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ABSTRACT. We present a Galois-theoretical criterion for the simplicity of the Lyapunov
spectrum of the Kontsevich-Zorich cocycle over the Teichmüller flow on the SL2(R)-
orbit of a square-tiled surface. The simplicity of the Lyapunov spectrum has been proved
by A. Avila and M.Viana with respect ot the so-called Masur-Veech measures associated
to connected components of moduli spaces of translation surfaces, but is not always true
for square-tiled surfaces of genus > 3. We apply our criterion to square-tiled surfaces of
genus 3 with one single zero. Conditionally to a conjecture of Delecroix and Lelièvre,
we prove with the aid of Siegel’s theorem (on integral points on algebraic curves of genus
> 0) that all but finitely many such square-tiled surfaces have simple Lyapunov spectrum.
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1. INTRODUCTION

1.1. The KZ cocycle. The Teichmüller flow on the moduli spaces of translation surfaces
acts as renormalization dynamics for interval exchange transformations and translation
flows. The Kontsevich-Zorich cocycle describes how the homology of the surface evolves
along the orbits of the Teichmüller flow. The seminal works of A. Zorich [Zo1], [Zo2],
[Zo3], [Zo4], [Zo5] and G. Forni [Fo1] have explicited an intimate relation between the
deviations of Birkhoff sums from ergodic averages for interval exchange maps and trans-
lation flows and the Lyapunov spectrum of the Kontsevich-Zorich (KZ for short) cocycle.

Date: May 16, 2013.
1



2 CARLOS MATHEUS, MARTIN MÖLLER, AND JEAN-CHRISTOPHE YOCCOZ

The connected components of moduli spaces of unit area translation surfaces support
natural probability measures invariant under the Teichmüller flow, the so-called Masur-
Veech measures µMV . Based on numerical experiments, M. Kontsevich and A. Zorich
[Ko] conjectured that Lyapunov spectra of KZ cocycle with respect to these measures are
always simple, i.e. all Lyapunov exponents have multiplicity 1.

G. Forni obtained an important partial result [Fo1] in this direction: he proved that
the KZ-cocycle is non-uniform hyperbolic w.r.t. µMV , i.e the Lyapunov exponents are
different from 0. Then the conjecture of M. Kontsevich and A. Zorich was fully proved in
the celebrated work of A. Avila and M. Viana [AV].

On the other hand, G. Forni and his coauthors (see [Fo2] and [FMZ1]) constructed two
examples of translation surfaces with the following property: their orbits under the natural
SL2(R)-action on moduli space are closed and support SL2(R)-invariant probability mea-
sures with respect to which all nontrivial Lyapunov exponents of the KZ cocycle vanish.
In particular, these Lyapunov spectra are far from simple.

Partly motivated by this discussion, G. Forni [Fo3] recently provided a criterion for the
non-uniform hyperbolicity of the Lyapunov spectrum of the KZ cocycle with respect to a
given SL2(R)-invariant ergodic probability measure µ essentially based on the geometry
of the horizontal foliation of the translation surfaces in the support of µ. However, as
it is pointed out in [Fo3] by means of concrete examples, this geometric criterion is not
sufficient to ensure the simplicity of the Lyapunov spectrum in general.

1.2. Main results. As a matter of fact, the examples of non-simple Lyapunov spectrum in
[Fo2], [FMZ1] and [Fo3] come from a class of translation surfaces (M,ω) called square-
tiled surfaces or origamis.

Our main result, presented below, is a Galois-theoretical criterion for the simplicity of
the Lyapunov spectrum of the KZ-cocycle, with respect to the natural SL2(R)-invariant
probability measure associated to an origami.

A translation surface (M,ω) is square-tiled if its group of relative periods is contained
in Z ⊕ iZ. Equivalently, there is a ramified covering p : M → T2 ≡ C/(Z ⊕ iZ),
unramified over T2 − {0}, such that ω is the pull back of the standard form dz on T2. The
square-tiled surface (M,ω) is reduced if its group of relative periods is equal to Z⊕ iZ.

Let (M,ω) be a translation surface. An orientation-preserving homeomorphism A of
M is affine if it is given locally by affine maps in the charts provided by local primitive
of ω. Then, it has a linear part or derivative DA ∈ SL2(R). The derivatives of affine
homeomorphisms form a subgroup of SL2(R) called the Veech group of (M,ω). When
(M,ω) is reduced square-tiled, the Veech group is a subgroup of finite index in SL2(Z).
An affine homeomorphism is an automorphism of (M,ω) if its derivative is the identity.

Let (M,ω) be a reduced square-tiled surface. There is a canonical splitting

H1(M,Q) = Hst
1 (M,Q)⊕H(0)

1 (M,Q),

which is invariant under the action of any affine homeomorphism. Here H(0)
1 (M,Q) is

the 2-codimensional kernel of the homomorphism p∗ : H1(M,Q) → Hst
1 (M,Q) and the

summands are orthogonal for the symplectic intersection form. The action of an affine
homeomorphism A on Hst

1 (M,Q) ' Hst
1 (M,Q) ' Q2 is through the standard action

of DA ∈ SL2(Z) and correspond to the tautological extremal Lyapunov exponents of the
KZ-cocycle.
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The action of A on H(0)
1 (M,Q) preserves the symplectic intersection form. It is given

by a symplectic matrix with integer coefficients1. Its characteristic polynomial is reciprocal
of degree 2g− 2 (as usual, g denotes the genus of M ). One says that A is Galois-pinching
if the characteristic polynomial is irreducible over Q, has only real roots, and its Galois
group is largest possible, with order 2g−1(g−1)! (being then isomorphic to the semi-direct
product Sg−1 o (Z/2Z)g−1, acting on the set of roots as the centralizer of the involution
λ→ λ−1).

We can now formulate a first version of our simplicity criterion.

Theorem 1.1. Let (M,ω) be a reduced square-tiled surface having no nontrivial auto-
morphism. Assume that there exist two affine homeomorphisms A,B of (M,ω) with the
following properties:

i) A is Galois-pinching and DA has trace > 2 ;
ii) B acts onH(0)

1 (M,Q) through an unipotent endomorphism distinct from the iden-
tity, such that the image of B − id is not a lagrangian subspace of H(0)

1 (M,Q).

Then, the Lyapunov spectrum of the KZ-cocycle, relative to the SL2(R)-invariant proba-
bility measure supported by the SL2(R)-orbit of (M,ω) in moduli space, is simple.

Let (M,ω) be an origami. The union of the zeros of ω and the saddle-connections in a
given rational direction disconnect M into a finite number of cylinders. The dimension of
the (isotropic) subspace of H1(M,Q) spanned by the classes of the waist curves of these
cylinders is the homological dimension of the given rational direction. It takes values in
{1, . . . , g}.

Corollary 1.2. Let (M,ω) be a reduced square-tiled surface. Assume that

i) The holomorphic 1-form ω has a single zero;
ii) there exists a Galois-pinching affine homeomorphism A with tr(DA) > 2;

iii) there exists a rational direction with homological dimension 6= 1, g.

Then, the Lyapunov spectrum of the KZ-cocycle, relative to the SL2(R)-invariant proba-
bility measure supported by the SL2(R)-orbit of (M,ω) in moduli space, is simple.

In Section 5, we give another version of the criterion which involves two affine homeo-
morphism with hyperbolic linear part (Theorem 5.4).

In the second part of the paper, we give some application of our simplicity criterion.
For a square-tiled surface (M,ω) of genus 2, the Lyapunov exponents of the KZ-cocycle

(w.r.t. to the SL2(R)-invariant probability measure supported by the SL2(R)-orbit of
(M,ω)) are known (cf. [Ba]): the nontrivial exponents are ± 1

3 if ω has a double zero,
± 1

2 if ω has two simple zeros. In other words, they are equal to the Lyapunov exponents
relative to the Masur-Veech measure of the stratum containing (M,ω).

In this paper, we consider the simplest case where the Lyapunov exponents are not
known: origamis (M,ω) of genus 3 such that ω has a single zero (of order 4). The cor-
responding moduli space is denoted by H(4). Such origamis only have the identity as an
automorphism (Proposition 2.4). Reduced origamis in H(4) fall in three different classes,
related to the existence and the properties of an affine homeomorphism whose linear part
is −id, called anti-automorphism below; because of Proposition 2.4, there is at most one
such anti-automorphism.

1See however Remark 2.5.
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• Origamis with no anti-automorphism are said to be of odd type2.
• An anti-automorphism has either 4 or 8 fixed points. The origami is said to be of

Prym type3 in the first case, of hyperelliptic type in the second case.

The non trivial Lyapunov exponents for an origami of Prym type are known to be equal
to ± 1

5 ,±
2
5 (see Subsection 6.6), from [CM] and [EKZ]. The crucial fact, that allows to

determine exactly the exponents, is that, for an origami of Prym type, there is a splitting of
H

(0)
1 into two 2-dimensional summands which are invariant under any affine homeomor-

phism.
The Lyapunov exponents do not change when one replaces an origami by another in the

same SL2(Z)-orbit. To classify SL2(Z)-orbits of origamis, several invariants have been
introduced:

• A trivial invariant is the number of squares, i.e the degree of the ramified covering
p : M → T2.

• When there exists an anti-automorphism, its fixed points project to points of order
2 in T2. The distribution of the projections of fixed points was first considered by
E. Kani [Ka] and P. Hubert-S. Lelièvre [HL]) in genus 2. This HLK-invariant for
H(4) is described more precisely in Subsection 6.4.

• In all cases, following D. Zmiaikou ([Zm]), it is possible to associate to an N -
square origami a subgroup of SN called the monodromy group (see Subsection
2.3). Actually, for a large number of squares (N > 7 for H(4)), the monodromy
group is either the full symmetric group SN or the alternating group AN ([Zm,
Theorem 3.12]).

Supported by some numerical experiments with SAGE, V. Delecroix and S. Lelièvre
have conjectured that the invariants above are sufficient to classify SL2(Z)-orbits in the
odd and hyperelliptic cases (the Prym case had been settled earlier by E. Lanneau and
D.-M. Nguyen [LN]). More precisely, they expect that, for N > 8

• There are two orbits of N -square reduced origamis of odd type, associated to the
two possibilities for the monodromy group.

• There are four (for odd N ) or three (for even N ) orbits of N -square reduced
origamis of hyperelliptic type, associated to the possible values of the HLK-invari-
ant.

The complete statement of the conjecture is given in Subsection 6.5. Our result for
H(4) is as follows.

Theorem 1.3. For any large enough integer N , there exist two N -square reduced origami
of odd type in H(4) with simple Lyapunov spectra whose monodromy groups are respec-
tively the full symmetric group SN and the alternating group AN .

For any large enough integer N , and any realizable value of the HLK-invariant, there
exists a N -square reduced origami of hyperelliptic type in H(4) with simple Lyapunov
spectrum having the prescribed HLK-invariant.

Corollary 1.4. If the Delecroix-Lelièvre conjecture holds, then the Lyapunov spectrum of
the KZ-cocycle for all but (possibly) finitely many reduced square-tiled surfaces in H(4) is
simple.

2Odd here denotes the parity of a spin structure which is crucial in the Kontsevich-Zorich classification [KZ]
of connected components of strata.

3See Subsection 6.2.
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1.3. Questions and comments.

Remark 1.5. Theorem 1.1 was used by V. Delecroix and the first author [DM] to show
that there is no general converse to G. Forni’s geometrical criterion for non-uniform hyper-
bolicity [Fo3].

Remark 1.6. The exact value of the Lyapunov exponents of the KZ cocycle are not known
for a primitive square-tiled surface in H(4) except in the Prym case. On the other hand,
Chen and Möller [CM] have shown that the sum of the nonnegative exponents depends only
of the connected component of the moduli space which contains the surface, and is equal to
the sum of the nonnegative exponents for the Masur-Veech measure of this component. The
sum of the nonnegative exponents for Masur-Veech measures can be computed explicitly
from Siegel-Veech constants [EKZ]. The sum of the nontrivial nonnegative exponents is
therefore equal to 3

5 for square-tiled surfaces of odd or Prym type, and to 4
5 for origamis of

hyperelliptic type.

Remark 1.7. While numerical methods to estimate the values of the Lyapunov exponents
of the KZ-cocycle are quite effective for the Masur-Veech measures associated to compo-
nents of the moduli space, they are much less so for the natural measures associated to
individual square-tiled surfaces. For origamis in H(4) (not of Prym type), only the first
two decimal places can be guaranteed with some degree of confidence. Within these limi-
tations, no variation can be detected numerically for the Lyapunov exponents of origamis
of the same type in H(4).

Remark 1.8. How effective are Theorem 1.3 and Corollary 1.4? The short answer is that
they are effective in principle but not in a practical way. The construction in Sections 7 and
8 of one-parameter families of origamis with some of the required properties (prescribed
monodromy group or HLK-invariant, rational direction of homological dimension 2) is
valid as soon as the number of squares (which is an affine function of the parameter) is
not too small. These origamis are equipped with an affine homeomorphism A satisfying
tr(A) > 2. In order to apply Corollary 1.2, we have to prove that A is Galois-pinching.
After some elementary Galois theory, this is equivalent to show that three quantities, which
are explicit polynomials with integer coefficients in the parameter, are not squares. This
can be done quite explicitly for the first quantity. However, to deal with the other two
quantities, we have to appeal to Siegel’s theorem (see, e.g., [HS]) on the finiteness of
integral points on algebraic curves of genus > 0.

Siegel’s theorem admits effective versions (see for instance [Bi]) but the bounds on the
height of the integral points are currently, as far as the authors know, doubly exponential in
the size of the coefficients of the polynomials involved. Thus, even assuming the conjecture
of Delecroix and Lelièvre, a proof of the simplicity of the Lyapunov spectrum for all
origamis in H(4) along these lines (completing Corollary 1.4 by a numerical investigation
of the finitely many remaining origamis) is hopeless.

The invariance of the sum of nonnegative Lyapunov exponents for origamis in the same
connected component of moduli space, as exemplified by the results of Bainbridge in genus
2 and of Chen-Möller (Remark 1.6) for H(4), does not extend to all moduli spaces. For
instance, the moduli space of genus 3 translation surfaces with 4 simple zeroes contains
the example cited earlier [Fo2] with totally degenerate Lyapunov spectrum.

In genus > 3, the relation between the Lyapunov spectra of the KZ-cocycle w.r.t. the
probability measure associated to a square-tiled surface (M,ω) and w.r.t. the Masur-Veech
measure associated with the connected component of moduli space containing (M,ω) is
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poorly understood. The only general result is due to Eskin: in the appendix of [Ch], he
proves that, as N goes to +∞, the average of the sum of nonnegative Lyapunov exponents
over all N -square origamis in a component of some moduli space converges to the sum of
Lyapunov exponents w.r.t. the Masur-Veech measure of this component.

In connection with the results mentioned above and the recent works [EM] and [EMM],
the following questions look natural. Consider a sequence of square-tiled surfaces (Mn, ωn)
in some connected component of some moduli space of translation surfaces. Denote by
µn the natural invariant probability measure on the SL2(R)-orbit of (Mn, ωn) in moduli
space. Assume that the sequence µn converges in the weak topology to some probability
measure µ. Then, by Theorem 2.3 of [EMM], the measure µ is ergodic and the support of
µ contains (Mn, ωn) for all large n.

Question 1.9. Does each Lyapunov exponent w.r.t. µn converge towards the correspond-
ing exponent w.r.t. µ?

Remark 1.10. As it was pointed out to us by A. Eskin, in the same context as above, the
sum of the nonnegative Lyapunov exponents w.r.t. µn converges towards the sum of the
nonnegative Lyapunov exponents w.r.t. µ by an argument along the following lines. The
Kontsevich-Forni formula (cf. [EKZ] and [Fo1]) expresses the sum of Lyapunov expo-
nents of an ergodic SL(2,R)-invariant probability measure ν in terms of an integral of a
continuous function Λ defined on any given connected component C of moduli spaces of
translation surfaces. Furthermore, Λ is uniformly bounded by the value g of the genus of
translation surfaces in C. On the other hand, Λ is not compactly supported (cf. [Fo1]), and
thus the convergence of sum of Lyapunov exponents is not an immediate consequence of
the definition of weak-∗ convergence of measures. Nevertheless, the work of A. Eskin and
H. Masur [EMas] implies that, for each ε > 0, there exists a compact set Kε ⊂ C such that
ν(Kε) > 1−ε for all ergodic SL(2,R)-invariant probability measure ν on C. By combin-
ing this with the uniform bound on Λ, we see that the integral of Λ on the complement of
Kε w.r.t. any ergodic SL(2,R)-invariant ν is< g ·ε. In other words, the main contribution
to the integral of Λ on C comes from the compact sets Kε and therefore we can use the
definition of weak-∗ convergence to obtain the desired convergence of sums of Lyapunov
exponents.

1.4. Outline of the paper. We recall in Section 2 the definition and some elementary
properties of translation surfaces, the KZ-cocycle, and square-tiled surfaces. Then we state
as Theorem 2.17 a variant of the simplicity criterion of A. Avila and M. Viana [AV] for
locally constant integrable cocycles over full shifts on a countable alphabet, equipped with
measures with bounded distortion. The simplicity criterion says that such cocycles have
simple Lyapunov spectrum whenever they verify two conditions called pinching and twist-
ing. The version of the simplicity criterion used here differs from the original one by A.
Avila and M. Viana in a few details, such as the precise statement of the twisting property.
For the convenience of the reader, we discuss in Appendices A and B the straightforward
modifications one must perform in the original argument of A. Avila and M. Viana in order
to get Theorem 2.17.

In order to apply Theorem 2.17 to the KZ-cocycle over the SL2(R)-orbit of a square-
tiled surface, we explain in Section 3 how to view the Teichmüller flow on such an orbit as
the suspension of a full shift over a countable alphabet. This is derived from the classical
relation between the continued fraction algorithm and the geodesic flow on the modular
surface. The invariant Haar measure on the orbit has bounded distortion. The KZ-cocycle
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corresponds in this setting to a locally constant integrable cocycle given by symplectic
matrices with integer coefficients.

Section 4 provides the main step in the proof of Theorem 1.1. The pinching condition
of Theorem 2.17 is replaced by the stronger hypothesis of Galois-pinching, which only
makes sense for matrices with integer coefficients. For Galois-pinching matrices, we are
able to replace the twisting condition of Theorem 2.17 by a weaker hypothesis, which is
easily checked in the setting of Theorem 1.1. The proof of this fact (Theorem 4.5) is quite
involved.

In Section 5, we complete the proof of Theorem 1.1 and Corollary 1.2. We also present
and prove a variant of Theorem 1.1 .

In the last three sections of the paper, we explain how to apply Corollary 1.2 to prove
Theorem 1.3.

In Section 6, we give some general background on origamis in H(4) which will be
needed later. We extract from S. Lelièvre’s classification of saddle configurations in Ap-
pendix C a characterization of 2-cylinder directions. We define the HLK-invariant for
origamis of odd or Prym type, and formulate precisely the conjecture of Delecroix and
Lelièvre. We recall what is known about origamis of Prym type. Finally, we present some
elementary Galois theory of reciprocal polynomials of degree 4 which is instrumental in
checking that an affine homeomorphism is Galois-pinching.

The proof of Theorem 1.3 is given in Section 7 for origamis of odd type, in Section
8 for origamis of hyperelliptic type. The method of the proof is the same in both cases.
We define in each case a model geometry, consisting of origamis with three horizontal
cylinders and three vertical cylinders with a very simple intersection pattern. These two
families of origamis are parametrized by six integers, the heights of the horizontal and ver-
tical cylinders. It is very easy to determine from the parameters the monodromy group (in
the odd case) or the HLK-invariant (in the hyperelliptic case). The model geometry allows
to construct explicitly, for any values of the six parameters, an affine homeomorphism A
with tr(A) > 2.

We consider a finite number of one-parameter subfamilies, where only one of the six
parameters is allowed to vary along an arithmetic progression. We get in this way enough
origamis to get one with prescribed invariant (monodromy group or HLK-invariant) for any
large number of squares. Also, in each of these families, a well-chosen rational direction
has homological dimension 2. Finally, we apply the elementary Galois theory of Subsec-
tion 6.7 to show that A is Galois-pinching when the number of squares is large enough.
Then Theorem 1.3 is a consequence from Corollary 1.2.
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2. BACKGROUND AND NOTATION

The basic references for the next 4 subsections are [Zo6] and [Ve3] (see also Section 1
of [MY]), and for the last subsection is [AV].

2.1. Translation surfaces. Let
• M be a compact oriented topological surface of genus g > 1;
• Σ := {O1, . . . , Oσ} be a non-empty finite subset of M ;
• κ = (k1, . . . , kσ) be a non-increasing sequence of non-negative integers satisfying∑

ki = 2g − 2.
A structure of translation surface on (M,Σ, κ) is a structure of Riemann surface on M ,

together with a non identically zero holomorphic 1-form ω which has at Oi a zero of order
ki. Observe that, by the Riemann-Roch theorem, all zeroes of ω belong to Σ. For example,
taking M = R2/Z2, Σ = {0}, k0 = 0, a structure of translation surface is defined by the
complex structure inherited from C ≡ R2 and the holomorphic 1-form ω0 induced by dz.

The reason for the nomenclature “translation surface” comes from the fact that local
primitives of ω on M − Σ provides an atlas whose changes of charts are given by transla-
tions of the plane. Below, the charts of this atlas will be called translation charts.

Sometimes we will slightly abuse notation by denoting a translation surface by (M,ω)
or simply ω when the structure of Riemann surface is unambiguous.

Denote by Diff+(M,Σ, κ) the group of orientation-preserving homeomorphisms f of
M which preserve Σ and κ (i.e if f(Oi) = Oj , then ki = kj). Denote by Diff+0 (M,Σ, κ)

the identity component of Diff+(M,Σ, κ). The quotient

Γ(M,Σ, κ) := Diff+(M,Σ, κ)/Diff+0 (M,Σ, κ)

is the so-called mapping-class group.
The Teichmüller space T(M,Σ, κ) is the quotient of the set of structure of translation

surfaces on (M,Σ, κ) by the natural action of the group Diff+0 (M,Σ, κ). Similarly, the
moduli space H(M,Σ, κ) is the quotient of the same set by the natural action of the larger
group Diff+(M,Σ, κ). Thus the mapping class group acts on Teichmüller space and the
quotient space is the moduli space.

The group GL+
2 (R) naturally acts on the set of structures of translation surfaces on

(M,Σ, κ) by post-composition with the translation charts. This action commutes with the
action of Diff+(M,Σ, κ). Therefore it induces an action of GL+

2 (R) on both T(M,Σ, κ)
and H(M,Σ, κ).

The action of the 1-parameter diagonal subgroup gt := diag(et, e−t) is the so-called
Teichmüller flow.

Let ω define a structure of translation surface on (M,Σ, κ). The automorphism group
Aut(ω), resp. the affine group Aff(ω), of the translation surface (M,ω) is the group of
orientation-preserving homeomorphisms of M which preserve Σ and whose restrictions to
M − Σ read as translations, resp. affine maps, in the translation charts of (M,ω). The
embedding of Aut(ω) into Aff(ω) is completed into an exact sequence

1 −→ Aut(ω) −→ Aff(ω) −→ SL(ω) −→ 1,

where SL(ω) ⊂ SL(2,R) is the Veech group of (M,ω): it is the stabilizer of the point
in moduli space represented by (M,ω), for the action of GL+

2 (R). The map from Aff(ω)
onto the Veech group is defined by associating to each homeomorphism φ ∈ Aff(ω) its
derivative (linear part) Dφ ∈ SL(ω) in translation charts.
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Definition 2.1. Let (M,ω) be a translation surface. An anti-automorphism (or central
symmetry) is an element of the affine group Aff(ω) whose derivative is −Id.

The square of an anti-automorphism is an automorphism.

2.2. Teichmüller flow and Kontsevich-Zorich cocycle. The total area A(M,ω) of a
translation surface (M,ω) (namely A(M,ω) := (i/2)

∫
M
ω ∧ ω) is invariant under the

commuting actions of SL2(R) and Diff+(M,Σ, κ). Thus it makes sense to consider the
restriction of the action of SL2(R) to the Teichmüller space T(1)(M,Σ, κ) of unit area
translation surfaces, and to the moduli space H(1)(M,Σ, κ) of unit area translation sur-
faces.

The dynamical features of the Teichmüller flow gt on the moduli spaces H(1)(M,Σ, κ)
have important consequences in the study of interval exchange transformations, transla-
tion flows and billiards. For instance, H. Masur [Ma] and W. Veech [Ve1], [Ve2] con-
structed, on each connected component of the normalized moduli space H(1)(M,Σ, κ), a
SL2(R)-invariant probability measure, nowadays called Masur-Veech measure. They used
the recurrence properties of the Teichmüller flow with respect to this probability measure
to confirm M. Keane’s conjecture on the unique ergodicity of “typical” interval exchange
transformations. We will denote the Masur-Veech measures by µMV in what follows.

After that, A. Zorich and M. Kontsevich (see [Zo1], [Zo2], [Zo3] and [Ko]) introduced
the so-called Kontsevich-Zorich cocycle (KZ cocycle for short) partly motivated by the
study of deviations of ergodic averages of interval exchange transformations.

Roughly speaking, the KZ cocycle GKZt is obtained from the quotient of the trivial
cocycle

ĜKZt : T(1)(M,Σ, κ)×H1(M,R) → T(1)(M,Σ, κ)×H1(M,R),

ĜKZt (ω, [c]) := (gt(ω), [c]),

by the (diagonal) action of the mapping-class group Γ(M,Σ, κ). In other words, the KZ
cocycle GKZt acts on HR

1 := (T(1)(M,Σ, κ)×H1(M,R))/Γ(M,Σ, κ), a non-trivial bun-
dle over M(1)(M,Σ, κ) called the real Hodge bundle in the literature.4

The action of Γ(M,Σ, κ) on the 2g-dimensional real vector space H1(M,R) preserves
the natural symplectic intersection form on homology. Hence, GKZt is a symplectic cocy-
cle. In particular, the Lyapunov exponents of the KZ cocycle with respect to an ergodic
gt-invariant probability measure µ on M(1)(M,Σ, κ) satisfy λµg+i = −λµg−i+1 for each
i = 1, . . . , g.

Moreover, it is possible to show that the top Lyapunov exponent λµ1 is equal to 1, and is
simple, i.e., 1 = λµ1 > λµ2 (see e.g. [Fo1]). In summary, the Lyapunov spectrum of the KZ
cocycle with respect to any ergodic gt-invariant probability measure µ has the form:

1 = λµ1 > λµ2 > . . . > λ
µ
g > −λµg > . . . > −λ

µ
2 > −λ

µ
1 = −1

The relevance of the KZ cocycle to the study of deviations of ergodic averages of in-
terval exchange transformations resides on the fact that, roughly speaking, the Lyapunov

4Some translation surfaces (M,ω) have a (finite but) non-trivial group of automorphisms, so that this defini-
tion of the KZ cocycle may not lead to a well-defined linear dynamical cocycle over certain regions of the moduli
space. Over such regions, we only have a “cocycle up to a finite group”, but this is not troublesome as far as Lya-
punov exponents are concerned: in a nutshell, by taking finite covers, we can solve the ambiguity coming from
automorphisms groups in the definition of KZ cocycle without altering Lyapunov exponents. See Subsection 2.3
below and/or [MYZ] for more discussion on this in the setting of square-tiled surfaces.
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exponents of the KZ cocycle “control” the deviation of ergodic averages of interval ex-
change transformations. See [Zo1], [Zo2], [Zo3] and [Fo1] for more details. In particular,
this fact is one of the motivation for the study of Lyapunov exponents of KZ cocycle.

Based on numerical experiments, M. Kontsevich and A. Zorich [Ko] conjectured that
the Lyapunov spectrum of the KZ cocycle with respect to any Masur-Veech measure µMV

is simple, that is, the multiplicity of all exponents λµMV

i is equal 1, and a fortiori the
exponents are all non-zero (i.e., λµMV

g > 0). This conjecture is nowadays known to be true
after the celebrated works of G. Forni [Fo1], who proved that λµMV

g > 0, and A. Avila and
M. Viana [AV], who established the full conjecture.

On the other hand, G. Forni and his coauthors (see e.g. [Fo2] and [FMZ1]) constructed
two instances of SL2(R)-invariant ergodic probabilities µEW and µO whose Lyapunov
spectra with respect to the KZ cocycle are totally degenerate in the sense that λµEW

2 =
λµO

2 = 0, that is, all Lyapunov exponents vanish except for the extreme (“tautological”)
exponents λ1 = 1, λ2g = −1.

The main goal of this article is the proof of the simplicity of the Lyapunov spectrum
of the KZ cocycle with respect to certain ergodic SL2(R)-invariant probability measures
supported on the SL2(R)-orbits of a special kind of translation surfaces called square-tiled
surfaces or origamis. For the reader’s convenience, we recall some features of square-tiled
surfaces in the next two subsections.

2.3. Square-tiled surfaces. A square-tiled surface (or origami) is a translation surface
(M,ω) such that ∫

γ

ω ∈ Z⊕ iZ

for every relative homology class γ ∈ H1(M,Σ,Z).
Let (M,ω) be an origami and Oj ∈ Σ; the application

p : M → C/Z⊕ iZ ≡ T2

A →
∫ A

Oj

ω mod Z⊕ iZ

is independent of j and is a ramified covering with the following properties:
• p is unramified over T2 − {0};
• ω = p∗(ω0(T2));
• Σ is contained in the fiber p−1(0).

Conversely, a ramified covering with these properties defines an origami.5

Let (M,ω) be an origami and let p : M → T2 be the associated ramified covering.
A square of (M,ω) is a connected component of p−1((0, 1)2). The cardinality of the set
Sq(ω) of squares is the degree of p. One defines two bijections σh, σv from Sq(ω) to
itself by sending a square to the square immediately to the right, resp. to the top, of it. The
subgroup of the symmetric group over Sq(ω) generated by σh, σv is called the monodromy
group of (M,ω) and acts transitively on Sq(ω).

The action of SL2(Z) ⊂ GL+
2 (R) on the set of translation surfaces preserves the subset

of square-tiled surfaces. In moduli space, the orbit of an origami for this action is finite.
The action of SL2(Z) on origamis preserves the number of squares and the monodromy
group (cf. [Zm]).

5For a square-tiled surface, it is more convenient to normalize the area of each square than the total area.
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Definition 2.2. An origami (M,ω) is reduced if the group of relative periods
∫
γ
ω, γ ∈

H1(M,Σ,Z) is equal to Z⊕ iZ. Equivalently, writing p for the associated ramified cover-
ing of T2, there does not exist a ramified covering p′ : M → T2 unramified over T2−{0}
and a covering π : T2 → T2 of degree > 1 such that p = π ◦ p′.

We will only consider from now on reduced origamis. For later use, we also give the
definition of primitive square-tiled surfaces.

Definition 2.3. A square-tiled surface (M,ω) is primitive if it is not a non-trivial ramified
covering of another square-tiled surface (M ′, ω′).

A primitive square-tiled surface is reduced (but the converse is not always true). The
automorphism group of a primitive origami is trivial.

Let (M,ω) be a reduced square-tiled surface. The Veech group SL(ω) is a finite index
subgroup of SL2(Z), and, a fortiori, it is a lattice in SL2(R). Thus SL2(R)/SL(ω) supports
an unique SL2(R)-invariant probability measure. By a theorem of J. Smillie (cf. [SW]),
the SL2(R)-orbit of (M,ω) is closed in the corresponding moduli space. Hence there
exists exactly one SL2(R)-invariant probability measure supported by the SL2(R)-orbit of
(M,ω) in moduli space.

The affine group Aff(ω) embeds naturally in the mapping class group Γ(M,Σ, κ) and
its image is the stabilizer of the SL2(R)-orbit of (M,ω) in Teichmüller space. Therefore,
the restriction of the KZ cocycle GKZt to the SL2(R)-orbit of (M,ω) in moduli space can
be thought as the quotient of the trivial cocycle (over the orbit of (M,ω) in Teichmüller
space)

ĜKZt : SL2(R) · (M,ω)×H1(M,R)→ SL2(R) · (M,ω)×H1(M,R)

by the action of the affine group Aff(ω). In other words, for recurrent times of the Teich-
müller flow, the restriction of the KZ cocycle to the orbit of (M,ω) acts on the fibers
H1(M,R) of the real Hodge bundle through certain elements of Aff(ω). In particular, we
see that:

• when the automorphism group Aut(ω) is trivial, the Veech group SL(ω) is canoni-
cally isomorphic to the affine group Aff(ω). In this case, the KZ cocycle is a linear
dynamical cocycle in the usual sense.

• on the other hand, when Aut(ω) is not trivial, the action of the KZ cocycle on the
fibers of the real Hodge bundle is only defined up to the action on homology of the
finite group Aut(ω). In order to remove this ambiguity and to recover a standard
linear dynamical cocycle, one must introduce a finite cover of moduli space. Such
a finite cover is constructed, for instance, in [MYZ] (by marking some horizontal
separatrices).

In the sequel, we will avoid the technical issue pointed out in the last item by assuming
from now on that the origami under consideration has a trivial automorphism group. We
recall the following well-known fact.

Proposition 2.4. A translation surface (M,ω) such that #Σ = 1 has no nontrivial auto-
morphism.

Proof. The quotient of (M,ω) by a nontrivial automorphism would be a cyclic Galois
ramified covering over another translation surface (N,ω′) with a single marked point O′.
A small loop aroundO′ is a product of commutators in the fundamental group ofN−{O′},
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hence would lift to a loop in M . Thus the covering would be unramified and Σ would have
more than one point. �

2.4. Decomposition of the homology. Let (M,ω) be a reduced square-tiled surface (with
trivial automorphism group) and let p : M → T2 be the associated covering. We denote
by H(0)

1 (M,Z) the kernel of the linear map

p∗ : H1(M,Z) −→ H1(T2,Z) ' Z2

induced by p. We define similarly H(0)
1 (M,R) as the kernel of the map on R-homology,

consequently H(0)
1 (M,R) = H

(0)
1 (M,Z)⊗ R.

The subspace H(0)
1 (M,R) of H1(M,R) is symplectic with respect to the symplectic

form induced by the natural intersection form on homology. Denoting by Hst
1 (M,R) its

2-dimensional symplectic orthogonal, one has6

H1(M,R) = Hst
1 (M,R)⊕H(0)

1 (M,R).

The action of the affine group Aff(ω) on H1(M,R) preserves this splitting. The action
on the first factorHst

1 (M,R) (canonically identified with R2 via p∗) is through the standard
action of the Veech group SL(ω) on R2. The action on the second factor respects the
integral lattice H(0)

1 (M,Z).
The splitting above is extended as a constant splitting of the trivial bundle SL2(R) ·

(M,ω)×H1(M,R) over the orbit of (M,ω) in Teichmüller space. Going to the quotient
by the action of the affine group, we get a well-defined splitting of the real Hodge bundle
(over the orbit of SL2(R)-orbit of (M,ω) in moduli space) which is invariant under the KZ
cocycle. We denote by GKZ,stt , resp. GKZ,(0)

t , the action of the KZ cocycle on the two
subbundles.

Let µ be an ergodic gt-invariant probability measure supported on the SL2(R) orbit of
(M,ω) in moduli space. The action of GKZ,stt on Hst

1 is responsible for the “tautological”
Lyapunov exponents λµ1 = 1 and λµ2g = −λµ1 = −1. One must focus on the action

G
KZ,(0)
t on H(0)

1 to understand the nontrivial Lyapunov exponents λµ2 > . . . > λ
µ
g .

The integral lattice H(0)
1 (M,Z) is preserved by the affine group, and the restriction of

the intersection form to this lattice is a non-degenerate integer-valued antisymmetric form
Ω. Choosing a basis of H(0)

1 (M,Z), we can think of GKZ,(0)
t as a cocycle over the Teich-

müller flow with values in the matrix group Sp(Ω,Z) of Ω-symplectic (2g−2)× (2g−2)-
matrices with integer coefficients.

Remark 2.5. The integer-valued symplectic form Ω on the (2g − 2)-dimensional inte-
ger lattice H(0)

1 (M,Z) is in general not isomorphic to the standard symplectic form on
Z2g−2. For an integer-valued symplectic forms on Z2d there exist uniquely defined positive
integers ω1, . . . , ωd with ωi|ωi+1 and a decomposition into Ω-orthogonal 2-dimensional
planes

Z2d = ⊕di=1Ei

such that each Ei has a basis (ei, fi) with Ω(ei, fi) = ωi, see [BL, Section 3.1] and the
references therein. In fact, in our situation ωi = 1 for i < g − 2 and ωg−1|p, see [BL,
Corollary 12.1.5 and Proposition 11.4.3].

6One may define Hst
1 (M,Z) as the intersection Hst

1 (M,R) ∩ H1(M,Z) but one should be aware that in

general the direct sum Hst
1 (M,Z) ⊕ H(0)

1 (M,Z) is not equal to H1(M,Z), but only to a sublattice of this
group.
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In the sequel, we will study the simplicity of the Lyapunov spectrum of GKZ,(0)
t with

respect to the (unique) SL2(R)-invariant probability measure µω supported on the SL2(R)-
orbit of (M,ω), for certain reduced origamis (M,ω) with Aut(ω) = {Id}. During this
task, we will use a (variant of a) simplicity criterion for cocycles over complete shifts
(originally) due to A. Avila and M. Viana. The content of this criterion is quickly reviewed
in the next subsection.

2.5. The Avila-Viana simplicity criterion and its variants. In this subsection we briefly
recall the setting of the Avila-Viana simplicity criterion [AV], and we discuss some variants
of it (of particular interest to our context). There are several versions of this criterion in the
literature, notably by A. Avila and M. Viana themselves [AV2].

Let Λ be a finite or countable alphabet. Define Σ := ΛN, Σ̂ := ΛZ = Σ− × Σ. Denote
by f : Σ→ Σ and f̂ : Σ̂→ Σ̂ the natural (left) shift maps on Σ and Σ̂ respectively. Also,
let p+ : Σ̂→ Σ and p− : Σ̂→ Σ− be the natural projections.

We denote by Ω =
⋃
n>0

Λn the set of words of the alphabet Λ. Given ` ∈ Ω, let

Σ(`) := {x ∈ Σ : x starts by `}
and

Σ−(`) := {x ∈ Σ− : x ends by `}
Given a f -invariant probability measure µ on Σ, we denote by µ̂ the unique f̂ -invariant

probability measure satisfying p+
∗ (µ̂) = µ, and we define µ− := p−∗ (µ̂).

Following [AV], we will make the following bounded distortion assumption on µ:

Definition 2.6 (Bounded distortion). We say that the f -invariant probability measure µ on
Σ has the bounded distortion property if there exists a constant C(µ) > 0 such that

1

C(µ)
µ(Σ(`1))µ(Σ(`2)) 6 µ(Σ(`1`2)) 6 C(µ)µ(Σ(`1))µ(Σ(`2))

for any `1, `2 ∈ Ω.

Remark 2.7. It is not hard to check that the bounded distortion property implies that µ is
f -ergodic.

In this subsection, such (f, µ) and (f̂ , µ̂) will be the base dynamics. We now discuss the
class of cocycles we want to investigate over these base dynamics. Given a map A from Σ
with values in a matrix group G acting on Kd, the associated cocycle itself is given by

(f,A) : Σ×Kd → Σ×Kd, (f,A)(x, v) = (f(x), A(x) · v).

Here, the basefield K may be R, C or the quaternion skew field H.
For ` = (`0, . . . , `n−1) ∈ Ω, we define

A` := A`n−1
. . . A`0

so that we have (f,A)n(x, v) = (fn(x), A` · v) for x ∈ Σ(`) and v ∈ Kd.

In the works [AV2] and [AV], A. Avila and M. Viana treat the cases of K = R, G =
GL(d,R) and G = Sp(d,R) respectively. They use their criterion in the symplectic case
to prove the Kontsevich-Zorich conjecture. In this paper we take the opportunity to show
(in Appendices A and B) how the arguments of A. Avila and M. Viana can be adapted in a
straightforward way to give a unified treatment of the following cases:

• K = R, G = GL(d,R) and G = Sp(d,R);
• K = R and G is an orthogonal group O(p, q) = UR(p, q), p+ q = d ;
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• K = C and G is an complex unitary group UC(p, q), p+ q = d ;
• K = H and G is an quaternionic unitary group UH(p, q), p+ q = d .

Our main motivation to consider these cases come from the recent works [MYZ], [FMZ2]
and [AMY] where several examples of cocycles with values in these matrix groups appear
naturally as “blocks” of the Kontsevich-Zorich cocycle over the closure of SL2(R)-orbits
of certain “symmetric” translation surfaces.

Remark 2.8. In the unitary case U(p, q), we will always assume without loss of generality
that p > q.

Definition 2.9. (Locally constant integrable cocycles) A cocycle A : Σ→ G is said to be
• locally constant if A(x) = Ax0

depends only on the initial letter x0 of x;
• integrable if

∫
Σ

log ‖A±1(x)‖ dµ(x) <∞.
For a locally constant cocycle, the integrability condition can be rewritten as∑

`∈Λ

µ(Σ(`)) log ‖A±1
` || <∞.

In the sequel, let µ be a f -invariant measure on Σ with the bounded distortion property
and letA be a locally constant integrable G-valued cocycle. As µ is ergodic and the cocycle
is integrable, the Oseledets theorem gives the existence of Lyapunov exponents

θ1 > . . . > θd.

Remark 2.10. The Lyapunov exponents are counted above with essential multiplicities:
in the complex case K = C, Cd is a 2d-dimensional vector space over R and there are
2d Lyapunov exponents from the real point of view. But each appears twice; the essential
multiplicity is half the real multiplicity. Similarly, in the quaternionic case, each exponent
appears 4 times from the real point of view and the essential multiplicity is 1

4 times the real
multiplicity.

The matrix group G determines a priori constraints for the Lyapunov exponents (see,
e.g., [MYZ] and [FMZ2]):

• in the symplectic case G = Sp(d,R), d even, one has θi = −θd+1−i for 1 6 i 6
d;

• in the real, complex or quaternionic unitary cases G = UK(p, q), q 6 p, p+q = d,
one has θi = −θd+1−i for 1 6 i 6 q and θi = 0 for q < i 6 p.

Also, in each of this case, the unstable Oseledets subspace associated to positive Lyapunov
exponents is isotropic. The same is true for the stable subspace associated to the negative
exponents.

Definition 2.11. The Lyapunov spectrum of the cocycle A is simple if
• θi > θi+1 for 1 6 i < d in the cases G = GL(d,R) and G = Sp(d,R), d even;
• θi > θi+1 for 1 6 i 6 q in the cases G = UK(p, q), K = R,C,H.

In other words, we say that a cocycle is simple when its Lyapunov spectrum is as simple
as possible given the constraints presented above.

To formulate the main hypotheses on the cocycle, we first need to introduce Grassman-
nian manifolds adapted to G. We say that an integer k is admissible if

• 1 6 k < d when G = GL(d,R) or Sp(d,R);
• 1 6 k 6 q or p 6 k < d = p+ q in the unitary case G = UK(p, q), p > q.
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Let k be an admissible integer. We denote by G(k) the following Grassmannian mani-
fold:

• when G = GL(d,R), the Grassmannian of k-planes of Rd;
• when G = Sp(d,R), d even, the Grassmannian of k-planes which are isotropic (if

1 6 k 6 d/2) or coisotropic (if d/2 6 k < d);
• when G = UK(p, q), the Grassmannian of k-planes over K which are isotropic (if

1 6 k 6 q) or coisotropic (if p 6 k < d).
At this point, we introduce the following two fundamental concepts:

Definition 2.12. The cocycle A is:
• pinching if there exists `∗ ∈ Ω such that the spectrum of the matrix A`

∗
is simple

(we then say that A`
∗

is a pinching matrix).
• twisting (“strong form”) if for any m > 1, any admissible integers k1, . . . , km,

any subspaces Fi ∈ G(ki), F ′i ∈ G(d − ki), 1 6 i 6 m, there exists ` ∈ Ω such
that A`(Fi) ∩ F ′i = {0}.

We can know state the Avila-Viana simplicity criterion (cf. [AV, Theorem 7.1]), G
being one of the groups mentioned above.

Theorem 2.13 (A. Avila and M. Viana). Let µ be a f -invariant probability measure on
Σ with the bounded distortion property. Let A be a locally constant integrable G-valued
cocycle. Assume that A is pinching and twisting. Then, the Lyapunov spectrum of (f,A)
with respect to µ is simple.

We will use a variant of this criterion with a relative version of twisting.

Definition 2.14. Let k be an admissible integer. LetA ∈ G be a pinching matrix. A matrix
B ∈ G is k-twisting with respect to A if one has

B(F ) ∩ F ′ = {0}
for every pair of A-invariant subspaces F ∈ G(k) and F ′ ∈ G(d− k).

Remark 2.15. The point of this definition is that, given a pinching matrix A and an ad-
missible integer k, there are only finitely many A-invariant subspaces F ∈ G(k):

• when G = GL(d,R) or G = Sp(d,R), the eigenvalues of A are real and simple,
and F is spanned by eigenvectors of A;

• when G = UK(p, q), q 6 p, K = R ou C, A has q unstable simple eigenvalues
λ1, . . . , λq ∈ K with

|λ1| > . . . > |λq| > 1,

q stable eigenvalues λ′m = λ̄−1
m , and p − q eigenvalues of modulus 1. Denote

by v1, . . . , vq, v
′
1, . . . , v

′
q eigenvectors associated to λ1, . . . , λq, λ

′
1, . . . , λ

′
q . An

isotropic A-invariant subspace is spanned by some of these eigenvectors (not al-
lowing both vm and v′m). A coisotropic A-invariant subspace is the orthogonal
complement of an isotropic A-invariant subspace.

• when G = UH(p, q), q 6 p, consider A as complex unitary of signature (2p, 2q).
Counted with multiplicity, its unstable eigenvalues are λ1, λ̄1, . . . , λq, λ̄q with

|λ1| > . . . > |λq| > 1.

Its stable eigenvalues are λ′m = λ−1
m , λ̄′m, 1 6 m 6 q. Denote by vm,v′m eigen-

vectors associated to λi, λ′i. Then vm.j, resp. v′m.j are eigenvectors associated to
λ̄m, resp. λ̄′m. An isotropic A-invariant H-subspace is spanned by some of the
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eigenvectors v1, . . . , v
′
q (not allowing both vm and v′m). A coisotropic A-invariant

H-subspace is the orthogonal of an isotropic A-invariant H-subspace.

In Appendix B we will show the following result which relates the strong and relative
versions of twisting:

Proposition 2.16. A cocycle A is pinching and twisting (in its strong form) if and only if
there exists a word `∗ ∈ Ω such that A`

∗
is a pinching matrix and, for each admissible

integer k, there exists a word `(k) ∈ Ω such that A`(k) is k-twisting with respect to A`
∗
.

By putting together Theorem 2.13 and Proposition 2.16, we obtain the following variant
of the Avila-Viana simplicity criterion:

Theorem 2.17. Let µ be a f -invariant probability measure on Σ with the bounded distor-
tion property. Let A be a locally constant integrable G-valued cocycle. Assume that there
exists a word `∗ ∈ Ω with the following properties:

• the matrix A`
∗

is pinching;
• for each admissible integer k, there exists a word `(k) ∈ Ω such that the matrix
A`(k) is k-twisting with respect to A`

∗
.

Then, the Lyapunov spectrum of (f,A) with respect to µ is simple.

At this stage, this background section is complete and we pass to the discussion (in the
next 3 sections) of Theorem 1.1.

3. MODULI SPACE AND CONTINUED FRACTION ALGORITHM FOR SQUARE-TILED
SURFACES

The SL2(R)-orbits of reduced square-tiled surfaces are finite covers of the moduli space
SL2(R)/SL2(Z) of unit area lattices in the plane. The Teichmüller (geodesic) flow on
SL2(R)/SL2(Z) is naturally coded by the continued fraction algorithm. Of course, this is
classical and it is described (at least partly) in several places, see, e.g., [Ar], [Da], [HL],
[Mc2], [Se], [Zo7], [FMZ2], and references therein. However, for our current purpose of
coding the Teichmüller flow and KZ cocycle over the SL2(R)-orbit of a reduced square-
tiled surface, we need a somewhat specific version of this coding that we were unable to
locate in the literature.7

In the first subsection, we introduce this specific version for the diagonal flow on the
modular curve SL2(R)/SL2(Z). Then, we define a similar coding for the Teichmüller
flow on the SL2(R)-orbit of a reduced square-tiled surface. The KZ-cocycle has a natural
discrete-time version adapted to this coding. Finally, we explain why we may assume that
the base dynamics satisfies the hypotheses of Theorem 2.17. The pinching and twisting
conditions in this theorem are the subject of the next section.

3.1. The torus case. The continued fraction algorithm is generated by the Gauss map

G : (0, 1) ∩ (R−Q) → (0, 1) ∩ (R−Q)

G(α) = {α−1},

7When this paper was almost complete, A. Eskin and the first author [EMat] observed that the study of
Lyapunov exponents of the KZ cocycle over closed SL(2,R)-orbits can be performed without the aid of a coding
of the Teichmüller flow and KZ cocycle thanks to a profound theorem of H. Furstenberg on the Poisson boundary
of homogenous spaces.
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where {x} is the fractional part of x ∈ R. The Gauss measure dt
1+t is up to normalization

the only G-invariant finite measure on (0, 1) which is absolutely continuous with respect
to Lebesgue measure.

Defining
a(x) := bx−1c ∈ Z>0, for x ∈ (0, 1)

and
a(α) := (a(Gn(α)))n>0, for α ∈ (0, 1) ∩ (R−Q),

we obtain the classical conjugacy between the Gauss map and the shift map

f : (Z>0)N → (Z>0)N

on infinitely many symbols. For further reference, we note that

Proposition 3.1. The Gauss measure, transferred to (Z>0)N by the conjugacy, has bounded
distortion.

Proof. For n > 0, a0, . . . , an−1 ∈ Z>0, the cylinder {α, a(Gi(α)) = ai, ∀ 0 6 i < n} is
the Farey interval with endpoints P

Q ,
p+P
q+Q , with(

p P
q Q

)
=

(
0 1
1 a0

)
. . .

(
0 1
1 an−1

)
.

Observe that Q > q, P > p. As the density of the Gauss measure is bounded away
from 0 and +∞ on (0, 1), the Gauss measure of this cylinder is of order Q−2. Let
{α, a(Gj(α)) = an+j , ∀ 0 6 j < m} be another cylinder, and let P ′

Q′ ,
p′+P ′

q′+Q′ be the
endpoints of the associated Farey interval. For the cylinder

{α, a(Gi(α)) = ai, ∀ 0 6 i < m+ n},

the associated Farey interval has endpoints P̄
Q̄
, p̄+P̄
q̄+Q̄

, with(
p̄ P̄
q̄ Q̄

)
=

(
p P
q Q

)(
p′ P ′

q′ Q′

)
.

Its Gauss measure has order Q̄−2, and we have

QQ′ 6 Q̄ = qP ′ +QQ′ 6 2QQ′.

The proof of the bounded distortion property is complete. �

We will use the map G̃ derived from the Gauss map as follows:

G̃ : {t, b} × [(0, 1) ∩ (R−Q)] → {t, b} × [(0, 1) ∩ (R−Q)]

G̃(t, α) = (b,G(α)), G(b, α) = (t, G(α)).

(The letters t and b stand for top and bottom respectively.) Putting the Gauss measure on
each copy of (0, 1) gives a natural invariant measure that we still call the Gauss measure.
For a symbolic model for G̃, we consider the graph Γ with two vertices called b, t and two
countable families of arrows (γa,t)a>1 from t to b and (γa,b)a>1 from b to t. To a point
(c, α), c ∈ {t, b}, we associate the path in Γ starting from c such that the first indices of
the successive arrows are the a(Gn(α)), n > 0. In this way, we get a conjugacy between
G̃ and the shift map on the set of infinite paths in Γ.

To make the connection with the flow on the homogeneous space SL2(R)/SL2(Z)
(viewed as the space of normalized lattices in the plane) given by left multiplication by
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the diagonal subgroup diag(et, e−t), we use the following lemma. Call a normalized lat-
tice irrational if it intersects the vertical and horizontal axes only at the origin. The set of
irrational lattices is invariant under the diagonal flow.

Lemma 3.2. Let L be an irrational normalized lattice in R2. There exists a unique basis
v1 = (λ1, τ1), v2 = (λ2, τ2) of L such that

either λ2 > 1 > λ1 > 0, 0 < τ2 < −τ1 or λ1 > 1 > λ2 > 0, 0 < −τ1 < τ2.

Proof. We look for non zero vectors of L in the squares Q+ := (0, 1) × (0, 1) and
Q− := (0, 1)× (−1, 0). First observe that Q+ cannot contain two independent vectors of
L, because the absolute value of their determinant would belong to (0, 1). Similarly for
Q−. On the other hand, the union Q+

⋃
Q− must contain a vector of L by Minkowski’s

theorem. In fact, otherwise (using also that L is irrational), there would exist a set of area
> 1 whose translates by L are disjoint. Therefore either Q+

⋃
Q− contains exactly one

primitive vector of L or both Q+ and Q− contain exactly one primitive vector of L.
In the first case, we can assume that Q− contains a primitive vector v1 = (λ1, τ1).

Let v2 = (λ2, τ2) ∈ L such that λ1τ2 − λ2τ1 = 1 and τ2 > 0 is minimum. Then
0 < τ2 < −τ1 < 1, hence λ2 > 0. As Q+ does not contain any vector of L, we have
λ2 > 1 and the basis (v1, v2) of L has the required properties. On the other hand, if a
basis (v′1, v

′
2) has the required properties, either λ′2 > 1 > λ′1 > 0, 0 < τ ′2 < −τ ′1 holds

or λ′1 > 1 > λ′2 > 0, 0 < −τ ′1 < τ ′2 holds. However, in the second case, the relation
λ′1τ
′
2 − λ′2τ ′1 = 1 would imply that v′2 ∈ Q+, contrary to the assumption that Q+does not

contain any vector of L. Thus we have that λ′2 > 1 > λ′1 > 0, 0 < τ ′2 < −τ ′1 holds. Then
we must have v′1 ∈ Q−, hence v′1 = v1. From the inequality on τ ′2, it follows then that
v′2 = v2, which concludes the proof of the lemma in this case.

In the second case we now assume that Q− contains a (unique) primitive vector V1 =
(Λ1, T1) of L and that Q+ contains a (unique) primitive vector V2 = (Λ2, T2) of L. As
Λ1T2 − Λ2T1 > 1, we have Λ1 + Λ2 > 1. Observe also that we have Λ1T2 − Λ2T1 < 2,
hence Λ1T2−Λ2T1 = 1. As L is irrational, we have that T1 +T2 6= 0. If T1 +T2 > 0, we
set v1 = V1, v2 = nV1 + V2, where n > 1 is the largest integer such that nT1 + T2 > 0;
if T1 + T2 < 0, we set similarly v2 = V2, v1 = V1 + nV2, where n > 1 is the largest
integer such that nT2 + T1 < 0. We obtain a basis of L satisfying the required conditions.
Conversely, let (v′1, v

′
2) be a basis with the required properties. Assume for instance that

λ′2 > 1 > λ′1 > 0, 0 < τ ′2 < −τ ′1 holds. Then v′1 ∈ Q−, hence v′1 = V1. Then we must
have v′2 = V2 + mV1 for some integer m > 1, and the condition on τ ′2 guarantees that
v′1 = v1, v′2 = v2.

The proof of the lemma is complete. �

Definition 3.3. We say that the irrational lattice L is of top type if the basis selected by
the lemma satisfies λ2 > 1 > λ1 > 0, 0 < τ2 < −τ1, of bottom type if it satisfies
λ1 > 1 > λ2 > 0, 0 < −τ1 < τ2.

Let L be an irrational normalized lattice, and let (v1, v2) be the basis of L selected by
the lemma. Set α := λ1

λ2
if L is of top type, α := λ2

λ1
if L is of bottom type, so that

α ∈ (0, 1).
Assume for instance that L is of top type. Let (Lt)t>0 be the positive orbit of L

under the diagonal flow, and let (v1(t), v2(t)) be the basis of Lt obtained by applying
diag(et, e−t) to v1, v2. For 0 6 t < t∗ := − log λ1, the basis v1(t), v2(t) of Lt satisfies
the conditions of the lemma and Lt is of top type. For t = t∗, the lattice Lt∗ is of bottom
type and the basis selected by the lemma is v∗1 = v1(t∗), v∗2 = v2(t∗) − av1(t∗), where
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a > 1 is the integral part of α−1. Thus, we have exchanged top and bottom with respect to
the initial conditions and the new relevant ratio is

α∗ =
λ∗2
λ∗1

=
λ2 − aλ1

λ1
=

1

α
− a

according to the continued fraction algorithm recipe. We have thus shown the

Proposition 3.4. The diagonal flow on irrational normalized lattices is the suspension
over the shift map on bi-infinite paths in Γ, with roof function logα−1.

Here, a bi-infinite path is one which extends indefinitely in both past and future. The
number α associated to a bi-infinite path γ = γ− ∗ γ+ in position c ∈ {t, b} at time 0 is
such that γ+ is associated to (c, α) in the coding of G̃ described above.

3.2. A graph associated to a square-tiled surface. Let now M be a reduced square-tiled
surface, let SL(M) be its Veech group, and let ` = `(M) be the index of SL(M) in SL2(Z).
The SL2(R)-orbit of M in the moduli space of translation surfaces is the homogeneous
space SL2(R)/SL(M), which is a covering of degree `(M) of SL2(R)/SL2(Z). We use
this in order to encode the diagonal (Teichmüller ) flow on the SL2(R)-orbit of M .

Let M1 = M, M2, . . . ,M` be the square-tiled surfaces (up to isomorphism) constitut-
ing the orbit of M under the action of SL2(Z). Let Γ(M) be the graph defined as follows

• the set of vertices Vert(Γ(M)) is the product {M1, . . . ,M`} × {t, b};
• from every vertex (Mi, c) (c ∈ {t, b}) and every integer a > 1, there is an arrow
γa,i,c starting from (Mi, c), whose endpoint (Mj , c

′) is given by

Mj =

(
1 a
0 1

)
·Mi, c

′ = b, if c = t,

Mj =

(
1 0
a 1

)
·Mi, c

′ = t, if c = b.

• there are no other arrows.
When ` = 1, i.e the Veech group ofM is equal to SL2(Z), the graph Γ(M) is the graph

Γ of the last subsection.
Consider now the orbit under the Teichmüller flow of a point g0.M (g0 ∈ SL2(R)) of

the orbit of M . We first find the vertex of Γ(M) associated to this initial point as follows.
We apply Lemma 3.2 to L = g0(Z2) (we assume that this lattice is irrational). Denoting by
(e1, e2) the canonical basis of Z2, we obtain from this lemma a matrix g∗0 ∈ SL2(Z) such
that the basis of L with the required (top or bottom) property is v1 = g0((g∗0)−1e1), v2 =
g0((g∗0)−1e2). The vertex associated to g0.M is then (g∗0 .M, c) where c is the type of L.

When we flow from this initial condition under the Teichmüller flow, the lattice L
evolves under the diagonal flow and first changes type at some time t∗. As explained
at the end of the last subsection, the new selected basis is related to the old by right multi-
plication by (

1 −a
0 1

)
(if c = t) or

(
1 0
−a 1

)
(if c = b),

where a is the integral part of α−1. This corresponds to the arrow of index a in γ(M)
starting from (g∗0 .M, c).

This procedure allows to associate to every irrational orbit (i.e., one which neither starts
nor ends in a cusp of SL2(R)/SL(M)) a bi-infinite path in Γ(M). Conversely, every bi-
infinite path in Γ(M) corresponds to a unique irrational orbit. Here, the time for the orbits
and for the paths runs from −∞ to +∞.
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If we consider instead infinite paths in Γ(M) (with a starting point in Vert(Γ(M)) at
time 0), the shift map is conjugated to the map G̃M defined by

G̃M : Vert(Γ(M))× [(0, 1) ∩ (R−Q)] → Vert(Γ(M))× [(0, 1) ∩ (R−Q)]

G̃M (Mi, c, α) = (Mj , c
′, G(α)),

where (Mj , c
′) is the endpoint of γa(α),i,c.

Summing up

Proposition 3.5. The diagonal flow on SL2(R)/SL(M) is the suspension over the shift
map on bi-infinite paths in Γ(M), with roof function logα−1. The number α associated to
a bi-infinite path γ = γ− ∗ γ+ is the second coordinate of the point associated to γ+ in
the coding of G̃M .

Remark 3.6. The roof function is integrable w.r.t. the (transferred) Gauss measure on the
space of paths because the homogeneous space SL2(R)/SL(M) has finite Haar measure.

3.3. A discrete version of the KZ-cocycle. Let M be a reduced square-tiled surface and
let A ∈ SL2(Z). Recall that the preferred atlas of the square-tiled surface M ′ = A.M
is obtained from the preferred atlas of M by postcomposition of the R2-valued charts by
A. Therefore, if we consider the identity map of M as a map from M to M ′, it becomes
an affine map with derivative A. However, as we identify in moduli space isomorphic
square-tiled surfaces, this map is only well-defined in general up to precomposition by an
automorphism of M (or equivalently postcomposition by an automorphism of M ′). From
now on, we assume that the automorphism group of M is trivial.

To each arrow γa,i,c : (Mi, c)→ (Mj , c
′) of Γ(M), we associate the affine map Aa,i,c

from Mi to Mj whose linear part is(
1 a
0 1

)
(if c = t) or

(
1 0
a 1

)
(if c = b).

When γ is a path in Γ(M) (starting at a vertex (Mi, c), ending at a vertex (Mj , c
′)),

which is the concatenation of arrows γ1, . . . , γk, we associate to γ the affine map Aγ
which is the composition Ak ◦ . . . ◦ A1 of the affine maps A1, . . . , Ak associated to
γ1, . . . , γk. Then Aγ is an affine map from Mi to Mj .

We have given in Proposition 3.5 a description of the restriction of the Teichmüller
flow to the SL2(R)-orbit of M . The version of the KZ-cocycle which is adapted to this
description is defined in the following way. The space is the vector bundle HM over
Vert(Γ(M))× [(0, 1) ∩ (R−Q)] whose fiber over (Mi, c, α) is H1(Mi,R). The cocycle
is the map GKZM fibered over G̃M such that

GKZM (Mi, c, α, v) = (Mj , c
′, G(α), (Aa(α),i,c)∗(v)),

where (Aa(α),i,c)∗ is the homomorphism from H1(Mi,R) to H1(Mj ,R) induced by the
affine map Aa(α),i,c.

As the diagonal flow on SL2(R)/SL(M) is ergodic, the Lyapunov exponents of GKZM
are constant a.e and proportional to the Lyapunov exponents of the continuous time ver-
sion of the KZ-cocycle (w.r.t. Haar measure on SL2(R)/SL(M)). In order to determine
whether the Lyapunov spectrum is simple, it is sufficient to consider GKZM .
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3.4. Return map and full shift. We intend to prove below the simplicity of the Lyapunov
spectrum by applying Avila-Viana’s criterion (Theorem 2.17). The base dynamics in the
statement of this theorem is a full shift over an alphabet with at most countably many
symbols. The base dynamics in the discrete version of the KZ-cocycle of the last subsection
is the shift in the space of infinite paths in the graph Γ(M) of Subsection 3.2. As Γ(M)
has more than one vertex, this is not a full shift.

Nevertheless, it is easy to fall back into the setting of theorem 2.17. Indeed, the map
G̃M is ergodic (for the Gauss measure). Choose any vertex V of Γ(M). Almost every path
in Γ(M) (with respect to the Gauss measure) goes through V infinitely many times. We
consider the return map G̃M,V for G̃M to the subset {V} × [(0, 1) ∩ (R−Q)]. The Gauss
measure (in the fiber over V) is invariant by G̃M,V. The return map G̃M,V is canonically
conjugated to the full shift over the alphabet whose letters are the loops in Γ(M) which go
exactly once through V.

Observe that these letters correspond to words in the natural coding of the Gauss mapG
considered in Subsection 3.1. Therefore the bounded distortion property in the new setting
follows from the same property in that setting (proposition 3.1).

The cocycle over this full shift induced by the cocycle GKZM of the previous subsection
is clearly locally constant. It is also integrable. Indeed, by submultiplicativity of the norm,
it is sufficient to show that GKZM is integrable. For this purpose we use that the norm of
(Aa,i,c)∗ acting on homology has order at most a for large a, and the interval ( 1

a+1 ,
1
a ) of

α such that a(α) = a has Gauss measure of order a−2. As the series
∑
a>1 a

−2 log a is
convergent, the integrability follows.

3.5. Loops in Γ(M) and affine pseudo-Anosov maps. To determine which affine self-
maps of M correspond to loops in Γ(M), we recall an elementary property of SL(2,Z)
related to the continued fraction algorithm.

Definition 3.7. A matrix A =

(
a b
c d

)
∈ SL2(Z) is b-reduced if

a > max(b, c) > min(b, c) > d > 0.

The matrix A is t-reduced if

d > max(b, c) > min(b, c) > a > 0.

Equivalently, A is t-reduced if its conjugate by
(

0 1
1 0

)
is b-reduced.

Proposition 3.8. A matrix A ∈ SL2(Z) is b-reduced if and only if there exist k > 1 and
integers a1, . . . , a2k > 1 such that

A =

(
1 a1

0 1

)(
1 0
a2 1

)
. . .

(
1 a2k−1

0 1

)(
1 0
a2k 1

)
.

Moreover, such a decomposition of a b-reduced matrix is unique.

Proof. An elementary calculation shows that the product of two b-reduced matrices is b-
reduced. Also, for a, b > 1, the product(

1 a
0 1

)(
1 0
b 1

)
=

(
1 + ab a
b 1

)
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is b-reduced. Therefore, products of the form appearing in the proposition are b-reduced.
Conversely, it is a classical elementary lemma that any A ∈ SL2(Z) with nonnegative
coefficients can be written in a unique way as

A =

(
1 a1

0 1

)(
1 0
a2 1

)
. . .

(
1 a2k−1

0 1

)(
1 0
a2k 1

)
,

with k > 1, and integers a1 > 0, a2k > 0, ai > 1 for 0 < i < 2k. It is now trivial to check
that A is not b-reduced unless a1 and a2k are both > 1. �

Corollary 3.9. The affine self-maps ofM associated to the loops of Γ(M) based at (M, b)
(resp. (M, t)) are exactly those which have a b-reduced (resp. t-reduced) linear part.

Remark 3.10. It is a standard fact from Gauss theory of reduction of quadratic forms that
any matrix in SL2(Z) with trace > 2 is conjugated in SL2(Z) to a b-reduced matrix.

4. GALOIS-PINCHING

4.1. Galois-pinching matrices. Let Ω be an integer-valued symplectic form on Z2d. We
will denote by Sp(Ω,Z) the group of matrices in SL(2d,Z) which preserve Ω.

LetA ∈ Sp(Ω,Z). The characteristic polynomial ofA is a monic reciprocal polynomial
P of degree 2d with integer coefficients. Let R̃ = {λi, λ−1

i : 1 6 i 6 d} be the set of
roots of P . For λ ∈ R̃, define p(λ) := λ+ λ−1 and let R := p(R̃).

Definition 4.1. The matrix A ∈ Sp(Ω,Z) is Galois-pinching if its characteristic polyno-
mial P satisfies the following conditions

• P is irreducible over Q;
• all roots of P are real, i.e R̃ ⊂ R;
• the Galois group Gal of P is the largest possible, that is, Gal acts on R by the

full permutation group of R, and the subgroup fixing each element of R acts by
independent transpositions of each of the d pairs {λi, λ−1

i }; in other words,

Gal ' Sd o (Z/2Z)d.

For each λ ∈ R̃, we denote by vλ ∈ R2d an eigenvector of A corresponding to this
eigenvalue with coordinates in the field Q(λ). We assume that the choices are coherent in
the sense that g(vλ) = vg.λ for g ∈ Gal.

Proposition 4.2. A Galois-pinching matrix is pinching.

Proof. Indeed, by the first two conditions, all eigenvalues are simple and real. The only
possibility preventing A to be pinching would be to have both λ and −λ as eigenvalues,
but this is not compatible with the third condition: an element of the Galois group fixing λ
will also fix −λ. �

The following result will be used in the proof of Theorem 1.1.

Proposition 4.3. LetA,B be two elements of Sp(Ω,Z). Assume thatA is Galois-pinching,
and that B is unipotent and distinct from the identity. If A,B share a common proper
invariant subspace, then (B − id)(R2d) is a lagrangian subspace of R2d.

Proof. A subspace of R2d which is invariant under A is spanned by eigenvectors of A. Let
R‡ ⊂ R̃ be a non-empty subset with minimal cardinality such that the subspace E(R‡)
spanned by the vectors vλ, λ ∈ R‡, is also invariant underB. AsB has integer coefficients,
the subset σ(R‡) has the same property, for any element σ of the Galois group Gal of P .
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As the cardinal of R‡ was chosen to be minimal, we must have either σ(R‡) = R‡ or
σ(R‡) ∩R‡ = ∅.

The only proper subsets R‡ with this property are the 1-element subsets and the 2-
elements subsets of the form {λ, λ−1}.

The first case cannot occur: if one had B(vλ) = cvλ for some λ ∈ R̃, c ∈ R, then c
should be equal to 1 as B is unipotent, and B should fix all eigenvectors of A (applying
the action of Gal) and thus be equal to the identity.

Therefore, B preserves some 2-dimensional subspace E(λ, λ−1). Applying Gal, we
see thatB preserves each subspace of this form, and the restrictions ofB to these subspaces
are Galois-conjugated. As B is unipotent distinct from the identity, the image of each such
2-dimensional subspace by (B − id) has dimension 1. These 2-dimensional subspaces are
Ω-orthogonal. Therefore (B − id)(R2d) is Ω-lagrangian. �

Remark 4.4. The proof is still valid if B ∈ SL(2d,Z) instead of Sp(Ω,Z).

4.2. A twisting criterion for Galois-pinching matrices. The most important ingredient
towards Theorem 1.1 is the following theorem:

Theorem 4.5. Let A,B be two elements of Sp(Ω,Z) . Assume that A is Galois-pinching,
and that A and B2 don’t share a common proper invariant subspace. Then, there exist
m > 1, and, for any `∗, integers `1, . . . , `m−1 larger than `∗ such that the product

BA`1 · · ·BA`m−1B

is k-twisting with respect to A for all 1 6 k 6 d.

The proof of this result occupies the rest of this section.

We keep the notations of Subsection 4.1. As A is assumed to be Galois-pinching, the
set R̃ has 2d elements and is contained in R; the set R has d elements and is contained in
R− [−2, 2].

For 1 6 k 6 d, denote by R̃k the set of all subsets of R̃ with k elements, by Rk the set
of all subsets of R with k elements, and by R̂k the set of all subsets of R̃ with k elements
on which the restriction of p is injective (so that their images under p belong to Rk). We
identify R̃1 = R̂1 with R̃.

For λ = {λ1 < · · · < λk} ∈ R̃k, let vλ := vλ1
∧· · ·∧vλk

∈ ∧kR2d. It is an eigenvector
of ∧kA with eigenvalue N(λ) :=

∏
i λi. The vλ, for λ ∈ R̃k, form a basis of ∧kR2d.

4.3. Transversality condition. Using these notations, we can now translate the condition
that a matrix C is k-twisting with respect to A in terms of certain matrix entries of its kth
exterior power ∧kC.

Lemma 4.6. Let C(k)
λλ′ , λ, λ

′ ∈ R̃k, be the coefficients of the matrix of ∧kC in the basis
(vλ)λ∈R̃k

. Then, C is k-twisting with respect to A if and only if for all 1 6 k 6 d all

coefficients C(k)
λλ′ with λ, λ′ ∈ R̂k are non-zero.

Proof. Let E, F be A-invariant subspaces of respective dimensions k and 2d − k. Let
λE ∈ R̃k be the subset such that E is generated by the vλ with λ ∈ λE . Observe that E is
isotropic if and only if λE belongs to R̂k. Similarly, let λ′F ∈ R̃k be the subset such that F
is generated by the vλ with λ /∈ λ′F . It belongs to R̂k if and only if F is coisotropic. Write
λF for the complement of λ′F in R̃. Now C(E) is transverse to F if and only if the exterior
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product ∧kC(vλE
) ∧ vλF

is nonzero. This happens precisely if and only if the coefficient

C
(k)
λE λ

′
F

is nonzero. �

4.4. Mixing graphs. Recall that an oriented graph Γ (with a finite set of vertices) is con-
nected if for every vertices x, y of Γ, there is an oriented path from x to y. It is mixing if
there exists an integer m such that, for every vertices x, y of Γ, there is an oriented path of
length m from x to y. If it is the case, any large enough integer m has this property.

Let C ∈ Sp(Ω,Z). For 1 6 k 6 d, we define an oriented graph Γk = Γk(C) as
follows: the vertices of Γk are the elements of R̂k; for λ0, λ1 ∈ R̂k, there is an arrow from
λ0 to λ1 if and only if the coefficient C(k)

λ0 λ1
of the matrix of ∧kC, written in the basis

(vλ)λ∈R̃k
, is nonzero. For later use, we observe that Γk(C) is invariant under the natural

action of the Galois group Gal.
By Lemma 4.6, C is k-twisting with respect to A if and only if the graph Γk(C) is

complete. In general, it is not easy to verify that Γk(C) is a complete graph, but this is not
an obstacle because, as we’re going to see now, for our purposes it suffices to check the
mixing property for Γk(C).

More precisely, let 1 6 k 6 d and assume that Γk(C) is mixing. Let m be a positive
integer such that, for every vertices λ0, λ1 of Γk(C), there is an oriented path of length m
from λ0 to λ1. For nonnegative integers `1, · · · , `m−1, consider

D = CA`1 · · ·CA`m−1C.

Proposition 4.7. There are finitely many hyperplanes V1, · · · , Vt in Rm−1 such that, if
` := (`1, · · · , `m−1) ∈ Zm−1 goes to infinity along a rational line not lying in any of the
Vp, then, for ||`|| large enough, the matrix D is k-twisting with respect to A.

Proof. We write ∧kC, ∧kD in the basis (vλ)λ∈R̃k
. Define a graph Γ′k with set of vertices

R̃k and an arrow from λ0 to λ1 if and only if the coefficient C(k)
λ0 λ1

is nonzero. We have,

for λ0, λm ∈ R̃k

D
(k)
λ0 λm

=
∑

λ1,...,λm−1

C
(k)
λ0 λ1

N(λ1)`1C
(k)
λ1 λ2

· · ·N(λm−1)`m−1C
(k)
λm−1 λm

.

In this sum, the nonzero terms correspond exactly to the paths γ of length m in Γ′k
from λ0 to λm. Writing n(λ) = log |N(λ)|, the absolute value of such a term is a
nonzero constant independent of ` times exp(

∑m−1
i=1 `in(λi)). Write Lγ for the linear

form (
∑m−1
i=1 `in(λi)) on Rm−1. The important fact about these linear forms, which fol-

lows from our hypothesis on the Galois group Gal, is the following:

Lemma 4.8. Let λ0, λm belong to R̂k ⊂ R̃k; let γ be a path of length m in Γk from λ0 to
λm (such a path exists by our choice of m) and let γ′ be a path of length m in Γ′k from λ0

to λm distinct from γ. Then the linear forms Lγ and Lγ′ are distinct.

Proof. The assertion of the lemma is a consequence of the following stronger assertion.
Let λ be an element of R̂k, and let λ′ be an element of R̃k distinct from λ. Then the
absolute values of N(λ) and N(λ′) are distinct. Indeed, assume by contradiction that we
have a non trivial relation

λ1 · · ·λk = ±λ′1 · · ·λ′k,
where λ = {λ1, · · · , λk}, λ′ = {λ′1, · · · , λ′k}. Choose λi ∈ λ not belonging to λ′; let
g ∈ Gal be the element which exchanges λi and λ−1

i and fixes all other roots. When we
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apply g to both sides of the above relation, the left-hand side is multiplied by λ−2
i (because

λ−1
i does not belong to λ as λ ∈ R̂k); the right-hand side is multiplied by λ2

i if λ−1
i ∈ λ

′,
by 1 otherwise. In any case, we obtain the required contradiction. �

The hyperplanes V1, . . . , Vt of the proposition are defined as follows: for every path
γ of length m in Γk, every path γ′ 6= γ of length m in Γ′k with the same endpoints
as γ, we exclude (for the direction of `) the hyperplane V (γ, γ′) where the linear forms
Lγ and Lγ′ are equal. Then, along a rational line in Qm−1 not lying in any of these
hyperplanes, none of the expressions above for the coefficients D(k)

λ0 λm
, as finite linear

combinations of exponentials of various rates, is identically zero; this completes the proof
of the proposition. �

4.5. The first step: transversality for k = 1. Starting from the matrix B in the main
theorem of this section (Theorem 4.5), we consider the graph Γ1 = Γ1(B).

Claim 4.9. The graph Γ1 is mixing.

Proof. First note that Γ1 has at least one arrow asB is invertible. Next, for d = 1, since Γ1

is Gal-invariant, Γ1 is not mixing if and only if there are only two arrows in Γ1 (either two
loops or two arrows in both directions between λ and λ−1). In both cases Rvλ is invariant
under B2, a contradiction.

We now consider the case that d > 1 and that the only arrows of Γ1 join a vertex λ
to λ or λ−1. Then each 2-dimensional subspace generated by vλ, vλ−1 is B-invariant, a
contradiction.

Finally, assume that d > 1 and Γ1 has one arrow joining a vertex λ to a vertex λ′ 6= λ±1.
Using the action of the Galois group Gal, every such arrow must be in Γ1. This implies
that Γ1 is mixing when d > 2. When d = 2, the only case where Γ1 is not mixing is when
there is no other arrow in Γ1; but then each 2-dimensional subspace generated by vλ, vλ−1

is B2-invariant, a contradiction. �

Applying Proposition 4.7 above with k = 1, we find m > 1 and

C = BA`1 · · ·BA`m−1B

a 1-twisting matrix with respect to A. Observe that Γ1(C) is then the complete graph on
2d vertices, in particular it is mixing.

Thus, Theorem 4.5 is now proven for d = 1, so we assume in the following that d > 2.

4.6. Existence of arrows in Γk(C) for k > 1. As R̂k is now a non-trivial subset of
R̃k, the existence of an arrow in Γk(C) is less trivial than for k = 1 and requires the
symplecticity of C.

Lemma 4.10. Let C ∈ Sp(Ω,Z). Then, for 1 6 k 6 d, the graph Γk(C) has at least one
arrow.

Proof. Let 1 6 k 6 d, λ ∈ R̂k. Let Γ′k(C) be the oriented graph with set of vertices
R̃k such that there is an arrow from λ0 to λ1 if and only if C(k)

λ0λ1
6= 0. In particular,

Γk(C) is a subgraph of Γ′k(C). As ∧kC is invertible, there exists at least one arrow in
Γ′k(C) starting from λ = {λ1 < · · · < λk}. Consider such an arrow, with endpoint
λ′ = {λ′1 < · · · < λ′k}, with the property that the cardinality k′ of the image p(λ′) ⊂ R is
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the greatest possible. We want to prove that k′ = k. Assume by contradiction that k′ < k,
i.e with appropriate indexing λ′1λ

′
2 = 1. Write, for λ ∈ R̃,

C(vλ) =
∑
λ′

Cλλ′vλ′ .

By assumption, the minor of the matrix of C obtained by taking the lines in λ and the
columns in λ′ is nonzero. Therefore, we can find vectors w1, . . . , wk ∈ R2d, generating
the same isotropic subspace as vλ1

, . . . , vλk
, such that, for 1 6 i 6 k

C(wi) = vλ′i +
∑
λ′ /∈λ′

C∗i λ′vλ′ .

We claim that, if λ′ and λ′−1 do not belong to λ′, then the coefficient C∗1λ′ is equal to
zero. Indeed, otherwise, the minor of C obtained by taking the lines in λ and the columns
in λ′1 := (λ′ − {λ′1}) ∪ {λ′} would be nonzero, with #p(λ′1) = k′ + 1, in contradiction
with the definition of k′. Similarly, we have C∗2λ′ = 0. But then, we have

Ω(C(w1), C(w2)) = Ω(vλ′1 , vλ′2) 6= 0

as λ′1λ
′
2 = 1, while Ω(w1, w2) = 0, a contradiction. �

Remark 4.11. The action of the Galois group Gal has not been used; the assertion of this
lemma is true for any C ∈ Sp(2d,R).

4.7. Second step: transversality for 1 6 k < d. For d = 2, there is nothing new to
prove, so we may assume d > 3.

Proposition 4.12. Let C ∈ Sp(2d,Z). If C is 1-twisting with respect to A, then Γk(C) is
mixing for all 1 6 k < d.

By putting together this result with Proposition 4.7, one has:

Corollary 4.13. Assume that C ∈ Sp(2d,Z) is 1-twisting with respect to A. Then, for any
large enough integer m (depending only on d), the matrix

D = CA`1 · · ·CA`m−1C

is k-twisting with respect to A for all 1 6 k < d provided ` := (`1, · · · , `m−1) ∈ Zm−1

goes to infinity along a rational line not lying in a finite number of hyperplanes of Rm−1.

Proof of Proposition 4.12. The graph Γ1(C) is complete on 2d vertices hence mixing. We
assume now that 2 6 k < d. We list the orbits of the action of the Galois group Gal on
R̂k × R̂k (an ordered pair being seen as the origin and the end of a possible arrow in Γk):
for every pair of integers `, ˜̀with 0 6 ˜̀6 ` 6 k and ` > 2k − d, there is an orbit O˜̀,`
formed by the pairs (λ, λ′) satisfying

#(λ ∩ λ′) = ˜̀, #(p(λ) ∩ p(λ′)) = `.

A Gal-invariant graph with vertices R̂k is determined by which orbits O˜̀,` are associated
to arrows. We will prove in the next subsection the following:

Proposition 4.14. A Gal-invariant graph with vertices R̂k is not mixing if and only if its
arrows are associated to some of the O˜̀,k (0 6 ˜̀6 k) or, when d is even and k = d

2 , to
O0,0.
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We now finish the proof of the Proposition 4.12 by showing that the non-mixing cases
above do not occur for Γk(C) when C is 1-twisting with respect to A. We already know
that Γk(C) has a non empty set of arrows, so at least one orbit of theGal-action on R̂k×R̂k
must occur.

Case 1. Assume that the only occurring orbits have the form O˜̀,k (0 6 ˜̀6 k). Let

λ = {λ1 < · · · < λk} ∈ R̂k; let γ be an arrow of Γk = Γk(C) starting from λ; its endpoint
λ′ = {λ′1 < · · · < λ′k} satisfies p(λ) = p(λ′). As in the previous subsection, we can find
vectors w1, . . . , wk ∈ R2d, generating the same isotropic subspace as vλ1

, . . . , vλk
, such

that, for 1 6 i 6 k
C(wi) = vλ′i +

∑
λ′ /∈λ′

C∗i λ′vλ′ .

We claim that, if λ′ and λ′−1 do not belong to λ′, then the coefficient C∗i λ′ is equal to zero
for every 1 6 i 6 k. Indeed, otherwise, the minor of C obtained by taking the lines in λ
and the columns in λ′i := (λ′ − {λ′i}) ∪ {λ′} would be nonzero, and the corresponding
arrow of Γk(C) would not be as assumed. We conclude that the image C(vλ1) is a linear
combination of the 2k vectors vλi

, vλ−1
i

, 1 6 i 6 k, in contradiction with the fact that C
is 1-twisting with respect to A.

Case 2. Assume that d is even > 4, k = d
2 , and that the only occurring orbits are O0,0

and possibly some of the O˜̀,k (0 6 ˜̀6 k). Let γ be an arrow of Γk associated to O0,0.

Let λ = {λ1 < · · · < λk} ∈ R̂k be the origin of γ and let λ′ = {λ′1 < · · · < λ′k} be its
endpoint. Then p(λ) and p(λ′) are complementary subsets of R. As above, we can find
vectors w1, . . . , wk ∈ R2d, generating the same isotropic subspace as vλ1 , . . . , vλk

, such
that, for 1 6 i 6 k

C(wi) = vλ′i +
∑
λ′ /∈λ′

C∗i λ′vλ′ .

Again, if λ′ and λ′−1 do not belong to λ′, the coefficient C∗i λ′ is equal to zero for every
1 6 i 6 k. We conclude that the image C(vλ1

) is a linear combination of the 2k = d
vectors vλ′i , vλ′−1

i
, 1 6 i 6 k, in contradiction with the fact that C is 1-twisting with

respect to A. �

4.8. Proof of Proposition 4.14. For convenience, we divide the proof in two steps. We
first project down from R̃ to R and state the result at this level.

Let S(R) be the full permutation group of R. The orbits of its action on Rk × Rk are
as follows: for each integer ` with k > ` > max(0, 2k− d), one has an orbit O` formed of
the pairs (µ, µ′) with #(µ ∩ µ′) = `. A S(R)-invariant oriented graph Γ with vertices Rk
is determined by which of these orbits are associated to arrows of Γ.

Proposition 4.15. We assume d > 2 and 1 6 k < d. Such a graph Γ is not mixing if and
only if the orbits associated to the arrows of Γ are Ok and /or, when d is even and k = d

2 ,
O0.

Proof. The excluded cases are clearly not mixing. It is therefore sufficient to prove that
the S(R)-invariant graph Γ(`) (with k > ` > max(0, 2k − d), ` > 0 when k = d

2 ) whose
arrows are associated to the single orbit O` is mixing. By passing to complements, it is
sufficient to consider the case where k 6 d

2 .
We first show that Γ(`) is connected. Let µ

0
, µ

1
be two elements of Rk. Let m =

#(µ
0
∩ µ

1
). We want to find a path in Γ(`) from µ

0
to µ

1
. When m = `, a single arrow

will do.
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We deal with the case m > ` by ascending induction on m, assuming that the result is
true for m − 1. Choose µ ∈ µ

0
∩ µ

1
, and two distinct elements µ0, µ1 in R − (µ

0
∪ µ

1
)

(this is possible because of our restrictions on k, `). Let µ′
0

:= (µ
0
− {µ}) ∪ {µ0}, µ′1 :=

(µ
1
− {µ}) ∪ {µ1}. We have #(µ

0
∩ µ′

1
) = #(µ′

0
∩ µ

1
) = #(µ′

0
∩ µ′

1
) = m − 1. By

concatenation of three paths µ
0
→ µ′

1
→ µ′

0
→ µ

1
, we obtain a path from µ

0
to µ

1
.

We deal with the case 0 < m < ` by descending induction on m, assuming that the
result is true for larger values ofm. Choose µ0 ∈ µ0

−µ
1
, µ1 ∈ µ1

−µ
0
, µ ∈ R−(µ

0
∪µ

1
).

Define µ′
0

= (µ
0
−{µ0})∪{µ}, µ′1 = (µ

1
−{µ1})∪{µ}. We have #(µ

0
∩µ′

0
) = #(µ

1
∩

µ′
1
) = k−1,#(µ′

0
∩µ′

1
) = m+1. By concatenation of three paths µ

0
→ µ′

0
→ µ′

1
→ µ

1
,

we obtain a path from µ
0

to µ
1
. The same argument works when m = 0, k < d

2 .
Consider finally the case m = 0, k = d

2 . As d > 2, we have k > 2. Choose distinct
elements µ0, µ

′
0 ∈ µ0

and µ1, µ
′
1 ∈ µ1

. Define µ′
0

= (µ
0
− {µ′0}) ∪ {µ1}, µ′1 = (µ

1
−

{µ′1}) ∪ {µ0}. We have #(µ
0
∩ µ′

0
) = #(µ

1
∩ µ′

1
) = k − 1,#(µ′

0
∩ µ′

1
) = 2. By

concatenation of three paths µ
0
→ µ′

0
→ µ′

1
→ µ

1
, we obtain a path from µ

0
to µ

1
.

We now show that Γ(`) is mixing. If not, there is a prime number π such that all loops
of Γ(`) have length divisible by π. If µ

0
→ µ

1
is an arrow, so is µ

1
→ µ

0
, so the only

possibility is π = 2. On the other hand, the proof of connectedness has produced by
induction between any vertices µ

0
, µ

1
a path of odd length. Taking µ

0
= µ

1
(i.e m = k

above) gives a loop of odd length. �

Proof of Proposition 4.14. Again, the excluded cases are clearly not mixing. Therefore, it
is sufficient to prove that the oriented graph Γ(˜̀, `) with vertex set R̂k and arrows associ-
ated to a single orbit O˜̀,` (not of the excluded type) is mixing.

We first show that Γ(˜̀, `) is connected. From the previous proposition, it is sufficient to
connect any two vertices λ0, λ1 with the same image µ by p. We can even further assume
that #(λ0 ∩ λ1) = k − 1. Let µ′ ∈ Rk such that #(µ ∩ µ′) = k − 1; by the previous
proposition, there is a path in Γ(`) from µ to µ′; lifting this path gives a path γ in Γ(˜̀, `)
from λ0 to some vertex λ′ with p(λ′) = µ′. Now, there is an element g of G sending λ0 to
λ′ and λ′ to λ1. Concatenating γ and g.γ gives a path from λ0 to λ1.

Finally, we show that Γ(˜̀, `) is mixing. Again, the only possible divisor of the lengths
of all loops is 2. To get a loop of odd length, we start from such a loop in Γ(`), which we
lift to get a path of odd length between two vertices λ0, λ1 with the same image by p. But
we have just constructed above a path of even length from λ1 to λ0. By concatenation, we
get the required loop. �

4.9. The last step: transversality for all 1 6 k 6 d, d > 3. In this subsection, we
assume d > 3.

Proposition 4.16. Let D ∈ Sp(Ω,Z). If D is k-twisting with respect to A for each 1 6
k < d, then Γd(D) is mixing.

By putting this result together with Proposition 4.7, one has:

Corollary 4.17. Assume that D ∈ Sp(Ω,Z) is k-twisting with respect to A for each 1 6
k < d. Then, for any large enough integer m (depending only on d), the matrix

E = DA`1 · · ·DA`m−1D

is k-twisting with respect to A for all 1 6 k 6 d provided ` := (`1, · · · , `m−1) ∈ Zm−1

goes to infinity along a rational line not lying in any of a finite number of hyperplanes of
Rm−1.
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Proof of Proposition 4.16. The orbits of the action of the Galois group on R̂d × R̂d are as
described in Subsection 4.7 (now with k = d); the restriction 2k − d 6 ` 6 k now forces
` = d and we are left with one parameter 0 6 ˜̀6 d. We write O(˜̀) for O˜̀,d.

AGal-invariant graph Γd on R̂d is determined by the subset J ⊂ {0, . . . , d} of integers˜̀indexing the orbits associated to the arrows of Γd.

Lemma 4.18. If J contains two consecutive integers ˜̀, ˜̀+ 1, then Γd is mixing.

Proof of Lemma 4.18. We first show that Γd is connected. To prove this, it is sufficient to
connect two vertices λ0, λ1 such that #(λ0 ∩ λ1) = d − 1. This is done by choosing a
subset λ of size d− ˜̀− 1 in λ0 ∩λ1 and calling λ2 the element of R̂d obtained from λ0 by
replacing the elements of λ by their inverses; one has #(λ0∩λ2) = ˜̀+1,#(λ1∩λ2) = ˜̀,
hence there are arrows λ0 → λ2 → λ1.

As before, the only possible non trivial common divisor for the lengths of the loops is 2.
But concatenating a single arrow associated to O(˜̀) to d− ˜̀paths of length 2 as constructed
above, we get a loop of odd length. This shows that Γd is mixing. �

In view of this lemma, the proof of the proposition is complete as soon as we show
that the subset J associated to Γd(D) contains two consecutive integers. We assume by
contradiction that this is not the case. From Lemma 4.10 we know that J is not empty. We
consider successively several cases.

Case 1. Assume first that J contains an integer ` with 2 6 ` < d. Let λ0 → λ1 be an
arrow of this type in Γd(D), with λ0 = {λ1, · · · , λd}, λ1 = {λ1, · · · , λ`, λ−1

`+1, . . . , λ
−1
d }.

We can find vectors w1, . . . , wd ∈ R2d, generating the same Lagrangian subspace as
vλ1

, . . . , vλd
, such that, for 1 6 i 6 d

D(wi) = v(i) +

d∑
1

D∗i jv
′(j),

where v(i) = vλi
, v′(i) = vλ−1

i
for 1 6 i 6 `, v(i) = vλ−1

i
, v′(i) = vλi

for ` < i 6 d.
As ` ± 1 do not belong to J by hypothesis, there is no arrow in Γd from λ0 to any vertex
obtained from λ1 by replacing one of its element by its inverse. This implies that the
diagonal coefficients D∗i i are zero for 1 6 i 6 d.

Next, take 1 6 i 6 ` < j 6 d, and λ′1 to be the vertex obtained by replacing in λ1 both
λi and λ−1

j by their inverses. We have #(λ0 ∩λ
′
1) = `, hence there is an arrow from λ0 to

λ′1 in Γd(D). This implies , as D∗i i = D∗j j = 0, that D∗i jD
∗
j i 6= 0. On the other hand, as

Ω(D(wi), D(wj)) = 0, we have, writing Ω(vλi , vλ−1
i

) := ωi

D∗j iωi +D∗i jωj = 0.

When we take instead 1 6 i < j 6 `, as Ω(D(wi), D(wj)) = 0, we have

D∗j iωi −D∗i jωj = 0.

Now, let λ′′1 be the vertex obtained by replacing (in λ1) λ1, λ2 and λ−1
d by their inverses.

We have #(λ0∩λ
′′
1) = `−1, hence there is no arrow from λ0 to λ′′1 in Γd(D). Computing

the corresponding 3× 3 minor in D∗ gives (as the diagonal terms vanish)

D∗1 2D
∗
2 dD

∗
d 1 +D∗1 dD

∗
d 2D

∗
2 1 = 0.

As the ωi are nonzero, the symmetry/antisymmetry properties of the D∗i j force

D∗1 2D
∗
2 dD

∗
d 1 = 0 = D∗1 dD

∗
d 2D

∗
2 1.
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As D∗1 d, D
∗
d 1, D

∗
2 d, D

∗
d 2 are non zero, we have D∗1 2 = D∗2 1 = 0. Take a nonzero linear

combinationw ofw1, w2 which is also a linear combination of vλ1 , . . . , vλd−1
(eliminating

the coefficient of vλd
). The image D(w) is then a linear combination of v(1), v(2), and the

v′(j)) for 2 < j 6 d. This contradicts the fact that D is (d−1)-twisting with respect to A.
Case 2. The case where 1 ∈ J (with d > 3) is dealt with in a symmetric way.
Case 3. Assume that J contains no element except (possibly) the endpoints 0 and d.

Assume that for instance d ∈ J . Let λ0 = {λ1, · · · , λd}. As the loop at λ0 is an arrow of
Γd(D), we can find vectors w1, . . . , wd ∈ R2d, generating the same Lagrangian subspace
as vλ1 , . . . , vλd

, such that, for 1 6 i 6 d

D(wi) = v(i) +

d∑
1

D∗i jv
′(j),

where v(i) = vλi
, v′(i) = vλ−1

i
for 1 6 i 6 d.

As above, from d − 1 /∈ J , we obtain that the diagonal coefficients D∗i i are zero for
1 6 i 6 d. But now, as d − 2 /∈ J (recall that d > 3 > 2), the 2 × 2 diagonal minors of
D∗ are zero, implying D∗i jD

∗
j i = 0 for 1 6 i < j 6 d. As we still have

D∗j iωi −D∗i jωj = 0,

we have in fact D∗i j = D∗j i = 0. We conclude as before that the fact that D is (d − 1)-
twisting with respect to A is violated.

The case where 0 is the unique element of J is treated in the same way.
This concludes the proof of the proposition. �

At this point, by putting together the result of Subsection 4.5 and Corollaries 4.13, 4.17,
our Theorem 4.5 is now proven for d = 1 and d > 3. Thus, it remains only to consider the
special case d = 2. This is the content of the next subsection.

4.10. The case d = 2. The kernel K of the linear form ∧2R4 → R determined by the
symplectic form Ω is invariant by the action of the symplectic group Sp(Ω,R) on ∧2R4.
A basis of K is formed by the four vectors vλ, λ ∈ R̂2 and

v∗ :=
vλ1
∧ vλ−1

1

ω1
−
vλ2
∧ vλ−1

2

ω2
,

where R̃ = {λ1, λ
−1
1 , λ2, λ

−1
2 } and ωi := Ω(vλi

, vλ−1
i

) for i = 1, 2. Observe that v∗ is an
eigenvector of ∧2A with eigenvalue 1. Thus, the eigenvalues of ∧2A on K are distinct.
This would not be true for d > 2, as 1 is then a multiple eigenvalue.

Let C ∈ Sp(Ω,Z). We define an oriented graph Γ∗2 = Γ∗2(C) as follows: the vertices
of Γ∗2 are the four elements of R̂2 and a special vertex ∗ (associated to the eigenvalue 1
of ∧2A); for vertices λ0, λ1, there is an arrow from λ0 to λ1 if and only if the coefficient
C

(2)
λ0 λ1

of the matrix of ∧2C, written in the basis (vλ) of K, is nonzero.
Assume that Γ∗2(C) is mixing. Let m be a positive integer such that, for every vertices

λ0, λ1 of Γ∗2(C), there is an oriented path of length m from λ0 to λ1. For nonnegative
integers `1, · · · , `m−1, consider

D = CA`1 · · ·CA`m−1C.

Proposition 4.19. There are finitely many hyperplanes V1, · · · , Vt in Rm−1 such that, if
` := (`1, · · · , `m−1) ∈ Zm−1 goes to infinity along a rational line not lying in any of the
Vp, then, for ||`|| large enough, the matrix D is 2-twisting with respect to A.
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Proof. The proof is the same as for Proposition 4.7, using that all eigenvalues of ∧2A are
simple. �

In view of this proposition, in order to conclude the proof of Theorem 4.5 in the case
d = 2, it suffices to prove the following statement.

Proposition 4.20. Let C ∈ Sp(Ω,Z). If C is 1-twisting with respect to A, then Γ2(C) or
Γ∗2(C) is mixing.

Proof. We start by considering Γ2(C). We can define J ⊂ {0, 1, 2} as in the proof of
Proposition 4.16. This non-empty subset determines the Gal-invariant graph Γ2(C). If J
contains two consecutive integers, Lemma 4.18 (still valid for d = 2) implies that Γ2(C)
is mixing. On the other hand, if J contains only 0 or 2, one proves as in the last subsection
that C is not 1-twisting with respect to A, a contradiction.

Therefore, there are two remaining cases to be considered: J = {1}, and J = {0, 2}.
In these cases, Γ2(C) is not mixing, but we will show that Γ∗2(C) is mixing. Notice that
the mixing property follows from the existence of arrows in Γ∗2(C) from any vertex of R̂2

to the special vertex ∗, and of arrows from this special vertex to any vertex of R̂2.
Existence of arrows in Γ∗2(C) from any vertex of R̂2 to the special vertex ∗. We

assume that J = {1}, the other case is dealt in the same way. Let λ0 = {λ1, λ2} ∈ R̂2.
We can find vectors w1, w2 ∈ R4, generating the same Lagrangian subspace as vλ1 , vλ2 ,
such that

C(w1) = vλ1
+ C∗1 1vλ−1

1
+ C∗1 2vλ2

,

C(w2) = vλ−1
2

+ C∗2 1vλ−1
1

+ C∗2 2vλ2 .

As 0, 2 /∈ J , we have C∗1 1 = C∗2 2 = 0. As 1 ∈ J , we have C∗1 2C
∗
2 1 6= 0. It follows that

there is an arrow from λ0 to the special vertex ∗ in Γ∗2(C).
Existence of arrows in Γ∗2(C) from the special vertex ∗ to any vertex of R̂2. If there

were no arrows from the special vertex ∗ to any other vertex in Γ∗2(C), then v∗ would be
an eigenvector of ∧2C. By Proposition 4.21 in the next subsection (see below), the image
by C of the symplectic plane generated by vλ1

, vλ−1
1

is consequently either itself or the
symplectic plane generated by vλ2 , vλ−1

2
. In any case, this contradicts the fact that C is

1-twisting with respect to A. �

4.11. Symplectic 2-planes. Let H1, H2 be orthogonal 2-planes in R4 equipped with the
standard symplectic structure. Choose a basis e1, f1 ofH1, a basis e2, f2 ofH2, normalized
by Ω(e1, f1) = Ω(e2, f2) = 1. The non-zero bivector

V (H1) := e1 ∧ f1 − e2 ∧ f2

does not depend on the choices of the two bases of H1 and its symplectic orthogonal H2,
i.e., it depends only on H1.

Proposition 4.21. The map H → V (H) from symplectic 2-planes in R4 to ∧2R4 is injec-
tive. More precisely, if H,H ′ are symplectic 2-planes in R4 such that V (H) and V (H ′)
are collinear, then H,H ′ are either equal or orthogonal.

Proof. Let e1, f1, e2, f2 be the canonical basis of R4, and let H be a symplectic 2-plane.
We have to show that, if V (H) is proportional to e1∧f1−e2∧f2, thenH is either spanned
by e1, f1 or by e2, f2. Let E1, F1 be a basis of H and E2, F2 be a basis of the orthogonal
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H ′ of H , such that Ω(E1, F1) = Ω(E2, F2) = 1. Write

Ei =

2∑
1

ai jej +

2∑
1

bi jfj ,

Fi =

2∑
1

ci jej +

2∑
1

di jfj .

Let

Mi j =

(
ai j bi j
ci j di j

)
.

By changing the symplectic bases of the planes 〈e1, f1〉, 〈e2, f2〉, 〈E1, F1〉, 〈E2, F2〉,
we change the matrices Mi j to M ′i j = PiMi jQj , where P1, P2, Q1, Q2 are arbitrary
matrices in SL(2,R).

Lemma 4.22. For i = 1, 2, at least one of the matrices Mi 1,Mi 2 is invertible. For
j = 1, 2, at least one of the matrices M1 j ,M2 j is invertible.

Proof. We show that M1 1 or M1 2 is invertible. Otherwise, by an appropriate choice of
Q1, Q2, we obtain b1 1 = d1 1 = b1 2 = d1 2 = 0, which contradicts Ω(E1, F1) = 1.

The proof of the other cases is similar. �

Changing H to its orthogonal H ′ changes V (H) to −V (H) and exchanges M1 j and
M2 j . From the lemma, we may thus assume after performing if necessary such a change,
thatM1 1 andM2 2 are invertible. Then, choosing appropriatelyP1, P2, Q1, Q2 ∈ SL(2,R)
allows to get

b1 1 = b1 2 = b2 2 = c1 1 = c1 2 = c2 2 = 0,

a1 1 = a2 2 = 1, d1 1 6= 0, d2 2 6= 0.

Then, the relations Ω(E1, E2) = Ω(F1, F2) = 0 give also b2 1 = c2 1 = 0, so all Mi j are
diagonal. The relations Ω(E1, F2) = Ω(F1, E2) = 0 give

d2 1 + a1 2d2 2 = 0 = d1 2 + a2 1d1 1.

On the other hand, the relations Ω(E1, F1) = Ω(E2, F2) = 0 give

d1 1 + a1 2d1 2 = 1 = d2 2 + a2 1d2 1.

Finally, the assumption

E1 ∧ F1 − E2 ∧ F2 = k(e1 ∧ f1 − e2 ∧ f2)

give
d2 1 − a1 2d2 2 = 0 = d1 2 − a2 1d1 1,

d1 1 − a1 2d1 2 = k = d2 2 − a2 1d2 1.

We obtain, as d1 1, d2 2 are non-zero, that d1 2 = d2 1 = a1 2 = a2 1 = 0, which is the
required conclusion. �

5. PROOF OF THE SIMPLICITY CRITERIA

In this Section, we will complete the proofs of Theorem 1.1 and Corollary 1.2. Then
we will present and prove a variant of Theorem 1.1.
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5.1. Two lemmas.

Lemma 5.1. LetK be a field of characteristic zero and letB be a unipotent endomorphism
of a finite-dimensional vector space E over K. Let m be a nonzero integer. Then, any
subspace of E which is invariant under Bm is also invariant under B.

Proof. Write B = id +N with N nilpotent, and Bm = id +N ′. Then N ′ is a polynomial
function of N with no constant term and nontrivial linear term (as K has zero character-
istic). Writing also the (N ′)j in terms of the N i, i > j, we get a triangular system with
nonzero diagonal terms that we can solve for N as a polynomial function of N ′. Thus B
is a polynomial function of Bm. The assertion of the lemma is an immediate consequence
of this fact. �

Lemma 5.2. Let A,B be two elements of SL2(Z). Assume that A is b-reduced and that
tr (B) = 2. Then, after replacing if necessary B by B−1, there exists n0 such that, for any
n1, n2, n3 > n0, the matrix An1Bn2An3 is b-reduced.

Proof. If B = id, the assertion of the lemma follows from the fact that the product of
b-reduced matrices is b-reduced. For the rest of the proof, we assume that B 6= id, and
denote by L a rational line which is fixed by B.

Define the cones in R2 (using the natural basis (e1, e2) and coordinates (x1, x2))

C+ := {0 < x2 < x1}, C− := {0 < −x1 < x2}.
Observe that, if C ∈ SL2(Z) satisfies, for i = 1, 2, the two conditions

C(ei) ∈ C+ and C−1(ei) ∈ C− ∪ −C−

then C is b-reduced. Conversely, if C is b-reduced, its trace is > 3. Moreover, by a simple
application of the Perron-Frobenius theorem (or a direct calculation), the cone C+ contains
a unit eigenvector eu(C) of C associated to the eigenvalue > 1, and the cone C− contains
a unit eigenvector es(C) associated to the eigenvalue in (0, 1).

As L is rational and the line spanned by es(A) is not rational, there exists a unit vector
e generating L such that, in the decomposition e = αses(A) + αueu(A), one has αu > 0.
Using next that the line spanned by eu(A) is distinct from L, we may assume, replacing
B by B−1 if necessary, that the oriented direction of Bn(eu(A)) for large n is close to e.
Then the oriented direction of An1Bn2An3(ei) is, for large n1, n2, n3 and i = 1, 2, close
to eu(A). The oriented direction of A−n3B−n2A−n1(ei) is close to ±es(A). Taking into
account the remarks above on b-reduced matrices, the proof of the lemma is complete. �

5.2. Proof of Theorem 1.1. We want to show Theorem 1.1 by applying the version of the
simplicity criterion of Avila-Viana restated as Theorem 2.17 .

Let M,A,B be as in Theorem 1.1. The linear part of A has trace > 2, hence is conju-
gated in SL(2,Z) to a b-reduced matrix (cf. Remark 3.10). After replacingM if necessary
by another origami in the same SL2(Z)-orbit, we may assume that the linear part of A is
b-reduced.

The full shift appearing in the statement of Theorem 2.17 is the one that has been con-
sidered in Subsection 3.4: the letters of the corresponding alphabet are the loops in Γ(M)
which go exactly once through (M, b). It was shown in that subsection that the version of
the Gauss measure corresponding to this setting has the bounded distortion property, and
that the KZ-cocycle is locally constant and integrable.

By Corollary 3.9, the affine map A is associated to some loop in Γ(M) through (M, b),
i.e to a word in this alphabet.
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By Lemma 5.2, there exists n0 > 0 such that, for n1, n2, n3 > n0, the linear part of
An1Bn2An3 is b-reduced. Define B′ := Bn0 .

We claim that the hypotheses of Theorem 4.5 (with d = g − 1, Ω the symplectic inter-
section form on H(0)

1 (M,Z)) are satisfied by the endomorphisms of H(0)
1 (M,Z) induced

by A and B′. Indeed, the endomorphism induced by A is Galois-pinching from the hy-
pothesis of Theorem 1.1. If there were a proper subspace of H(0)

1 (M,R) invariant by the
action of A and B′2, it would also be invariant by B (Lemma 5.1). Applying Proposition
4.3 would give a contradiction with the hypothesis of Theorem 1.1.

Let C = B′A`1 · · ·B′A`m−1B′ be an element (given by Theorem 4.5) whose linear
part is k-twisting with respect to A for all 1 6 k 6 g − 1. We may assume, according to
the statement of this theorem, that the integers `1, . . ., `m−1 are > 2n0. Observe that the
linear part of C ′ := An0CAn0 is also k-twisting with respect to A for all 1 6 k 6 g − 1.

By Lemma 5.2 (using also that the product of b-reduced matrices is b-reduced), the
linear part of C ′ is b-reduced. Therefore, the affine map C ′ ∈ Aff(M) is associated to
some loop through (M, b) in Γ(M), i.e to some word in the alphabet.

Applying Theorem 2.17 , we conclude that the Lyapunov spectrum of the discrete ver-
sion of the KZ-cocycle GKZM discussed in Subsection 3.3 is simple. This concludes the
proof of Theorem 1.1. �

5.3. Proof of Corollary 1.2. By Proposition 2.4, the origami (M,ω) has no nontrivial
automorphism. The hypotheses regarding A are the same in Theorem 1.1 and Corollary
1.2. To prove Corollary 1.2, it is therefore sufficient to find, assuming the existence of a
rational direction with homological direction 6= 1, g, an affine homeomorphism B which
acts onH(0)

1 (M,Q) through a unipotent endomorphism distinct from the identity, and such
that the image of B − id is not a lagrangian subspace of H(0)

1 (M,Q).
We may assume that the rational direction in the hypothesis is the horizontal direction.

LetE be the subspace ofH1(M,Q) spanned by the waist curves of the horizontal cylinders
of (M,ω). By hypothesis, we have

1 < dimE < g.

On the other hand, the image of E under the map p∗ : H1(M,Q) → H1(T2,Q) '
Q2 is the one-dimensional horizontal subspace. Therefore the intersection of E with
H

(0)
1 (M,Q) satisfies

0 < dim(E ∩H(0)
1 (M,Q)) < g − 1.

Let K > 0 be an integer such that

• The matrix
(

1 K
0 1

)
belongs to the Veech group of (M,ω).

• The affine homeomorphism B of (M,ω) with linear part
(

1 K
0 1

)
fixes each

horizontal separatrix.

We claim that B has the required properties.
Indeed, as the form ω has a single zero, the homology group H1(M,Q) is spanned

by curves which either are horizontal saddle connections or cross upwards a horizontal
cylinder without entering the other cylinders. A homology class of the first kind is fixed
by B. An homology class γ of the second kind, crossing a cylinder C, satisfies

B∗(γ)− γ = mCσC ,
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where σC is the class of the waist curve of C, oriented rightwards, and mC is a positive
integer. Observe that σC is a linear combination of classes of the first kind. Therefore
B∗ − id on H1(M,Q) is nilpotent of degree 2. The image of H(0)

1 (M,Q) under B∗ −
id is contained in E ∩ H(0)

1 (M,Q), hence is not lagrangian. Finally, the restriction of
B∗ to H(0)

1 (M,Q) is not equal to the identity: take two horizontal cylinders C,C ′ such
that σC , σC′ are linearly independent, and two classes of the second kind γC , γC′ which
cross respectively C,C ′. An appropriate combination γ := nCγC − nC′γC′ + nσC , with
nC , nC′ > 0 belongs to H(0)

1 (M,Q) and satisfies

B∗(γ)− γ = mCnCσC −mC′nC′σC′ 6= 0.

Remark 5.3. It is easy to construct a reduced square-tiled surface (M,ω) of genus 3 with
two double zeroes and no nontrivial automorphism such that the horizontal direction has
homological dimension 2 but such that any parabolic matrix in the Veech group which fixes
the horizontal direction acts onH(0)

1 by the identity. This means that the proof above is not
valid if we replace in Corollary 1.2 the assumption that ω has a single zero by the weaker
assumption that (M,ω) has no nontrivial automorphism.

5.4. A variant of Theorem 1.1. Instead of using one unipotent affine homeomorphism to
obtain the twisting condition relative to the Galois-pinching homeomorphism A, one may
use another pseudo-Anosov homeomorphism.

Theorem 5.4. Let (M,ω) be a reduced square-tiled surface having no nontrivial auto-
morphism. Assume that there exist two affine homeomorphisms A,B of (M,ω) with the
following properties:

i) Both linear parts DA,DB are b-reduced;
ii) A is Galois-pinching;

iii) The minimal polynomial of the endomorphism of H(0)
1 (M,Q) induced by B has

degree > 2, no irreducible even factor, and its splitting field is disjoint from the
splitting field of the characteristic polynomial of the endomorphism ofH(0)

1 (M,Q)
induced by A.

Then, the Lyapunov spectrum of the KZ-cocycle, relative to the SL2(R)-invariant proba-
bility measure supported by the SL2(R)-orbit of (M,ω) in moduli space, is simple.

Proof. As in Subsection 5.2, we plan to apply Theorem 2.17, using Theorem 4.5 to get the
twisting hypothesis. The Teichmüller flow restricted to the SL2(R)-orbit of (M,Ω) is still
viewed as a suspension over the full shift on a countable alphabet, whose letters are the
loops in Γ(M) (based at (M, b)). Then hypothesis i) means that A,B correspond to words
in this alphabet (see Subsection 3.5). It has already been checked that the Haar measure
has the bounded distortion property, and that the appropriate version of the KZ-cocycle
is locally constant and integrable. So the proof of Theorem 5.4 reduces to the following
lemma, where we write A∗, B∗ for the endomorphisms of H(0)

1 (M,Q) induced by A,B.

Lemma 5.5. Under the hypotheses ii), iii) of the Theorem, A∗ and B2
∗ do not share a

common proper invariant subspace.

We first prove that a subspace invariant under B2
∗ is invariant under B∗. Indeed, it is

sufficient to prove this when the base field is C. Then, a B∗-invariant subspace is the
sum of its intersection with the characteristic subspaces of B∗, and the same holds for B2

∗ .
But B∗ and B2

∗ have the same characteristic subspaces, because hypothesis iii) on the non
existence of an irreducible even factor means that, for any λ ∈ C, λ and −λ cannot be
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both eigenvalues of B∗. Thus it is sufficient to prove that a subspace contained in some
characteristic subspace of B∗ which is invariant under B2

∗ is also invariant under B∗. Up
to a scalar factor, this is the unipotent case which was dealt with in Lemma 5.1.

To prove the lemma, it is therefore sufficient to see that A∗ and B∗ do not share a
proper invariant subspace. Otherwise, as we have seen in the proof of Proposition 4.3, a
proper common invariant subspace of minimal dimension has to be either one-dimensional,
spanned by an eigenvector vλ of A∗, or two-dimensional, spanned by two eigenvectors vλ,
vλ−1 . In both cases, considering the action of the Galois group of the characteristic polyno-
mial of A∗, we conclude that H(0)

1 (M,Q) splits into 2-dimensional summands 〈vλ, vλ−1〉
which are invariant under B∗ (and A∗).

These subspaces are defined over the field Q(λ + λ−1). The trace and the determinant
of the restriction of B∗ to these subspaces belong to this field. In view of the hypothesis
of disjointness of the splitting fields for A∗ and B∗, the trace and the determinant must
be rational. But then the minimal polynomial of B∗ has degree 6 2, in contradiction to
hypothesis iii). �

6. ORIGAMIS IN H(4)

Simplifying the full notation H(M,Σ, κ), we will denote by H(4) the moduli space of
translation surfaces of genus 3 with a single marked point, which is a zero of order 4 of the
associated 1-form.

6.1. Some basic facts. For origamis in H(4), it is equivalent to be primitive or reduced.

Proposition 6.1. A reduced square-tiled surface in H(4) is primitive.

Proof. Let (M,ω) be a reduced square-tiled surface in H(4), and let p : (M,ω)→ (N,ω′)
be a ramified covering of degree > 1 over another square-tiled surface (N,ω′). The
Riemann-Hurwitz formula states that

4 = 2g(M)− 2 = deg(p)(2g(N)− 2) +
∑

ord(c),

where the sum is over critical points c of p and ord(c) is the ramification order. As
deg(p) > 1, we have either g(N) = 2, deg(p) = 2 and no critical point or g(N) = 1.
In the first case, as p is unramified, the 1-form ω has 2 or 4 zeros, contradicting the as-
sumption that (M,ω) ∈ H(4). In the second case, p has a single critical point of order
4. As (M,ω) is reduced, (N,ω′) must be the standard torus and p must be the canonical
covering associated to (M,ω). �

The following result of Zmiaikou ([Zm, Theorem 3.12]) classifies monodromy groups.

Proposition 6.2. The monodromy group of a primitive square-tiled surface in H(4) with
N > 7 squares is equal to the full symmetric group SN or to the alternating group AN .

6.2. Connected components of H(4). As a translation surface (M,ω) in H(4) has no
nontrivial automorphism, it admits at most one anti-automorphism, which must be an in-
volution. The unique zero O of ω is a fixed point of this involution (when it exists). Quo-
tienting by this involution (denoted by ι), we get a ramified double cover π : M → N ;
the ramification points are the fixed points of ι. The Riemann-Hurwitz formula relates the
number l(ι) of fixed points of ι to the genus of N

4 = 2gM − 2 = 2(2gN − 2) + l(ι).

As l(ι) > 0, there are only two possibilities: gN = 0, l(ι) = 8 and gN = 1, l(ι) = 4.
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Recall that the moduli space H(4), the simplest one which is not connected, has two
connected components ([Ve4], [KZ]), which are respectively called the hyperelliptic and
the odd component. A translation surface in H(4) belongs to the hyperelliptic component
iff it admits an anti-automorphism with 8 fixed points. On the other hand, a translation
surface in the odd component of H(4) may or may not admit an anti-automorphism. When
it does, one says, following McMullen [Mc], that the translation surface belongs to the
Prym locus or is simply Prym.8

Remark 6.3. The 1-form ω induces on the quotient N a quadratic differential q related to
ω through π∗q = ω2. The quadratic differential q is not the square of a 1-form; it has a
zero of order 3 at π(O) and a simple pole at the images of the other fixed points.

6.3. Cylinders and saddle configurations. Let (M,ω) be a translation surface. A direc-
tion v ∈ P(R2) is completely periodic if every separatrix in direction v extends to a saddle
connection. Then, the saddle connections (endpoints included) separate the surface into a
finite number of cylinders. Each cylinder is foliated by periodic orbits of the linear flow in
the v-direction.

For a square-tiled surface, the completely periodic directions are exactly the rational
directions v ∈ P(Q2).

Let v ∈ P(R2) be a completely periodic direction for the translation surface (M,ω).
Denote by C1, . . . , Cm the associated cylinders and by γ1, . . . , γm the homology classes
in H1(M,Z) defined by the waist curves of these cylinders (oriented in a consistent way).
As these curves do not intersect, the subspace of H1(M,R) generated by γ1, . . . , γm is
isotropic.

If moreover the translation surface (M,ω) has a single marked point O, the homology
classes γ1, . . . , γm are linearly independent: indeed, O belongs to both components of
each cylinder Ci, hence one can find a loop at O which intersects once γi, but not the
γj , j 6= i. A consequence is that the number of cylinders in this case is at most the genus
of M . For (M,ω) ∈ H(4), one can have between one and three cylinders in completely
periodic directions.

Consider a completely periodic direction v for a translation surface (M,ω) ∈ H(4).
After applying if necessary an element of SL2(R), we may assume that v is the horizon-
tal direction. Index in the cyclical order the 10 horizontal separatrices from the marked
point O by Z10 (choosing an arbitrary separatrix as S0). Each of the 5 saddle connections
connect two separatrices Si and Sj such that j − i is odd. The pairing of separatrices
determined by the saddle connections is called a saddle configuration.

S. Lelièvre has determined which saddle configurations occur in each component of
H(4), and how many cylinders correspond to each saddle configuration. The full list of
the 16 possible saddle configurations appears in Appendix C of this paper (by S. Lelièvre),
and, for this reason, we will not discuss it in details in this section. Instead, we will
only extract (in Proposition 6.5) from the list the information which is relevant for us in
Sections 7 and 8.

Definition 6.4. A saddle-connection is balanced if it connects Si and Si+5.

8Prym varieties are certain abelian varieties constructed from morphisms of algebraic curves. When an alge-
braic curve is equipped with an holomorphic involution, one may consider the abelian subvarieties of the Jacobian
obtained by duality from the eigenforms associated to the eigenvalues ±1.
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Proposition 6.5. (1) When (M,ω) belongs to the hyperelliptic component of H(4),
the number b of balanced saddle connections in a given saddle configuration and
the number c of cylinders generated by this saddle configuration satisfy b+2c = 7.

(2) When (M,ω) belongs to the odd component of H(4), if a saddle configuration has
at least 2 balanced saddle connections, then it has 3 such saddle connections and
they separate M into exactly 2 cylinders.

6.4. The HLK-invariant. Assume now that (M,ω) is a reduced square-tiled surface in
H(4), and that ι is an anti-automorphism of (M,ω). Denote by p : M → T2 the covering
associated to ω. Following the work of E. Kani [Ka] and P. Hubert -S. Lelièvre [HL] in
genus two, it is natural to partition the fixed points of ι in the following way. The anti-
automorphism ι is a lift under p of the anti-automorphism ι0(z) := −z of T2. The fixed
points of ι are sent by p to fixed points of ι0. The fixed points of ι0 are the 4 points of order
2 in T2. Thus, it is natural to count, for each point of order 2 in T2, how many fixed points
of ι sit above it.

The action of SL(2,Z) on the torus fixes the origin 0, and preserves the 3-element set of
points of exact order 2, acting on this set through the full symmetric group S3. As we want
to define an invariant for the action of SL2(Z) on origamis, we define the HLK-invariant
`(ι)= `(M,ω) to be (l0, [l1, l2, l3]) where

• l0 is the number of fixed points of ι, distinct from the zero O of ω, sitting above
the origin of T2;

• l1, l2, l3 are the number of fixed points above the 3 points of T2 of exact order 2;
they form an unordered triple that we write for convenience with the convention
l1 > l2 > l3.

Notice that l0 + l1 + l2 + l3 is equal to 7 in the hyperelliptic case and to 3 in the Prym
case. Another restriction is that l0 +1, l1, l2, l3 and the numberN of squares are congruent
mod. 2: indeed, the fiber of p over a point of order 2 is preserved by the involution ι and
contains N elements. A further restriction is given by the

Proposition 6.6. In the hyperelliptic case, at most one of the three numbers l1, l2, l3 is
equal to zero.

Proof. Assume on the contrary that at least two of these numbers are equal to 0. By
applying an appropriate element of SL2(Z) if necessary, we may assume that there is no
fixed point of ι above (0, 1

2 ) and ( 1
2 ,

1
2 ). There are between 1 and 3 horizontal cylinders.

Lemma 6.7. Every horizontal cylinder is fixed by ι.

Proof. Assume that there is at most one horizontal cylinder which is fixed by ι. Such a
cylinder would contain 2 fixed points of ι in its interior. The other fixed points of ι are O
(the zero of ω) and the middle points of every horizontal saddle-connection which is fixed
by ι. To account for the 8 fixed points, there must exist a horizontal cylinder C fixed by ι,
and every horizontal saddle-connection must be fixed by ι. Thus every horizontal saddle-
connection in the top boundary of C is also in the bottom boundary. This means that there
is only one horizontal cylinder and ends the proof of the lemma. �

Each horizontal cylinder, being fixed by ι, contains two fixed points of ι. As these fixed
points sit over (0, 0) or ( 1

2 , 0), the height of each horizontal cylinder is even. But then
(M,ω) is not reduced. �

The various restrictions leave the following possibilities for the HLK-invariant:



A CRITERION FOR THE SIMPLICITY OF THE LYAPUNOV SPECTRUM OF SQUARE-TILED SURFACES 39

• In the hyperelliptic case, (4, [1, 1, 1]), (2, [3, 1, 1]), (0, [5, 1, 1]), (0, [3, 3, 1]) for an
odd number of squares, and (3, [2, 2, 0]), (1, [4, 2, 0]), (1, [2, 2, 2]) for an even num-
ber.

• In the Prym case, (0, [1, 1, 1]) for an odd number of squares, and (1, [2, 0, 0]),
(3, [0, 0, 0]) for an even number.

6.5. A conjecture of Delecroix and Lelièvre. On the basis of computer experiments
(with SAGE), V. Delecroix and S. Lelièvre have formulated the following conjecture.

Conjecture 6.8. ForN > 8, the number of SL2(Z)-orbits of primitiveN -square origamis
in H(4) is as follows:

• there are precisely two such SL2(Z)-orbits in the odd component of H(4) outside
of the Prym locus, distinguished by their monodromy group being AN or SN ;

• for oddN , there are precisely four such SL2(Z)-orbits in the hyperelliptic compo-
nent of H(4), distinguished by their HLK-invariant being (4, [1, 1, 1]), (2, [3, 1, 1]),
(0, [5, 1, 1]) or (0, [3, 3, 1]);

• for even N , there are precisely three such SL2(Z)-orbits in the hyperelliptic com-
ponent of H(4), distinguished by the HLK-invariant being (3, [2, 2, 0]), (1, [4, 2, 0])
or (1, [2, 2, 2]).

6.6. Prym covers. We don’t have any new result for origamis of Prym type in H(4). For
the sake of completeness, we recall a couple of important facts.

Let (M,ω) be a square-tiled of Prym type in H(4). Denote by ι the anti-automorphism
of (M,ω). It commutes with any affine homeomorphism of (M,ω). It acts as an involution
on the space H(0)

1 (M,Q). The eigenspaces H± associated with the eigenvalues ±1 both
have dimension 2, and the splitting

H
(0)
1 (M,Q) = H+ ⊕H−

into orthogonal symplectic subspaces is invariant under the affine group of (M,ω). It
means that it is also invariant under the KZ-cocycle. Denote by ±λ+ (resp. ±λ−) the
Lyapunov exponents of the restriction of the KZ cocycle to H+ (resp. H−), with λ± > 0.

Chen and Möller have shown [CM] that λ+ + λ− = 3
5 , i.e the sum of the non-

trivial exponents is the same than for the Masur-Veech measure of the odd component.
On the other hand, Eskin, Kontsevich and Zorich have proved ([EKZ, Theorem 2]) that
λ− − λ+ = 1

5 .
Put together, these results prove that the nontrivial exponents for an origami in H(4) of

Prym type are ± 1
5 , ± 2

5 .
Regarding the classification of SL2(Z)-orbits of primitive origamis of Prym type, this

was settled by E. Lanneau and D.-M. Nguyen [LN] before the formulation of the conjecture
of Delecroix-Lelièvre.

Theorem 6.9. For N > 8, the number of SL2(Z)-orbits of primitive N -square origamis
in the Prym locus of H(4) is as follows:

• for odd N , there is precisely one SL2(Z)-orbit; the HLK-invariant is (0, [1, 1, 1]);
• ForN ≡ 0 mod 4, there is precisely one SL2(Z)-orbit; its HLK- invariant is equal

to (1, [2, 0, 0]);
• If N ≡ 2 mod 4, there are precisely two SL2(Z)-orbits, distinguished by their

HLK-invariant being (1, [2, 0, 0]) or (3, [0, 0, 0]).
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6.7. Splitting fields of monic quartic reciprocal polynomials. In the next two sections,
we will construct certain affine maps of origamis in H(4) which potentially act on H(0)

1

as Galois-pinching matrices. We present now some elementary Galois theory which is
relevant to this question.

Let P (x) = x4 + ax3 + bx2 + ax+ 1 ∈ Q[x] be a reciprocal polynomial of degree 4.
We define

t := −a− 4, d := b+ 2a+ 2,

so that λ is a zero of P iff µ := λ + λ−1 − 2 is a zero of Q(y) := y2 − ty + d. The
discriminant of Q is9

∆1 := t2 − 4d = a2 − 4b+ 8.

The following fact is an easy exercise.

Lemma 6.10. The polynomial P is reducible over Q iff ∆1 is a square.

From now on, we assume that ∆1 is not a square, hence P is irreducible. Denote by
µ1, µ2 the roots of Q and by λ±1

1 , λ±1
2 those of P , with µi = λi +λ−1

i − 2. Denote by Gal
the Galois group of P , by p : Gal → S2 the surjective homomorphism corresponding to
the action of Gal on {µ1, µ2} and by Gal0 the kernel of p. As Gal acts transitively on the
roots of P , there are two possibilities:

(1) Gal0 ' Z2 × Z2 has order 4, allowing independent switches of λi and λ−1
i , i =

1, 2.
(2) Gal0 ' Z2 has order 2, the nontrivial element switching simultaneously λ1, λ

−1
1

and λ2, λ
−1
2 .

In case (1), the Galois group has order 8, is largest possible and is the centralizer of the
permutation (λ1, λ

−1
1 )(λ2, λ

−1
2 ). In case (2), the Galois group has order 4 and there are 2

subcases:
(2a) Gal ' Z2 × Z2 is generated by (λ1, λ2)(λ−1

1 , λ−1
2 ) and (λ1, λ

−1
1 )(λ2, λ

−1
2 ).

(2b) Gal ' Z4 is generated by the 4-cycle (λ1, λ2, λ
−1
1 , λ−1

2 ).

Define

∆2 := (λ1 − λ−1
1 )2(λ2 − λ−1

2 )2

= µ1µ2(µ1 + 4)(µ2 + 4)

= d(d+ 4t+ 16) = (b+ 2 + 2a)(b+ 2− 2a).

Lemma 6.11. Case (2a) occurs iff ∆2 is a square.

Proof. If case (2a) occurs, then (λ1−λ−1
1 )(λ2−λ−1

2 ) is invariant under the Galois group,
hence is rational, and ∆2 is a square. Conversely, assume that ∆2 = δ2

2 is a square. One
has λ±1

i = 1
2 (µi + 2 ±

√
µi(µi + 4)). The splitting field of P is the quadratic extension

of Q(
√

∆1) = Q(µ1) = Q(µ2) generated by a square root of µ1(µ1 + 4) because√
µ2(µ2 + 4) =

δ2√
µ1(µ1 + 4)

.

This extension has a Galois group isomorphic to Z2 × Z2. �

Lemma 6.12. Case (2b) occurs iff ∆1∆2 is a square.

9We use the substitution µ := λ+ λ−1 − 2 rather than µ := λ+ λ−1 because it appears naturally later.
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Proof. Observe that ∆1∆2 = δ2, with

δ = (λ1 + λ−1
1 − λ2 − λ−1

2 )(λ1 − λ−1
1 )(λ2 − λ−1

2 ).

If case (2b) occurs, then δ is invariant under the Galois group, hence is rational, and ∆1∆2

is a square. Conversely, assume that ∆1∆2 is a square. The splitting field of P is still the
quadratic extension of Q(

√
∆1) generated by a square root of µ1(µ1 + 4), because now√
µ2(µ2 + 4) =

δ
√

∆1

√
µ1(µ1 + 4)

.

Thus the Galois group has order 4. As ∆1 is not a square, ∆2 is also not a square. By
Lemma 6.11, case (2a) does not occur; hence case (2b) must occur. �

We can now conclude:

Proposition 6.13. The Galois group has maximal order 8 iff neither ∆2 nor ∆1∆2 is a
square.

Remark 6.14. In case (1), the Galois group of order 8 contains 3 subgroups of index
2, namely Gal0 and the Galois groups of case (2a) and (2b). The three quadratic fields
contained in the splitting field of P which correspond to these subgroups are easily seen to
be Q(

√
∆1), Q(

√
∆2), and Q(

√
∆1∆2) respectively.

Recall that a Galois-pinching matrix must have all its eigenvalues real. For a reciprocal
polynomial of degree 4 (with real coefficients), we have the following observation

Proposition 6.15. The roots of P are simple, real and positive iff ∆1 > 0, d > 0 and
t > 0.

Proof. Recall that λ is a root of P iff µ = λ+λ−1−2 is a root ofQ(y) := y2−ty+d. The
roots λ are simple, real and positive iff the roots µ have the same property. The conclusion
of the proposition follows. �

In Sections 7 and 8, we will consider one-parameter families (Mn, ωn) of origamis
in H(4) indexed by an integer n. For each origami in the family, we will construct an
element An of the affine group Aff(ωn). The characteristic polynomial of the action of An
onH(0)

1 (Mn,Q) is a monic reciprocal polynomial Pn of degree 4 with integer coefficients.
For each integer n, we will compute the quantities ∆1(Pn), ∆2(Pn) from the last sub-

section. The constructions of Mn, ωn, An are such that both ∆1(Pn) and ∆2(Pn) will
be polynomial functions of the variable n with integer coefficients. In order to claim that
neither ∆1(Pn) nor ∆2(Pn) nor the product ∆1(Pn)∆2(Pn) are squares for all but finitely
many n, we will appeal to Siegel’s theorem on the finiteness of integral points on curves
of genus > 0. In order to do this, we introduce the following definition.

Definition 6.16. Let ∆ ∈ Z[x] be a polynomial. Write ∆ = δ2∆red with δ,∆red ∈ Z[x]

and ∆red square-free. The reduced degree of ∆, denoted by degred(∆) is the degree of
∆red.

The following result is then a special case of Siegel’s theorem.

Proposition 6.17. If degred(∆) > 3, there are only finitely many values of the integer n
such that ∆(n) is a square.

Proof. Indeed each such value of n gives an integral point on the curve y2 = ∆red(x),
which is nonsingular (except for a possible double point at∞) of genus > 0. �
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7. THE ODD CASE

7.1. A model for odd origamis in H(4). Consider the origami O constructed as indicated
on Figure 1 below. It depends on 6 parameters H1, H2, H3, V1, V2, V3 which are positive
integers.

FIGURE 1. A origami in the odd component of H(4).

In the horizontal direction, there are 3 cylinders Ch1, Ch2, Ch3. The height of these
cylinders are respectivelyH1, H2, H3, while the length of the waist curves are respectively
`(Ch1) = V1, `(Ch2) = V2, `(Ch3) = V1 + V2 + V3.

In the vertical direction, there are also 3 cylinders Cv1, Cv2, Cv3. The height of these
cylinders are respectively V1, V2, V3, while the length of the waist curves are respectively
`(Cv1) = H1 +H3, `(Cv2) = H2 +H3, `(Cv3) = H3.

We will denote by σi, i = 1, 2, 3, the homology class of the waist curve ofChi, oriented
rightwards, and by ζi , i = 1, 2, 3, the homology class of the waist curve of Cvi, oriented
upwards. The symplectic intersection form ι on H1(O,Z) satisfies

ι(σi, σj) = ι(ζi, ζj) = 0, ι(σi, ζj) = Iij ,

with

I =

 1 0 0
0 1 0
1 1 1

 .

We review some elementary properties of O:
• O has a single conical singularity of total angle 10π, so it belongs to H(4).
• The number of squares is

N(O) = H1V1 +H2V2 +H3(V1 + V2 + V3).

• O is reduced if and only if gcd(H1, H2, H3) = gcd(V1, V2, V3) = 1: indeed, the
condition is clearly necessary. It is also sufficient because the vectors (Vi, 0) and
(0, Hi) are periods for i = 1, 2, 3.

• The classes σ1, σ2, σ3, ζ1, ζ2, ζ3 form a basis of the integral homology H1(O,Z):
indeed, the matrix I above is invertible over Z.
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• The origami O admits an affine involution with derivative −Id iff H1 = H2 and
V1 = V2. Indeed, such an involution must send an horizontal cylinder to an
horiziontal cylinder, and similarly for vertical cylinders. Therefore, it must pre-
serve Ch3 (the horizontal cylinder with the longest waist curve) , Cv3 (the vertical
cylinder with the shortest waist curve) and the rectangular intersection Ch3∩Cv3.
As the derivative is −Id, it must exchange Ch1 and Ch2, and also Cv1 and Cv2.
This forces H1 = H2 and V1 = V2. Conversely, if these equalities hold, the
central symmetry preserving Ch3 ∩ Cv3 defines the required involution.

• O belongs to the odd component of H(4). When the parametersHi, Vi vary among
positive real numbers we get a family of translation surfaces in a single component
of H(4). It cannot be the hyperelliptic component because most of these surfaces
do not have the required affine involution.

We also recall that an origami in H(4) is primitive iff it is reduced (Proposition 6.1).

Proposition 7.1. Assume that O is primitive with N = N(O) > 7 . Then the monodromy
group is equal to AN if N,H1 +H2 +H3 and V1 + V2 + V3 have the same parity, and it
is equal to SN otherwise.

Proof. Indeed, by the theorem of Zmiaikou mentioned earlier (cf. Proposition 6.2), the
monodromy group is equal to AN or SN . The signature of a permutation of N elements
with c cycles is (−1)N−c. For the permutations generating the monodromy group, the
number of cycles is H1 +H2 +H3 in the horizontal direction, V1 +V2 +V3 in the vertical
direction. The assertion of the proposition is now clear. �

The map p∗ : H1(O,Z) → H1(T2,Z) = Z2 induced by the canonical covering p :
O→ T2 is given by

p∗(σi) = (`(Chi), 0), p∗(ζi) = (0, `(Cvi)), i = 1, 2, 3.

Define, for i = 1, 2

Σi := `(Ch3)σi − `(Chi)σ3, Zi = `(Cv3)ζi − `(Cvi)ζ3.

Then Σ1,Σ2, Z1, Z2 are elements of H(0)
1 (O,Z) which span a subgroup of finite index

of this group; they form a basis of H(0)
1 (O,Q).

7.2. Two parabolic elements in Aff(O). Set

Lh := `(Ch1)`(Ch2)`(Ch3), Ph :=

(
1 Lh
0 1

)
.

The matrix Ph belongs to the Veech group SL(O). Indeed, the associated element ph
of the affine group acts on homology according to ph.σi = σi and

ph.ζi = ζi +

3∑
j=1

IjiHj
Lh

`(Chj)
σj , i = 1, 2, 3.

We deduce from this formula the action on H
(0)
1 (O,Q). We have ph.Σi = Σi for

i = 1, 2 and

ph.Zi = Zi +

3∑
j=1

HijHj
Lh

`(Chj)
σj , i = 1, 2.
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with
Hij := `(Cv3)Iji − `(Cvi)Ij3.

The last formula can be rewritten as

ph.Zi = Zi +

2∑
j=1

HijHj`(Ch3−j)Σj , i = 1, 2.

Substituting the values of Iji, `(Chj), `(Cvj), we get

H11 = H22 = H3, H12 = H21 = 0,

ph.Z1 = Z1 +H1H3V2Σ1,

ph.Z2 = Z2 +H2H3V1Σ2.

Turning to the vertical direction, we set

Lv := `(Cv1)`(Cv2)`(Cv3), Pv :=

(
1 0
Lv 1

)
.

The matrix Pv belongs to the Veech group SL(O). The associated element pv of the
affine group acts on homology according to pv.ζi = ζi and

ph.σi = σi +

3∑
j=1

IijVj
Lv

`(Cvj)
ζj , i = 1, 2, 3.

For the action on H(0)
1 (O,Q), we have pv.Zi = Zi for i = 1, 2 and

pv.Σi = Σi +

3∑
j=1

VijVj
Lv

`(Cvj)
ζj

= Σi +

2∑
j=1

VijVj`(Cv3−j)Zj ,

with
Vij := `(Ch3)Iij − `(Chi)I3j .

Substituting the values of Iij , `(Chj), `(Cvj), we get

V11 = V2 + V3, V22 = V1 + V3, V12 = −V1, V21 = −V2,

pv.Σ1 = Σ1 + V1(V2 + V3)(H2 +H3)Z1 − V1V2(H1 +H3)Z2,

pv.Σ2 = Σ2 − V1V2(H2 +H3)Z1 + V2(V1 + V3)(H1 +H3)Z2.

We define the shorthand notation H13 = H1 +H3, H23 = H2 +H3 and

Qh :=

(
H1H3V2 0

0 H2H3V1

)
, Qv :=

(
V1(V2 + V3)H23 −V1V2H23

−V1V2H13 V2(V1 + V3)H13

)
,

so that the matrices of ph, pv in the basis Σ1,Σ2, Z1, Z2 are respectively
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(
1 Qh
0 1

)
,

(
1 0
Qv 1

)
.

We will investigate whether A := pv ◦ ph is Galois-pinching.

7.3. Eigenvalues and eigenvectors for Qh.Qv , Qv.Qh and A. A vector

w = x1Σ1 + x2Σ2 + y1Z1 + y2Z2

is eigenvector of A associated to the eigenvalue λ iff x := (x1, x2), y := (y1, y2) satisfy

x =
1

λ− 1
Qh.y, y =

λ

λ− 1
Qv.x.

Then, x and y are eigenvectors of Qh.Qv , Qv.Qh respectively, associated to the same
eigenvalue

(7.1) µ := λ+ λ−1 − 2.

Let

dh := detQh = H1H2H
2
3V1V2 =: H2

3V1V2d̄h,

dv := detQv = V1V2V3(V1 + V2 + V3)(H1 +H3)(H2 +H3) =: V1V2d̄v,

d := dhdv, d̄ := d̄hd̄v,

t := tr(Qh.Qv) = tr(Qv.Qh)

= V1V2H3[H1H2(V1 + V2 + 2V3) +H1H3(V2 + V3) +H2H3(V1 + V3)]

=: V1V2H3t̄.

The eigenvalues of Qh.Qv are the solutions of µ2 − tµ+ d = 0 with discriminant

∆1 := t2 − 4d = V 2
1 V

2
2 H

2
3 (t̄2 − 4d̄hd̄v).

Thus, we get

∆̄1 := t̄2 − 4d̄hd̄v

= [H1H2(V1 + V2 + 2V3) +H1H3(V2 + V3) +H2H3(V1 + V3)]2

−4H1H2(H1 +H3)(H2 +H3)V3(V1 + V2 + V3).

With Proposition 6.13 in mind, we also define

∆2 := d(d+ 4t+ 16), ∆̄2 := d̄(d+ 4t+ 16).

7.4. One-parameter subfamilies. Until now, the parameters Hi, Vj have only be con-
strained by the condition gcd(H1, H2, H3) = gcd(V1, V2, V3) = 1.

We now restrict our attention to nine one-parameter subfamilies which will provide
enough origamis to prove Theorem 1.3. In each subfamily, the values ofH1, H2, H3, V1, V2

are fixed and V3 runs along an arithmetic progression.
In each of the nine one-parameter subfamilies, one has V1 = 1, V2 = 2, H3 = 1. The

values of H1, H2 for the nine families are H1 = 1, 2 6 H2 6 4 and H1 = 2, 3 6 H2 6 8.
Finally, we write V3 = 3n when H1 = 1, V3 = 6n when H1 = 2 and H2 is even,
V3 = 6n+ 3 when H1 = 2 and H2 is odd.

It is clear that each origami in these families is reduced hence primitive.
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Proposition 7.2. For each origami in these nine families, the direction (3, 1) is a 2-
cylinder direction, and therefore has homological dimension 2.

Proof. Index the separatrices in the direction (3, 1) in cyclical order by Z10 as indicated in
figure 2 below.

FIGURE 2. Separatrices in the direction (3, 1) of an origami in the odd
component of H(4).

The saddle-connections in the (3, 1) direction join S0 to S5, S6 to S1, S8 to S3. By
Proposition 6.5, it follows that (3, 1) is a 2-cylinder direction. �

The number of squares is

N(O) = 3 +H1 + 2H2 + V3.

Next, we compute the monodromy group. We have

H1 +H2 +H3 = 1 +H1 +H2,

V1 + V2 + V3 = 3 + V3,

From Proposition 7.1, we obtain

Proposition 7.3. The monodromy group of an origami in these subfamilies is the full sym-
metric group if H1 = 1, the alternating group if H1 = 2.

Proof. WhenH1 = 1, N and V1 +V2 +V3 do not have the same parity. On the other hand,
when H1 = 2, H2 and V3 have the same parity, hence N , H1 +H2 +H3 and V1 +V2 +V3

have the same parity. �

We plan to apply the elementary Galois theory of Subsection 6.7 in order to prove that,
when n is large enough, the affine homeomorphism A constructed in subsection 7.2 is
Galois-pinching. Specializing the formulas of the last subsection gives

d = 4d̄ = 4H1H2(H1 + 1)(H2 + 1)V3(V3 + 3)

t = 2t̄ = 2[V3(2H1H2 +H1 +H2) + 3H1H2 + 2H1 +H2]

∆1 = 4∆̄1 = 4(t̄2 − 4d̄)

∆̄1 = [(H2 −H1)V3 − (H1H2 + 2H1 −H2)]2 + δ(H1, H2)
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with

δ(H1, H2) = (3H1H2 + 2H1 +H2)2 − (H1H2 + 2H1 −H2)2 > 0.

We conclude that, for V3 large enough, ∆1 is not a square and the characteristic poly-
nomial of A is irreducible (Lemma 6.10).

We also notice that, for all origamis in each of the nine one-parameter families, the
quantities d, t,∆1 are positive, hence the eigenvalues of A are real and positive (Proposi-
tion 6.15).

Consider next

∆2 = d(d+ 4t+ 16) = 16d̄(d̄+ 2t̄+ 4).

This is a polynomial of degree 4 in V3 with integer coefficients. We will check that its
reduced degree (see Subsection 6.7) is 4, which allows to apply Proposition 6.17. The
roots of d̄, as a polynomial in V3, are 0 and −3. For V3 = 0, one has

d̄+ 2t̄+ 4 = 2(3H1H2 + 2H1 +H2) + 4 > 0.

For V3 = −3, we have

d̄+ 2t̄+ 4 = 4− 2(3H1H2 +H1 + 2H2) < 0.

It remains to check that the degree two polynomial d̄+ 2t̄+ 4 =: a2V
2
3 + a1V3 + a0 has

simple roots. Actually, for each of the nine subfamilies, the coefficients ai are positive
with a1 > 2 max(a2, a0), hence the discriminant is positive. We conclude that the reduced
degree of ∆2 is equal to 4.

Finally, we claim that the reduced degree of the degree six polynomial ∆1∆2 is 6.
Indeed the formula above for ∆̄1 shows that it has no real roots, while we have seen that
the roots of ∆2 are real and simple. Applying Proposition 6.17, we get the following.

Proposition 7.4. In each of the nine subfamilies, if V3 is large enough, the affine homeo-
morphism A constructed in Subsection 7.2 is Galois-pinching.

7.5. Conclusion for the odd case. We now have all the ingredients to prove Theorem
1.3 for origamis of odd type. Observe that for the origamis in the nine one-parameter
subfamilies V1 6= V2, hence they are not of Prym type. By Propositions 7.2 and 7.4, they
satisfy for V3 large enough the hypotheses of Corollary 1.2, hence their Lyapunov spectra
are simple.

In the three subfamilies withH1 = 1, the monodromy group is the full symmetric group
(Proposition 7.3). The number of squares in this case is

N(O) = 4 + 2H2 + 3n

so the 3 choices for H2 allow to get any large number of squares.
In the six subfamilies with H1 = 2, the monodromy group is the alternating group

(Proposition 7.3). The number of squares in this case is

N(O) = 5 + 2H2 + 6n if H2 is even
= 8 + 2H2 + 6n if H2 is odd

so the 6 choices forH2 allow to get any large number of squares. The proof of Theorem 1.3
is complete in the odd case. �
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FIGURE 3. A origami in the hyperelliptic component of H(4).

8. THE HYPERELLIPTIC CASE

8.1. A model for hyperelliptic origamis in H(4). Consider the origami O constructed as
indicated on Figure 3 below. It depends on 6 parameters H1, H2, H3, V1, V2, V3 which are
positive integers.

In the horizontal direction, there are 3 cylinders Ch1, Ch2, Ch3. The height of these
cylinders are respectivelyH1, H2, H3, while the length of the waist curves are respectively
`(Ch1) = V2 + V3, `(Ch2) = V1 + V2, `(Ch3) = V1.

In the vertical direction, there are also 3 cylinders Cv1, Cv2, Cv3. The height of these
cylinders are respectively V1, V2, V3, while the length of the waist curves are respectively
`(Cv1) = H2 +H3, `(Cv2) = H1 +H2, `(Cv3) = H1.

We will denote by σi, i = 1, 2, 3, the homology class of the waist curve ofChi, oriented
rightwards, and by ζi , i = 1, 2, 3, the homology class of the waist curve of Cvi, oriented
upwards. The symplectic intersection form ι on H1(O,Z) satisfies

ι(σi, σj) = ι(ζi, ζj) = 0, ι(σi, ζj) = Iij ,

with

I =

 0 1 1
1 1 0
1 0 0

 .

We review some elementary properties of O:
• O has a single conical singularity of total angle 10π, so it belongs to H(4).
• The number of squares is

N(O) = H1(V2 + V3) +H2(V1 + V2) +H3V1.

• O is reduced if and only if gcd(H1, H2, H3) = gcd(V1, V2, V3) = 1: indeed, the
condition is clearly necessary. It is also sufficient because the vectors (Vi, 0) and
(0, Hi) are periods for i = 1, 2, 3.

• The classes σ1, σ2, σ3, ζ1, ζ2, ζ3 form a basis of the integral homology H1(O,Z):
indeed, the matrix I above is invertible over Z.
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• Proposition 7.1, determining the monodromy group of O, is also valid in the hy-
perelliptic case, but will not be used.

The origami O admits an anti-automorphism with 8 fixed points, as indicated in Figure 4
below.

FIGURE 4. Fixed points of the anti-automorphism of a origami in the
hyperelliptic component of H(4).

Therefore, it belongs to the hyperelliptic component of H(4). The anti-automorphism
preserves each horizontal cylinder Chi and each vertical cylinder Cvj . From Figure 4, we
read off the Hubert-Lelièvre-Kani invariant of O. It depends only on the classes in Z2 of

the Hi and Vj . Writing these congruence classes as
(
H̄1 H̄2 H̄3

V̄1 V̄2 V̄3

)
, the invariant is

equal to

• (4, [1, 1, 1]) for
(

1 0 0
0 1 0

)
,
(

0 1 0
1 0 0

)
,
(

1 0 0
0 0 1

)
,
(

0 0 1
1 0 0

)
,
(

0 1 0
0 1 0

)
;

• (2, [3, 1, 1]) for
(

1 0 0
1 1 0

)
,
(

1 1 0
1 0 0

)
,
(

1 0 0
1 0 1

)
,
(

1 0 1
1 0 0

)
,
(

0 1 0
1 0 1

)
,
(

1 0 1
0 1 0

)
,
(

0 1 0
0 1 1

)
,(

0 1 1
0 1 0

)
,
(

0 0 1
1 0 1

)
,
(

1 0 1
0 0 1

)
,
(

0 0 1
1 1 0

)
,
(

1 1 0
0 0 1

)
,
(

0 1 1
1 1 0

)
,
(

1 1 0
0 1 1

)
,
(

1 1 0
1 1 0

)
;

• (0, [5, 1, 1]) for
(

0 0 1
1 1 1

)
,
(

1 1 1
0 0 1

)
,
(

1 1 1
1 1 1

)
;

• (0, [3, 3, 1]) for
(

1 0 1
1 1 1

)
,
(

1 1 1
1 0 1

)
,
(

0 1 1
1 1 1

)
,
(

1 1 1
0 1 1

)
,
(

0 1 1
0 1 1

)
;

• (3, [2, 2, 0]) for
(

1 0 0
0 1 1

)
,
(

0 1 1
1 0 0

)
,
(

0 1 0
0 0 1

)
,
(

0 0 1
0 1 0

)
,
(

0 1 0
1 1 0

)
,
(

1 1 0
0 1 0

)
,
(

1 0 0
1 0 0

)
,(

0 0 1
0 0 1

)
;

• (1, [4, 2, 0]) for
(

1 0 0
1 1 1

)
,
(

1 1 1
1 0 0

)
,
(

0 1 0
1 1 1

)
,
(

1 1 1
0 1 0

)
,
(

0 1 1
0 0 1

)
,
(

0 0 1
0 1 1

)
,
(

1 1 1
1 1 0

)
,(

1 1 0
1 1 1

)
;

• (1, [2, 2, 2]) for
(

1 1 0
1 0 1

)
,
(

1 0 1
1 1 0

)
,
(

0 1 1
1 0 1

)
,
(

1 0 1
0 1 1

)
,
(

1 0 1
1 0 1

)
.
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The map p∗ : H1(O,Z) → H1(T2,Z) = Z2 induced by the canonical covering p :
O→ T2 is given by

p∗(σi) = (`(Chi), 0), p∗(ζi) = (0, `(Cvi)), i = 1, 2, 3.

Define , for i = 1, 2

Σi := `(Ch3)σi − `(Chi)σ3, Zi = `(Cv3)ζi − `(Cvi)ζ3.
Then Σ1,Σ2, Z1, Z2 are elements of H(0)

1 (O,Z) which span a subgroup of finite index
of this group; they form a basis of H(0)

1 (O,Q).

8.2. Two parabolic elements in Aff(O). Set

Lh := `(Ch1)`(Ch2)`(Ch3), Ph :=

(
1 Lh
0 1

)
.

The matrix Ph belongs to the Veech group SL(O). Indeed, the associated element ph
of the affine group acts on homology according to ph.σi = σi and

ph.ζi = ζi +

3∑
j=1

IjiHj
Lh

`(Chj)
σj , i = 1, 2, 3.

We deduce from this formula the action on H
(0)
1 (O,Q). We have ph.Σi = Σi for

i = 1, 2 and

ph.Zi = Zi +

3∑
j=1

HijHj
Lh

`(Chj)
σj , i = 1, 2.

with
Hij := `(Cv3)Iji − `(Cvi)Ij3.

The last formula can be rewritten as

ph.Zi = Zi +

2∑
j=1

HijHj`(Ch3−j)Σj , i = 1, 2.

Up to now, the formulas were the same as in the odd case. Substituting the values of
Iji, `(Chj), `(Cvj), we get in the new setting

H12 = H22 = H1, H11 = −(H2 +H3), H21 = −H2,

ph.Z1 = Z1 −H1(H2 +H3)(V1 + V2)Σ1 +H1H2(V2 + V3)Σ2,

ph.Z2 = Z2 −H1H2(V1 + V2)Σ1 +H1H2(V2 + V3)Σ2.

In the hyperelliptic model under consideration, the horizontal and the vertical direction
play the same role. We define

Lv := `(Cv1)`(Cv2)`(Cv3), Pv :=

(
1 0
Lv 1

)
.

The matrix Pv belongs to the Veech group SL(O). The associated element pv of the
affine group acts on H(0)

1 accordind to pv.Zi = Zi and
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pv.Σ1 = Σ1 − V1(V2 + V3)(H1 +H2)Z1 + V1V2(H2 +H3)Z2,

pv.Σ2 = Σ2 − V1V2(H1 +H2)Z1 + V1V2(H2 +H3)Z2.

We define

Qh :=

(
−H1(H2 +H3)(V1 + V2) −H1H2(V1 + V2)

H1H2(V2 + V3) H1H2(V2 + V3)

)
,

Qv :=

(
−V1(V2 + V3)(H1 +H2) −V1V2(H1 +H2)

V1V2(H2 +H3) V1V2(H2 +H3)

)
,

so that the matrices of ph, pv in the basis Σ1,Σ2, Z1, Z2 are respectively(
1 Qh
0 1

)
,

(
1 0
Qv 1

)
.

We will investigate whether A := pv ◦ ph is Galois-pinching.

8.3. Eigenvalues and eigenvectors for Qh.Qv , Qv.Qh and A. A vector

w = x1Σ1 + x2Σ2 + y1Z1 + y2Z2

is eigenvector of A associated to the eigenvalue λ iff x := (x1, x2), y := (y1, y2) satisfy

x =
1

λ− 1
Qh.y, y =

λ

λ− 1
Qv.x.

Then, x and y are eigenvectors of Qh.Qv , Qv.Qh respectively, associated to the same
eigenvalue

(8.1) µ := λ+ λ−1 − 2.

Let

dh := detQh = −H2
1H2H3(V1 + V2)(V2 + V3) =: H2

1 d̄h,

dv := detQv = −V 2
1 V2V3(H1 +H2)(H2 +H3) =: V 2

1 d̄v,

d := dhdv, d̄ := d̄hd̄v,

t := tr(Qh.Qv) = tr(Qv.Qh)

= H1V1[H2
2V3(V1 + V2) +H1H2V1(V2 + V3) +H1H3(V1 + V2)(V2 + V3)

+H2H3(V 2
2 + V1V3 + 2V2V3)]

=: H1V1t̄.

The eigenvalues of Qh.Qv are the solutions of µ2 − tµ+ d = 0 with discriminant

∆1 := t2 − 4d = H2
1V

2
1 (t̄2 − 4d̄hd̄v).

Thus, we get

∆̄1 := t̄2 − 4d̄hd̄v

= [H2
2V3(V1 + V2) +H1H2V1(V2 + V3) +H1H3(V1 + V2)(V2 + V3)

+H2H3(V 2
2 + V1V3 + 2V2V3)]2

−4H2H3(H1 +H2)(H2 +H3)V2V3(V1 + V2)(V2 + V3).



52 CARLOS MATHEUS, MARTIN MÖLLER, AND JEAN-CHRISTOPHE YOCCOZ

With Proposition 6.13 in mind, we also define

∆2 := d(d+ 4t+ 16), ∆̄2 := d̄(d+ 4t+ 16).

8.4. One-parameter subfamilies. As in the odd case, we now restrict our attention to
a finite number of one-parameter subfamilies. In each subfamily, we fix the values of
H2, H3, V1, V2, V3 , while H1 runs along an arithmetic progression.

In all subfamilies, one has V1 = H2 = 1. The others parameters are as follows
• In the first four subfamilies, one has V2 = V3 = 1, 1 6 H3 6 4, H1 = 2n. The

number of squares is 4n+ 2 +H3.
• In the next eighteen subfamilies, one has V2 = 1, V3 = 2, 1 6 H3 6 18,H1 = 6n.

The number of squares is 18n+ 2 +H3.
• Next, we take V2 = 2, V3 = 1, H3 ∈ {1, 3, 5}, H1 = 2n. The number of squares

is 6n+ 3 +H3.
• Then, we take V2 = V3 = 2, 2 6 H3 6 16, H3 even, H1 = 4n. The number of

squares is 16n+ 3 +H3.
• Finally, we take V2 = 3, V3 = 1, 1 6 H3 6 15, H3 odd, H1 = 4n + 3. The

number of squares is 16n+ 16 +H3.
These 41 families are divided into 5 groups distinguished by their values of V2, V3. As

V1 = H2 = 1, all origamis in these families are reduced, hence primitive.

Proposition 8.1. For each origami in these families, the direction (1, 1) is a 2-cylinder
direction, and therefore has homological dimension 2.

Proof. We label the separatrices in the direction (1, 1) in cyclic order by Z10 as indicated
in Figure 5.

FIGURE 5. Separatrices in the direction (1, 1) of a origami in the hyper-
elliptic component of H(4).

We check in each case that there are exactly 3 balanced saddle connections, which corre-
spond to the 2-cylinder case according to Proposition 6.5. Actually, the saddle connections
from S6 to S1 and S2 to S7 are always there, hence it is sufficient to see that not all saddle
connections are balanced. The separatrix S8 is connected to S9 in the first two groups and
also in the fourth. The separatrix S4 is connected to S5 in the last group. Finally, in the
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third group, there is a connection between S8 and S9 if H3 = 6n, between S0 and S9 if
H3 = 6n+ 2, and between S8 and S5 if H3 = 6n+ 4. �

Next, we compute the HLK-invariant of the origamis in these families. We deduce from
Subsection 8.1 the HLK-invariant of the families under consideration.

Proposition 8.2. The HLK-invariant of the origamis in the families under consideration is
equal to

• (0, [3, 3, 1]) for the families in the first group with H3 odd;
• (1, [4, 2, 0]) for the families in the first group with H3 even;
• (2, [3, 1, 1]) for the families in the second group with H3 odd;
• (3, [2, 2, 0]) for the families in the second group with H3 even;
• (1, [2, 2, 2]) for the families in the third group;
• (4, [1, 1, 1]) for the families in the fourth group;
• (0, [5, 1, 1]) for the families in the last group.

As in the odd case, we plan to apply the elementary Galois theory of Subsection 6.7 in
order to prove that, when n is large enough, the affine homeomorphism A constructed in
Subsection 8.2 is Galois-pinching. Specializing the formulas of the last subsection gives

d = H2
1 d̄, t = H1t̄, ∆1 = H2

1 ∆̄1, ∆2 = H2
1 ∆̄2,

d̄ = V2V3(1 + V2)(V2 + V3)H3(1 +H3)(1 +H1),

t̄ = H1(V2 + V3)[1 +H3(1 + V2)] + V3(1 + V2) +H3(V 2
2 + 2V2V3 + V3),

∆̄1 = t̄2 − 4d̄,

∆̄2 = d̄(H2
1 d̄+ 4H1t̄+ 16).

Observe that d, t are always positive and ∆1 is positive if H1 is large enough. By
Proposition 6.15 the eigenvalues of A acting on H(0)

1 are real and positive for the origamis
in these families if H1 is large enough.

We now write d̄, t̄, ∆̄1 more explicitly in each of the five groups of families:

• In the first group, we have V2 = V3 = 1 and

d̄ = 4H3(1 +H3)(H1 + 1),

t̄ = (2 + 4H3)(H1 + 1),

∆̄1 = 4(H1 + 1)[(1 + 2H3)2H1 + 1].

• In the third group, we have V2 = 2, V3 = 1 and

d̄ = 18H3(1 +H3)(H1 + 1),

t̄ = (3 + 9H3)(H1 + 1),

∆̄1 = 9(H1 + 1)[(1 + 3H3)2H1 + (H3 − 1)2].

• In the last group, we have V2 = 3, V3 = 1 and

d̄ = 48H3(1 +H3)(H1 + 1),

t̄ = (4 + 16H3)(H1 + 1),

∆̄1 = 16(H1 + 1)[(1 + 4H3)2H1 + (2H3 − 1)2].
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• In the second group, we have V2 = 1, V3 = 2 and

d̄ = 12H3(1 +H3)(H1 + 1),

t̄ = (3 + 6H3)H1 + 4 + 7H3,

∆̄1 = (3 + 6H3)2H2
1 + (36H2

3 + 42H3 + 24)H1 + (H3 + 4)2.

• In the fourth group, we have V2 = 2, V3 = 2 and

d̄ = 48H3(1 +H3)(H1 + 1),

t̄ = (4 + 12H3)H1 + 6 + 14H3,

∆̄1 = (4 + 12H3)2H2
1 + (144H2

3 + 64H3 + 48)H1 + (2H3 − 6)2.

Proposition 8.3. In each of the 41 families considered above, the quantity ∆̄1 is not a
square if H1 is large enough.

Proof. For each family, ∆̄1 is a degree two polynomial in H1 with integer coefficients.
Moreover, the leading coefficient is always a square. The only way that the values of such
a polynomial may be squares for infinitely many integersH1 is that this polynomial is itself
a square.

This is obviously not the case for families in the first, third or last group (recall that
H3 > 0). For families in the second group, we compute the discriminant of this degree
two polynomial to be equal to (24)2H3(2H3−1)(H3 +1)2 6= 0. For families in the fourth
group, we compute the discriminant to be equal to 6(32)2H3(3H3−1)(H3 +1)2 6= 0. �

Lemma 8.4. For each of the 41 families considered above, the third degree polynomial
H2

1 d̄ + 4H1t̄ + 16 is irreducible, except for the family in the first group with H3 = 2,
where it is equal to 8(H1 + 2)(3H2

1 + 2H1 + 1), and the family in the second group with
H3 = 3, where it is equal to 4(H1 + 1)(36H2

1 + 21H1 + 4).

This is checked using any standard mathematical software, e.g. Mathematica.

Proposition 8.5. (1) For each family such that H2
1 d̄ + 4H1t̄ + 16 is irreducible, the

reduced degrees of ∆2 and ∆̄2, as a polynomials in H1, are equal to 4. The
reduced degrees of ∆1∆2 and ∆̄1∆̄2 are equal to 4 for families in the first, third
and last group, and equal to 6 for families in the second and fourth group.

(2) For the family in the first group with H3 = 2, the reduced degrees of ∆2,∆̄2,
∆1∆2 and ∆̄1∆̄2 are equal to 4.

(3) For the family in the second group with H3 = 3, the reduced degrees of ∆1∆2

and ∆̄1∆̄2 are equal to 4. The reduced degrees of ∆2 and ∆̄2 are equal to 2 but
these quantities are not squares for H1 large enough.

Proof. (1) With c = V2V3(1 + V2)(V2 + V3)H3(1 +H3), one has

∆̄2 = c(H1 + 1)(H2
1 d̄+ 4H1t̄+ 16).

As H2
1 d̄+ 4H1t̄+ 16 is irreducible, it has no double root and does not vanish for

H1 = −1. Therefore the reduced degree of ∆̄2 is equal to 4. The roots of ∆̄1

are either rational or quadratic, hence cannot be roots of H2
1 d̄ + 4H1t̄ + 16. For

families in the first, third or last group H1 = −1 is both a root of d̄ and t̄. This is
not the case for families in the second or fourth group. As we have already seen
that ∆̄1 does not have double roots, we obtain the assertion on the reduced degree
of ∆̄1∆̄2.
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(2) In this case, one has

∆̄1 = 4(H1 + 1)(25H1 + 1)

∆̄2 = 192(H1 + 1)(H1 + 2)(3H2
1 + 2H1 + 1),

which implies the assertion of the proposition.
(3) In this case, one has

∆̄1 = 212H2
1 + 474H1 + 72

∆̄2 = 242(H1 + 1)2(36H2
1 + 21H1 + 4),

which implies the assertion on the reduced degrees. Also, as 36 is a square but the
discriminant of 36H2

1 + 21H1 + 4 does not vanish, ∆̄2 is not a square when H1 is
large enough.

�

Applying the results of Subsection 6.7, we obtain the desired result.

Corollary 8.6. In each of the 41 subfamilies, if H1 is large enough, the affine homeomor-
phism A constructed in Subsection 8.2 is Galois-pinching.

8.5. Conclusion for the hyperelliptic case. We now have all the elements to prove Theo-
rem 1.3 for origamis of hyperelliptic type. By Propositions 8.1 and 8.6, they satisfy for H1

large enough the hypotheses of Corollary 1.2, hence their Lyapunov spectra are simple.
From proposition 8.2, families in the first group provide origamis with HLK-invariant

equal to (0, [3, 3, 1]) or (1, [4, 2, 0]). The number of squares is N = 4n + 2 + H3, with
1 6 H3 6 4, hence any large number of squares is realizable by some family in the first
group. Proposition 8.2 allows to deal similarly with the other values of the HLK-invariant.
The proof of Theorem 1.3 is complete in the hyperelliptic case. �

APPENDIX A. A VERSION OF AVILA-VIANA SIMPLICITY CRITERION

In this appendix we will present a streamlined proof of Theorem 2.13. Here, we will
use notations and definitions introduced in Subsection 2.5 without further comments.

We begin by noticing that one may consider the cocycle A over the invertible dynamics
f̂ : Σ̂→ Σ̂ because the Lyapunov spectrum is not affected by this procedure.

A crucial fact from (bi)linear algebra allows to adapt the proof for G = GL(d,R) to
other matrix groups G (symplectic or unitary). Let k be an admissible integer, A ∈ G;
denote by σ1(A) > . . . > σd(A) the singular values of A, i.e the lengths of the semi-
major axes of the ellipsoid A({v : ‖v‖ = 1})10. Then, the subspace ξA spanned by the k
largest semi-major axes belongs to G(k)11. This fact is a simple consequence of the polar
decomposition of matrices in G.

In the statement below, we use the following notations:
• `(x, n) is the terminal word of x ∈ Σ− of length n;
• For ` ∈ Ω, we write ξ` for ξA` .

The main result towards the proof of Theorem 2.13 above is:

10As for Lyapunov exponents, singular values are counted with essential multiplicity, see Remark 2.10.
11This subspace is uniquely defined only when σk(A) > σk+1(A). When σk(A) = σk+1(A), what is

meant is that it is possible to select the k largest semi-major axes in order that the subspace spanned by them
belongs to G(k).
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Theorem A.1 (A. Avila and M. Viana). For every admissible integer k, there exists a map
Σ− → G(k), x 7→ ξ(x) verifying the properties:

• Invariance: the map ξ̂ = ξ ◦ p− satisfies A(x)ξ̂(x) = ξ̂(f̂(x));

• for µ−-almost every x ∈ Σ−, σk(A`(x,n))
σk+1(A`(x,n))

→ +∞ and ξ`(x,n) → ξ(x) as n →
+∞;

• for all F ′ ∈ G(d− k), we have ξ(x)∩F ′ = {0} for a set of positive µ−-measure.

This result corresponds to [AV, Theorem A.1]. As the reader can check (see Subsec-
tion A.6 “Proof of Theorem 7.1” of [AV]), it is not hard to deduce Theorem 2.13 from
Theorem A.1.

Sketch of proof of Theorem 2.13 assuming Theorem A.1. For each admissible integer k and
each x ∈ Σ−, Theorem A.1 provides us, with a subspace ξ(x) ∈ G(k) verifying the prop-
erties above. By using the same theorem with the time “reversed”, one gets for y ∈ Σ+

a subspace ξ∗(y) ∈ G(d − k) verifying similar properties. From the third property in
the theorem, one deduces the transversality property ξ(x) ∩ ξ∗(y) = {0} for almost ev-
ery (x, y) ∈ Σ̂. The second property in the theorem implies that ξ(x) is associated with
the k largest exponents and ξ∗(y) is associated with the d − k smallest exponents. Then
the transversality property permits to show that, for any admissible integer k, the kth Lya-
punov exponent is strictly larger than the (k+1)th exponent . This shows that the Lyapunov
spectrum of A is simple in the sense defined in Subsection 2.5. �

This reduces our considerations to the discussion of Theorem A.1. Let k be an admis-
sible integer. We denote by p′, p′′ the natural projections from Σ̂×G(k) onto Σ̂ and G(k)
respectively.

Definition A.2. A u-state is a probability measure m̂ on Σ̂ × G(k) such that p′∗(m̂) = µ̂
and there exists a constant C(m̂) with

m̂(Σ−(`0)× Σ(`)×X)

µ(Σ(`))
6 C(m̂)

m̂(Σ−(`0)× Σ(`′)×X)

µ(Σ(`′))

for any Borelian X ⊂ G(k), `0, `, `′ ∈ Ω.

Roughly speaking, the previous condition says that u-states are almost product mea-
sures.

Example A.3. Given any probability measure ν on G(k), m̂ := µ̂ × ν is a u-state with
C(m̂) = C(µ)2, where C(µ) is the constant appearing in the bounded distortion property
(see Definition 2.6).

Proposition A.4. There exists a u-state invariant under (f̂ , A).

Proof. The argument is very classical and we will only sketch its main steps. Even though
the space Σ̂ may not be compact (in the case of an alphabet Λ with countably many sym-
bols), the space of probability measures on Σ̂ × G(k) projecting to µ̂ is compact in the
weak-* topology. In particular, for each C > 0, it follows that the space of u-states m̂ with
C(µ̂) 6 C is a convex compact set.

A short direct computation ([AV, Lemma A.2]) shows that, for any u-state m̂0 and any
n > 0 , m̂(n) := (f̂ , A)n∗ m̂0 is a u-state with C(m̂(n)) 6 C(m̂)C(µ)2. Then the standard
Krylov-Bogolyubov argument completes the proof: any accumulation point of the Cesaro
averages of m̂(n) is a u-state invariant under (f̂ , A). �
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The following result is a simple application of the martingale convergence theorem (see
[AV, Lemma A.4] for a short proof). We recall that `(x, n) denotes the terminal word of
x ∈ Σ− of length n.

Proposition A.5. Let m̂ be a probability measure on Σ̂ × G(k) with p′∗m̂ = µ̂. For any
x ∈ Σ−, and any Borelian subset X ⊂ G(k) , let

m̂n(x)(X) :=
m̂(Σ−(`(x, n))× Σ×X)

m̂(Σ−(`(x, n))× Σ×G(k))

Then, for µ−-almost every x ∈ Σ−, m̂n(x) converges in the weak∗ topology to some m̂(x).

Let m̂ be a (f̂ , A)-invariant u-state given by Proposition A.4. Define m̂n(x) as in Propo-
sition A.5. Let also ν = p′′∗m̂. For any x ∈ Σ−, define a sequence of probability measures
on G(k) by

νn(x) := A
`(x,n)
∗ ν.

Let X be a Borelian subset of G(k). As m̂ is (f̂ , A)-invariant , we have

m̂n(x)(X) =
m̂(Σ−(`(x, n))× Σ×X)

m̂(Σ−(`(x, n))× Σ×G(k))
=
m̂(Σ− × Σ(`(x, n))×A−`(x,n)(X))

m̂(Σ− × Σ(`(x, n))×G(k))

On the other hand, by definition, we have

νn(x)(X) = ν(A−`(x,n)(X)) = m̂(Σ̂×A−`(x,n)(X)).

Since m̂ is a u-state, we obtain

C(m̂)−2 6 m̂n(x)(X)/νn(x)(X) 6 C(m̂)2.

In particular,

Corollary A.6. For µ−-almost every x ∈ Σ−, the probability measure m̂(x) = lim m̂n(x)
is equivalent to any accumulation point of the sequence νn(x).

The crucial step in the proof of Theorem A.1 is given by the

Proposition A.7. For µ−-almost every x ∈ Σ−, there exists a subsequence νnk
(x), nk =

nk(x)→∞, converging to a Dirac mass.

Sketch of proof of Theorem A.1 assuming Proposition A.7. (see end of Subsection A.4 of
[AV]). By Corollary A.6 and Proposition A.7, m̂(x) is a Dirac mass δξ(x) for µ−-almost
every x ∈ Σ−.

Then x 7→ ξ(x) has the desired properties: the invariance property (first item of Theo-
rem A.1) follows from the (f̂ , A)-invariance of m̂; the other two items are a consequence
of the the pinching and twisting assumptions on the cocycle A. �

Proof of Proposition A.7. Let `∗ ∈ Ω be a word such that the matrix A`
∗

is pinching.
As there are only finitely many A`

∗
-invariant subspaces in G(k) (see Remark 2.15), one

can use the twisting hypothesis to choose `0 ∈ Ω such that, for each admissible integer
k and for every pair of A`

∗
-invariant subspaces F ∈ G(k), F ′ ∈ G(d − k), one has

A`
0

(F ) ∩ F ′ = {0}.
We claim that there exists m > 1, `1, . . . , `m ∈ Ω and δ > 0 such that, for each

admissible integer k and for every F ′ ∈ G(d − k), there exists `i with A`i(F+(A`
∗
)) ∩

F ′ = {0} and the angle between A`i(F+(A`
∗
)) and F ′ is > δ. Here, F+(A`

∗
) is the

subspace associated to k largest exponents of A`
∗
. Indeed, it is sufficient to prove this for

a given admissible integer k, in which case it follows from the twisting assumption and the
compactness of G(d− k).
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Lemma A.8 (Lemma A.6 of [AV]). Let ε > 0 and ρ a probability measure onG(k). There
exists n0 = n0(ρ, ε) and, for each ˜̀ ∈ Ω, there exists i = i(̃`) ∈ {1, . . . ,m} such that, for
n > n0, we have

A`∗(ρ)(B) > 1− ε

where ` := (`∗)n`0(`∗)n`i
˜̀ and B is the ball of radius ε > 0 centered at ξ`.

This lemma is harder to state than to explain: geometrically, it says that, although the
word ˜̀ may be very long, we can choose an appropriate “start” ((`∗)n`0(`∗)n`i) so that
the word ` obtained by the concatenation of (`∗)n`0(`∗)n`i and ˜̀ has the property that A`

concentrates most of the mass of any probability measure ρ on G(k) (given in advance) in
a tiny ball B.

We defer the proof of the lemma to the end of the appendix and first end the proof of
Proposition A.7. The details are slightly different from [AV].

We will apply Lemma A.8 with ρ = ν. As νn(x) := A
`(x,n)
∗ ν, the conclusion of the

lemma will imply the conclusion of Proposition A.7 if we can show that, for any n > 0 and
µ−-almost every x, there are infinitely many integers N such that (`∗)n`0(`∗)n`i`(x,N),
with i = i(`(x,N)), is a terminal word of x.

Assume that this is not true. Then there exist integers n,N0 and a positive measure
set E ⊂ Σ− such that, for any x ∈ E , N > N0, the word (`∗)n`0(`∗)n`i`(x,N), with
i = i(`(x,N)), is not a terminal word of x.

By the bounded distortion property, there exists c > 0 such that

(A.1) µ−(Σ−((`∗)n`0(`∗)n`i
˜̀)) > cµ−(Σ−(̃`))

for every 1 6 i 6 m and ˜̀ ∈ Ω.
Let x0 be a density point of E. There exists N > N0 such that

µ−(Σ−(`(x0, N)) ∩ Ec) < c

2
µ−(Σ−(`(x0, N))),

where Ec is the complement of E.
Taking ˜̀= `(x0, N), i = i(̃`) in (A.1) above, we find a point in E with terminal word

(`∗)n`0(`∗)n`i`(x0, N). This contradiction to the definition of E proves the claim and
ends the proof of Proposition A.7. �

Proof of Lemma A.8. An elementary calculation shows that, as A`
∗

is pinching, the se-
quence (A`

∗
)n(ξ) converges for every ξ ∈ G(k). The limit is one of the finitely many

A`
∗
-invariant subspaces in G(k). Moreover, the limit is the subspace F+(A`

∗
) associ-

ated to the k largest exponents whenever ξ is transverse to every A`
∗
-invariant subspace in

G(d− k).
For any probability measure on G(k), the sequence (A`

∗
)n∗ (ρ) converges, as n goes

to +∞, to a limit which is a convex combination of Dirac masses at the A`
∗
-invariant

subspaces in G(k). By definition of `0, the images under A`
0

of these invariant sub-
spaces are transverse to every A`

∗
-invariant subspace in G(d − k). We conclude that

(A`
∗
)n∗ (A

`0)∗(A
`∗)n∗ (ρ) converges to the Dirac mass at F+(A`

∗
).

Let ˜̀ ∈ Ω be given. Denote by ξ∗˜̀ the (d − k)-dimensional subspace which is least

dilated by A˜̀, i.e whose image is spanned by the (d − k) shortest semi-major axes of the
ellipsoidA˜̀

({||v|| = 1}). Taking F ′ = ξ∗˜̀ in the defining property of `1, . . . , `m, we find i

such that A`i(F+(A`
∗
)) is transverse to ξ∗˜̀ , the angle between these subspaces being > δ.
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From the claim below, we conclude that for large n (independently of ˜̀) , most of the mass
of the probability measure

(A
˜̀
)∗(A

`i)∗(A
`∗)n∗ (A

`0)∗(A
`∗)n∗ (ρ)

is concentrated in a small ball in G(k) around A˜̀
A`i(F+(A`

∗
)). Considering the case

where ρ is the Lebesgue measure on G(k) , we conclude that this small ball is contained
in a small ball around ξ`, where ` := (`∗)n`0(`∗)n`i

˜̀. �

Claim: LetA ∈ GLd(K) act on the Grassmannian of k-dimensional subspaces. Denote
by ξ∗A the (d − k) dimensional subspace which is least dilated by A, and by Kδ(A) the
set of k-dimensional subspaces which form an angle > δ with ξ∗A. Then the modulus of
continuity of the restriction of A to Kδ(A) is controlled by δ only, independently of A.

Proof. This is an elementary computation: write any subspace in Kδ(A) as the graph of a
linear map from (ξ∗A)⊥ to ξ∗A, whose norm is bounded in terms of δ. After composing if
necessary by an isometry, the action of A on the matrix of this linear map is given by the
multiplication of each coefficient by a number ∈ (0, 1) (the ratio of two singular values of
A). �

APPENDIX B. TWISTING PROPERTIES

In Appendix A above, we studied a version of Avila-Viana simplicity criterion in the
context of locally constant cocycles with values on

(B.1) G = GL(d,R), Sp(d,R), UK(p, q),K = R, C, or H

over shifts on at most countably many symbols.
In this way, based on the setting of Section 3 above, we can already get a simplicity

criterion for the Kontsevich-Zorich cocycle over SL2(R)-orbits of square-tiled surfaces
based on pinching and a strong form of twisting. However, such a simplicity criterion
is not easy to apply directly, so it is desirable to replace the strong form of twisting by
the relative form, with respect to some pinching matrix. This lead us to the statement of
Proposition 2.16 whose proof is the main purpose of this appendix. But, before explaining
the proof of Proposition 2.16, it is convenient to revisit a little bit the features of Noetherian
topological spaces.

B.1. Noetherian spaces. Let G be as in (B.1). We use the notations and definitions in-
troduced in Subsection 2.5. Let k be an admissible integer. For each F ′ ∈ G(d − k), we
define an hyperplane section as

{F ∈ G(k) : F ∩ F ′ 6= {0}}
We consider then the coarsest topology on G(k) such that the hyperplane sections are
closed. The closed sets are the (arbitrary) intersections of finite unions of hyperplane
sections. For sake of convenience, we will refer to this “pseudo-Zariski” topology as the
Schubert topology.

Notice that the Schubert topology is coarser than the Zariski topology: hyperplane sec-
tions are defined by degree one (linear) equations while Zariski topology involves taking
equations of arbitrary degree. In particular, this topology is not Hausdorff as the same is
true for the Zariski topology.

Definition B.1. A topological space X is Noetherian if one of the following equivalent
conditions is satisfied:
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(i) any decreasing sequence F1 ⊃ F2 ⊃ . . . of closed sets is stationary (in the sense
that there exists m ∈ N such that Fi = Fm for all i > m).

(ii) any increasing sequence of open sets is stationary.
(iii) every intersection of a family (Fα) of closed sets is the intersection of a finite

subfamily F1, . . . , Fm.
(iv) every union of a family (Uα) of open sets is the union of a finite subfamily

U1, . . . , Um.

Observe that any subspace of a Noetherian space is also Noetherian. A topology which
is coarser than a Noetherian topology is also Noetherian.

Example B.2. It is a classical fact that the Zariski topology is Noetherian. Therefore the
Schubert topology is also Noetherian.

Definition B.3. A Noetherian (topological) space X is irreducible if X is not the union of
two proper closed sets.

The Grassmannian G(k), equipped with the Zariski topology, is irreducible. It is a
fortiori irreducible when it is equipped with the coarser Schubert topology.

We will need the following properties of Noetherian spaces.

Proposition B.4 (Proposition 1.5 in [Ha]). A Noetherian spaceX can be written as a finite
union X = X1 ∪ · · · ∪Xm of irreducible closed subsets Xi, 1 6 i 6 m. Moreover, this
decomposition is unique (up to a permutation of the Xi’s) if we ask that Xi 6⊂ Xj for
i 6= j.

Proposition B.5. Let X1, . . . , Xn be Noetherian spaces.

(i) The product space X = X1 × . . .×Xn is Noetherian.
(ii) It is irreducible iff each Xi is irreducible.

(iii) Open subsets of X are exactly the finite unions of products of open subsets of the
Xi.

(iv) Closed subsets of X are exactly the finite unions of products of closed subsets of
the Xi.

(v) A closed subset ofX is irreducible iff it is the product of closed irreducible subsets
of the Xi.

Proof. The first assertion is Exercise 8, p. 142 of [Bo]. Item (iii) is an immediate con-
sequence of item (i) and Definition B.1, item (iv). Then item (iv) follows from some
Boolean manipulations. From item (iv), it follows that a closed irreducible subset of X is
the product of closed subsets of the Xi. It is also clear that if X is irreducible, then each
Xi must be irreducible. Finally we show that a product of irreducible spaces is irreducible.
Let

X = F1 ∪ · · · ∪ Fm
be the minimal decomposition of X into irreducible subsets. Each Fj is a product

Fj = F
(1)
j × · · · × F (n)

i

where each F (i)
j is an irreducible closed subset of Xi. For each 1 6 i 6 n, define

F (i) :=
⋃

F
(i)
j 6=X

F
(i)
j .
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As Xi is irreducible, one has F (i) = Xi iff F (i)
j = Xi for all 1 6 j 6 m. For 1 6 i 6 n,

choose xi ∈ Xi − F (i) if F (i) 6= Xi and xi ∈ Xi otherwise. Let j be an index such that
x := (x1, . . . , xn) ∈ Fj . One must have F (i)

j = Xi for all 1 6 i 6 n, hence Fj = X . �

B.2. Twisting monoids. Let M be a monoid acting on a Noetherian space X by homeo-
morphisms. Here, of course, our main example is:

Example B.6. Given a countable family of matrices A` ∈ G, ` ∈ Λ, we consider the
natural action of the monoid M generated by A` acting on the Grassmanian Xk = G(k)
equipped with the Schubert topology.

Proposition B.7. If g ∈M, F ⊂ X is closed and gF ⊂ F , then gF = F .

Proof. Otherwise, (gnF )n>0 would be a strictly decreasing infinite sequence of closed
subsets of the Noetherian space X . �

Proposition B.8. Let g ∈M, let F = F1∪ · · ·∪Fn be the (minimal) decomposition of the
closed subset F ⊂ X into irreducible closed subsets Fi ⊂ X . If gF = F , then g permutes
the irreducible pieces Fi.

Proof. This follows from the uniqueness part of Proposition B.4. �

Proposition B.9. Assume that X is irreducible. Then, the following properties are equiv-
alent:

(i) there exists no proper closed M-invariant subset of X;
(ii) for every x ∈ X and every non empty open subset U ⊂ X , there exists g ∈ M

such that gx ∈ U ;
(iii) for everyN > 1, x1, . . . , xN ∈ X and every non empty open subsetsU1, . . . , UN ⊂

X , there exists g ∈M such that gxi ∈ Ui. for all 1 6 i 6 N

Proof. It is clear that (iii) =⇒ (ii) =⇒ (i). We will prove by contradiction that (i)
implies (iii). We let M act diagonally on XN , for any N > 1.

Suppose that there exist N > 1, x = (x1, . . . , xN ) ∈ XN and non empty open subsets
U1, . . . , UN ⊂ X such that

g.x /∈ U (N) := U1 × · · · × UN
for all g ∈M.

Consider the closed set

F :=
⋂
g∈M

g−1(XN − U (N)).

It is distinct from XN and non empty because it contains x. It satisfies gF ⊂ F for all
g ∈M, hence gF = F for all g ∈M (Proposition B.7).

Let F = F1∪· · ·∪Fm be the decomposition of F into irreducible closed sets Fi ⊂ XN .
By Proposition B.5, one has

Fi = F
(1)
i × · · · × F (N)

i

where each F (l)
i is an irreducible closed subset of X .

Since gF = F for all g ∈ M, Proposition B.8 implies that every g ∈ M permutes the
subsets F (l)

i .
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Define the closed subset
F ∗ :=

⋃
F

(l)
i 6=X

F
(l)
i .

As ∅ 6= F 6= X , the subset F ∗ is not empty. As X is irreducible, one has F ∗ 6= X . As
every g ∈ M permutes the subsets F (l)

i , one has gF ∗ = F ∗ for every g ∈ M, so item (i)
does not hold. �

In view of Example B.6 and the discussion in Subsection 2.5 (related to Avila-Viana
simplicity criterion), it is natural to call (iii) a (“strong form” of) twisting condition for an
abstract monoid M acting by homeomorphisms on a Noetherian space X .

Remark B.10. The equivalent conditions of the proposition are satisfied by the monoid M

if and only if they are satisfied by the group G = 〈g, g−1 : g ∈ M〉 generated by M: this
follows immediately from the statement of item (i).

B.3. Twisting with respect to pinching matrices. In the context of Example B.6 and
aiming to the proof of Proposition 2.16, consider a word `∗ ∈ Ω =

⋃
n>0

Λn such that

A∗ := A`
∗

has simple spectrum (i.e., the cocycle is pinching). In this notation, Proposition
2.16 can be restated as:

Proposition B.11. The (strong form of the) twisting condition is realized for the cocycle
A if and only if, for each admissible integer k, there exists a word `(k) ∈ Ω such that the
matrix Bk := A`(k) satisfies

Bk(F ) ∩ F ′ = {0}
for every A∗-invariant subspaces F ∈ G(k) and F ′ ∈ G(d− k).

Proof. The condition is clearly necessary.
Conversely, assume that the condition in the proposition is satisfied. Let M denote the

monoid generated by the matrices A`, ` ∈ Λ. Recall that each G(k) is irreducible.

Lemma B.12. For each admissible integer k, the action of M on G(k) satisfies the equiv-
alent conditions of Proposition B.9.

Proof of Lemma. We check that item (ii) in Proposition B.9 is satisfied. It is sufficient to
show that, given F ∈ G(k) and F ′1, . . . , F

′
m ∈ G(d − k) , there exists C ∈ M such that

C(F ) is transverse to each F ′i . We claim thatC = An∗BkA
n
∗ is an appropriate choice if n is

large enough. Indeed, when n goes to +∞, the sequence (An∗ (F )) converges to some A∗-
invariant subspace inG(k), and each sequence (A−n∗ (F ′i )) converges to someA∗-invariant
subspace in G(d − k). As transversality is an open property, the claim follows from the
property of Bk. �

We now finish the proof of the proposition. Consider the diagonal action of M on
the irreducible Noetherian space X =

∏
k admissible

G(k). The strong form of the twisting

condition will be satisfied if the action of M on X satisfies item (iii) in Proposition B.9.
We check the equivalent item (i). Let F be a non-empty closed subset F ⊂ X invariant
under M. Let F = F1 ∪ · · · ∪ Fm be the minimal decomposition of F into irreducible
closed sets Fi ⊂ X . By Proposition B.5, one has

Fi =
∏

k admissible

F
(k)
i
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where each F
(k)
i is an irreducible closed subset of G(k). Define, for each admissible

integer k,

F (k) :=
⋃

F
(k)
i 6=G(k)

F
(k)
i .

By Proposition B.8, the closed subset F (k) is invariant under M. From Lemma B.12, F (k)

must be either empty or equal to G(k) for each admissible integer k. The first case cannot
occur, and the second means that F (k)

i = G(k) for all k. We conclude that F = X , and
the proof of the proposition is complete. �

APPENDIX C. COMPLETELY PERIODIC CONFIGURATIONS IN H(4)
BY SAMUEL LELIÈVRE

A surface in the stratum H(4) has one singularity of angle 10π. At this singularity, 5
outgoing separatrices start and 5 incoming separatrices end (see Figure 1). We label the
outgoing separatrices from 1 to 5 (see Figure 1).

1

23

4

5

Fig. 1. Outgoing and
incoming separatrices,
and a numbering of

outgoing separatrices.

1

23

4

5

Fig. 2. There is no way
to glue cylinders using this

pairing of separatrices.

1

2

4

5

3

Fig. 3. With this pairing
of separatrices there are

two ways to glue cylinders.

In a completely periodic direction, outgoing separatrices pair with incoming separatri-
ces. Define a permutation σ of {1, 2, 3, 4, 5} by setting σ(i) = j if the outgoing separatrix
i comes back between the outgoing separatrices j and j + 1 mod 5. We can enumer-
ate permutations and draw the corresponding separatrix diagrams. Since the separatrix at
which we start the labelling is arbitrary, we only need to enumerate permutations up to
conjugation by cyclic permutations.

A diagram makes sense if the ribbons which follow unions of separatrices above or
below form compatible bottoms and tops of cylinders. So, given a permutation, we look
for the cycles of σ and of σ′ defined by σ′(i) = σ(i) + 1 mod 5 and then look for all the
ways to match them.

A first example: σ = id gives the diagram on Figure 2. In this example, σ has cycles
(1)(2)(3)(4)(5), while σ′ has only one cycle (12345), therefore there is no possible pair-
ing. We can’t glue any cylinders on this separatrix diagram, there would need to be five
bottoms of cylinders and only one top of cylinder.
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Another example: σ = (354) gives the diagram on Figure 3. In this example, σ has cy-
cles (1)(2)(354), while σ′ has cycles (123)(4)(5), and two pairings are possible: cylinders
can fit on this separatrix diagram in two different ways.

As checked with Sage, there are exactly 16 permutations σ of {1, 2, 3, 4, 5} (up to cyclic
permutation) for which σ and σ′ have the same number of cycles. The corresponding pairs
(σ, σ′) are listed below, expressed as products of nontrivial cycles. It turns out that each of
them case gives one, two or three cylinder diagrams, and we get 22 cylinder diagrams in
all.

(354), (123) (23)(45), (124) (2345), (124)(35) (2354), (1243)
(2453), (1254) (2435), (1253) (253), (12)(45) (2534), (12)(354)

(25)(34), (12)(35) (12)(345), (1354) (12345), (13524) (12453), (13254)
(124)(35), (13)(254) (13524), (14253) (13)(254), (1432) (14253), (15432)

Below, we list next to each of these 16 pairs (σ, σ′) the associated cylinder diagrams
and, furthermore, for each cylinder diagram, we put the letter H , resp. O, when the corre-
sponding translation surfaces belong the the hyperelliptic, resp., odd, connected component
of H(4).

σ : (354)
σ′ : (123)
b : 1, 2, 354
t : 123, 4, 5

H

3 5 4
32

2
1
1

4 5

1-4, 2-5, 354-123

O

3 5 4
32

2
1
1

5 4

1-5, 2-4, 354-123

σ: (23)(45)
σ′: (124)
b: 1, 23, 45
t : 124, 3, 5

O

4 5
5

421
1
3

2 3

1-3, 23-5, 45-124

O

2 3
3

421
1
5

4 5

1-5, 23-124, 45-3

σ: (2345)
σ′: (124)(35)
b : 1, 2345
t : 124, 35

O

2 3 4 5
421

1
3 5

1-35, 2345-124 σ: (2354)
σ′: (1243)
b : 1, 2354
t : 1243, 5

O

2 3 5 4
3421

1
5

1-5, 2354-1243
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σ: (2453)
σ′: (1254)
b: 1, 2453
t: 1254, 3

O

2 4 5 3
4521

1
3

1-3, 2453-1254 σ: (2435)
σ′: (1253)
b: 1, 2435
t: 1253, 4

H

2 4 3 5
3521

1
4

1-4, 2435-1253

σ: (253)
σ′: (12)(45)
b: 1, 253, 4
t: 12, 3, 45

O

2 5 3
54

4
1
1

2

3

1-3, 253-45, 4-12

O

2 5 3
21

1
4
4

5

3

1-45, 253-12, 4-3

σ: (2534)
σ′: (12)(354)
b: 1, 2534
t: 12, 354

O

2 5 3 4
21

1
3 5 4

1-354, 2534-12

σ: (25)(34)
σ′: (12)(35)
b: 1, 25, 34
t: 12, 35, 4

O

3 4
4

21
1

3 5

2 5

1-35, 25-4, 34-12

O

2 5
21

1
4
43

3 5

1-4, 25-12, 34-35

H3 4
2
2

1
1

4 3 5
5

1-4, 25-35, 34-12

σ: (12)(345)
σ′: (1354)
b: 12, 345
t: 1354, 2

O

3 4 5
2
21

1 3 5 4

12-1354, 345-2

σ: (12345)
σ′: (13524)
b: 12345
t: 13524

O

1 2 3 4 5
42531

12345-13524
σ: (12453)
σ′: (13254)
b: 12453
t: 13254

O

1 2 4 5 3
45231

12453-13254
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σ: (124)(35)
σ′: (13)(254)
b: 124, 35
t: 13, 254

O1 2 4
3
3

1

2 5 4
5

124-13, 35-254

H3 5
1
1

3

2 5 4
42

124-254, 35-13

σ: (13524)
σ′: (14253)
b: 13524
t: 14253

H

1 3 5 2 4
35241

13524-14253

σ: (13)(254)
σ′: (1432)
b: 13, 254
t: 1432, 5

O
1 3

5
52

1 4 3 2
4

13-5, 254-1432 σ: (14253)
σ′: (15432)
b: 14253
t: 15432

O

1 4 2 5 3
23451

14253-15432
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