minimum von f ist.
- (b) Sei $x \neq 0$ und $d = -\nabla f(x)$ sowie t > 0. Zeigen Sie, dass

$$f(x+td) - f(x) \le -\frac{1}{2}t||d||^2$$

genau dann wenn $t \leq \frac{\|d\|^2}{d^T C d}$.

Aufgabe 5.2 (schriftliche Aufgabe)[6 Punkte]

Seien $(x_k)_{k\in\mathbb{N}}$, $(d_k)_{k\in\mathbb{N}}$ und $(s_k)_{k\in\mathbb{N}}$ Folgen, welche durch obiges Verfahren erzeugt wurden (das Verfahren terminiert also nicht vorzeitig an einem stationären Punkt). Wir wollen zeigen, dass $L\in(0,1)$ und $K\in\mathbb{R}$ existieren mit:

$$||x_k - \bar{x}|| \le L^k K$$

für alle $k \in \mathbb{N}$. Überlegen Sie anschließend wie L von der Kondition $\kappa(C)$ abhängt. Zeigen Sie dazu:

(a) Es gilt

$$f(x_{k+1}) = f(x_k) - s_k ||d_k||^2 + \frac{s_k^2}{2} d_k^T C d_k.$$

(b) Für alle $k \in \mathbb{N}$ existiert $j = j(x_k) \in \mathbb{N}$ mit

$$|s_k||d_k||^2 - \frac{s_k^2}{2}d_k^T C d_k \ge \frac{f(x_k)}{\kappa(C)} (2\beta^j - \beta^{2(j-1)}).$$

(c) Es existiert $L' \in (0,1)$ mit

$$f(x_{k+1}) \le L'f(x_k)$$

für alle $k \in \mathbb{N}$.

Aufgabe 5.3 (Programmieraufgabe)[6 Punkte]

Verwenden Sie die MATLAB-Funktion von Übungsblatt 3

function [z,fz] = Gradient_mit_Armijo(f,
$$\nabla$$
, z0, β , γ)

welche das Gradientenverfahren mit Armijoregel realisiert.

- (a) Verwenden Sie diese MATLAB-Funktion, um das globale Minimum von $f(x,y) = x^2 + 100y^2$ zu bestimmen, mit Startwert $z_0 = [10,1]$, sowie $\beta = 0.75$ und $\gamma = 0.5$. Plotten Sie $\log(||z_k||)$ gegen k um die Konvergenzgeschwindigkeit zu visualisieren.
- (b) Zeichnen Sie die Höhenlinien der Funktion $f(x,y) = x^2 + 100y^2$ und in dasselbe Bild die Folge der Iterierten (als Polygonzug) aus der Teilaufgabe (a).

- Zu den **schriftlichen Aufgaben*** soll eine Ausarbeitung/Lösung angefertigt werden, die bis zum 21.5.2024 um 10 Uhr in Fach 17 im 3. Stock der Robert-Mayer-Str. 6-8 abzugeben ist.
- Zu **Programmieraufgaben*** ist ein kommentierter MATLAB-Quellcode zu schreiben, welcher zusammen mit den damit erstellten Plots ausgedruckt werden soll. Der Code ist nicht per Mail einzureichen.
- Zu **Votieraufgaben** wird keine schriftliche Abgabe verlangt. Die Lösung wird in der Übung besprochen.

^{*}Die Abgabe und Bearbeitung darf in Zweiergruppen erfolgen.