Buildings and Berkovich Spaces

Annette Werner

Goethe-Universität, Frankfurt am Main

DMV-Jahrestagung München 2010
Emmy Noether Lecture
This talk reports on joint work with Amaury Thuillier and Bertrand Rémy (Lyon). Our results generalize results of Vladimir Berkovich who investigated the case of split groups.
Non-archimedean fields

K non-Archimedean field, i.e. K is complete with respect to a non-trivial absolute value $| \cdot |_K$ satisfying

$$|a + b|_K \leq \max\{|a|_K, |b|_K\}.$$

K is called discrete if the value group $|K^*| \subset \mathbb{R}^*$ is discrete.

Non-archimedean analysis has special charms:

$$\sum_{n=1}^{\infty} a_n$$ converges if and only if $a_n \to 0.$
Non-archimedean fields

Examples:

- $K = k((T))$ formal Laurent series over any ground field k, with $|\sum_{n \geq n_0} a_n T^n| = e^{-n_0}$ if $a_{n_0} \neq 0$
- $K = \mathbb{C}\{\{T\}\}$ Puiseux series
- $K = \mathbb{Q}_p$, the completion of \mathbb{Q} with respect to $|x| = p^{-\nu_p(x)}$
- algebraic extensions of \mathbb{Q}_p
- $K = \mathbb{C}_p$, the completion of the algebraic closure of \mathbb{Q}_p
G semisimple group over K, i.e.

$G \hookrightarrow \mathrm{GL}_{n,K}$ closed algebraic subgroup such that

$\text{rad}(G)(= \text{biggest connected solvable normal subgroup}) = 1$

Examples: $\mathrm{SL}_n, \mathrm{PGL}_n, \mathrm{Sp}_{2n}, \mathrm{SO}_n$ over K

$\mathrm{SL}_n(D)$ D central division algebra over K
Main result

Goal: Embed the Bruhat-Tits building $\mathcal{B}(G, K)$ associated to G in the Berkovich analytic space G^{an} associated to G.

Hope: Investigate the building with the help of the amiant Berkovich space G^{an}.
Archimedean Example:

\[G = \text{SL}(2, \mathbb{R}) \]
\[H = \text{SO}(2, \mathbb{R}) \text{ maximal compact subgroup} \]
\[G/H = \mathbb{H} = \{ z \in \mathbb{C} : \text{Im}(z) > 0 \} \]
upper half-plane

Non-Archimedean analog:

\[p \text{ prime number} \]
\[G = \text{SL}(2, \mathbb{Q}_p) \]
\[H = \text{SL}(2, \mathbb{Z}_p) \text{ maximal compact subgroup.} \]
\[G/H \text{ is a totally disconnected topological space.} \]
Note: \(\mathbb{H} = \{ \text{norms on } \mathbb{R}^2 \}/\text{scaling}. \)

Goldman-Iwahori:

\[\mathcal{B}(SL_2, \mathbb{Q}_p) = \{ \text{Non-archimedean norms on } \mathbb{Q}_p^2 \}/\text{scaling} \]

- Topology of pointwise convergence
- \(SL(2, \mathbb{Q}_p) \)-action
- Stabilizer of the norm \(\begin{pmatrix} a \\ b \end{pmatrix} \mapsto \max\{|a|, |b|\} \) is the maximal compact subgroup \(SL(2, \mathbb{Z}_p) \)
\[\mathcal{B}(SL_2, \mathbb{Q}_p) \text{ is an infinite } (p + 1)-\text{valent tree:} \]

\[(p = 2). \]
In general: The building $\mathcal{B}(G, K)$ is obtained by glueing real vector spaces (apartments). Every maximal split torus $T \subset G$, i.e. $T \simeq \mathbb{G}_m^r$, induces an apartment $A(T)$, which is defined as the real cocharacter space $A(T) = \text{Hom}_K(\mathbb{G}_m, T) \otimes_{\mathbb{Z}} \mathbb{R}$.

The glueing process is defined with deep (and quite technical) results by Bruhat and Tits.

$\mathcal{B}(G, K)$ is a complete metric space with a continuous $G(K)$–action.

If K is discrete, $\mathcal{B}(G, K)$ carries a (poly-)simplicial structure.
Apartment for Sp_4
Apartment for PGL_3
Some part of $B(PGL_3, \mathbb{Q}_p)$
Why are Bruhat-Tits buildings useful?

- \(\mathcal{B}(G, K) \) is a nice space on which \(G(K) \) acts
- Cohomology of arithmetic groups (Borel-Serre)
- \(\mathcal{B}(G, K) \) encodes information about the compact subgroups of \(G(K) \)
- Representation theory of \(G(K) \) (Schneider-Stuhler)
- Bruhat-Tits buildings are non-Archimedean analogs of Riemann symmetric spaces of non-compact type
- Buildings can be used to prove results for symmetric spaces (e.g. Kleiner-Leeb)
A Berkovich space is a non-Archimedean analytic space with good topological properties.

Archimedean case:
X smooth projective variety over \mathbb{C}. Then $X(\mathbb{C})$ is a complex projective manifold.

Non-archimedean case:
X smooth projective variety over K. Then $X(K)$ inherits a non-Archimedean topology from K with bad topological properties, e.g. it is totally disconnected.
Berkovich Spaces

Tate, Raynaud... Define non-Archimedean analytic functions by a suitable Grothendieck topology

Berkovich Enlarge $X(K)$ to a topological space X^{an} with good properties.
Example: The Berkovich unit disc

Assume for simplicity that K is algebraically closed.

$A = K \{ z \} = \{ \text{formal series } f(z) = \sum_{n \geq 0} a_n z^n \text{ with } a_n \to 0 \}$

$\| f \| = \max_n |a_n|_K$ Gauss norm on A
$\mathcal{M}(A) = \{ \text{bounded multiplicative seminorms on } A \text{ extending } | |_K \}$ is the Berkovich unit disc.

Hence every $\gamma \in \mathcal{M}(A)$ is a function $\gamma : A \rightarrow \mathbb{R}_{\geq 0}$ satisfying

- $\gamma |_K = | |_K$
- $\gamma(fg) = \gamma(f) \gamma(g)$
- $\gamma(f + g) \leq \gamma(f) + \gamma(g)$
- $\gamma \leq c |||$

Every $a \in K$ with $|a|_K \leq 1$ induces a point $|f|_a = |f(a)|_K$ in $\mathcal{M}(A)$.

The Gauss norm is multiplicative, i.e. a point in $\mathcal{M}(A)$.
Non-archimedean balls

The other seminorms in $\mathcal{M}(A)$ can be described with closed non-Archimedean discs $D(a, r) = \{x \in K : |x - a| \leq r\}$.

Note: Two non-Archimedean closed discs are either disjoint or nested.
Berkovich unit disc

Basic fact: The Gauss norm is the supremum norm on $D(0, 1)$.

The Berkovich unit disc consists of the following points:

- **Points of type 1:** $|f|_a = |f(a)|_K$ for $a \in D(0, 1)$.

- **Points of type 2:**

 $|f|_{a,r} = \sup_{x \in D(a,r)} |f(x)|_K$ for $D(a, r) \subset D(0, 1)$

 and $r \in |K^*|$

- **Points of type 3:**

 $|f|_{a,r} = \sup_{x \in D(a,r)} |f(x)|$ for $D(a, r) \subset D(0, 1)$

 and $r \notin |K^*|$

- **Points of type 4:**

 $|f|_{a,r} = \lim_{n \to \infty} |f|_{a_n,r_n}$ for a nested sequence $D(a_1, r_1) \supset D(a_2, r_2) \ldots$ of closed discs in $D(0, 1)$
Berkovich unit disc

(from J.H. Silverman: The arithmetic of dynamical systems)
Endow the Berkovich unit disc $\mathcal{M}(A)$ with the topology of pointwise convergence of seminorms evaluated on A.

Then $\mathcal{M}(A)$ is a compact, uniquely path-connected Hausdorff space containing $\{x \in K : |x|_K \leq 1\}$ as a dense subspace.
Similary one can define Berkovich discs of any radius $r > 0$.

Berkovich affine line:

$$(\mathbb{A}^1_K)^{an} = \text{union of all Berkovich discs of positive radius}$$

$$= \{\text{multiplicative seminorms on } K[z]\}.$$

Berkovich projective line:

$$(\mathbb{P}^1_K)^{an} \text{ can be constructed by glueing two Berkovich unit discs.}$$
In general:

\[X = \text{Spec } A \text{ for } A = K[x_1, \ldots, x_n]/\mathfrak{a} \]

Berkovich space \(X^{an} \) corresponding to \(X \):

\[X^{an} = \{ \text{multiplicative seminorms on } A \text{ extending } | |_K \} \]

An analogous definition over the complex numbers yields \(X(\mathbb{C}) \) by a theorem of Gelfand-Mazur.
Berkovich spaces have found a variety of applications, e.g.

- to prove a conjecture of Deligne on vanishing cycles (Berkovich)
- in local Langlands theory (Harris-Taylor)
- to develop a p–adic avatar of Grothendieck’s “dessins d’enfants” (André)
- to develop a p–adic integration theory over genuine paths (Berkovich)
- for p–adic harmonic analysis and p–adic dynamics with applications in Arakelov Theory (Baker, Chambert-Loir, Rumely, Thuillier,...)
Embedding Theorem

G semisimple algebraic group over K

G^{an} Berkovich space associated to G

We define a continuous, $G(K)$–equivariant embedding

$$\nu : \mathcal{B}(G, K) \longrightarrow G^{an}$$

using the following theorem:
Embedding Theorem

Theorem

i) For all $x \in \mathcal{B}(G, K)$ there exists an (affinoid) subgroup $G_x = M(A_x) \subset G^{an}$ such that

$$G_x(L) = \text{Stab}_{G(L)}(x)$$

for all non-Archimedean fields $L \supset K$.

ii) G_x has a unique maximal point in G^{an} (Shilov boundary point), i.e. there exists a unique $\nu(x) \in G^{an}$ such that all $f \in A_x$ achieve their maximum on $\nu(x)$.
Embedding Theorem

Tools: Bruhat-Tits theory, Berkovich’s characterization of Shilov boundary points, descent theory for affinoids

New idea: Any point x becomes special after base extension with a suitable L/K.
Example

\[G = SL_2 \]

\[T \subset G \text{ torus of diagonal matrices} \]

\[A(T) = \text{Hom}(\mathbb{G}_m, T) \otimes_{\mathbb{Z}} \mathbb{R} = \mathbb{R}\mu \text{ for } \mu: a \mapsto \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}. \]

\[U_- = \left\{ \begin{pmatrix} 1 & 0 \\ u & 1 \end{pmatrix} : u \in K \right\} \quad U_+ = \left\{ \begin{pmatrix} 1 & v \\ 0 & 1 \end{pmatrix} : v \in K \right\} \]

\[\Omega = U_- TU_+ \subset SL_2 \quad \text{big cell} \]

Note that \(\Omega = \text{Spec } K[a, a^{-1}, u, v] \).
Embedding Theorem: Example

The embedding ν is constructed apartment-wise. It maps $A(T)$ to the analytified big cell $\Omega^{an} \subset SL_2^{an}$.

Explicit description: Let $x_\mu \in A(T)$.

Then $\nu(x_\mu) \in \Omega^{an}$ is the following multiplicative seminorm on $K[a, a^{-1}, u, v]$:

$$| \sum_{k \in \mathbb{Z}, m, n \in \mathbb{N}_0} c_{kmn} a^k u^m v^n |_{\nu(x_\mu)} = \max_{k,m,n} |c_{kmn}|_K |e^{x(m-n)}|.$$

In particular, for $0 \in A(T)$ we get

$$| \sum_{k,m,n} c_{kmn} a^k u^m v^n |_{\nu(0)} = \max_{k,m,n} |c_{kmn}|.$$
Application: Compactifications of Bruhat-Tits buildings

G semisimple algebraic group over K

$P \subset G$ parabolic subgroup

G/P proper K–variety

Example:

$G = SL_n$ over K

$F = (V_0 \subset \ldots \subset V_k)$ flag of linear subspaces of K^n

$P = \text{Stab}(F) \subset SL_n$

G/P flag variety.
Compactifications

Definition
\[\nu_P : \mathcal{B}(G, K) \xrightarrow{\nu} G^{an} \rightarrow (G/P)^{an} \]

The closure of the image of \(\mathcal{B}(G, K) \) under \(\nu_P \) is a compactification \(\overline{\mathcal{B}_P(G, K)} \) of \(\mathcal{B}(G, K) \) (or of some almost simple factors).

Theorem
\[\overline{\mathcal{B}_P(G, K)} = \bigcup_{Q \text{ "good" parabolic}} \mathcal{B}(Q_{ss}, K) \]

Theorem
Any two points \(x, y \) in \(\overline{\mathcal{B}_P(G, K)} \) are contained in one compactified apartment.

Theorem
(Mixed Bruhat decomposition)
Let \(x, y \in \overline{\mathcal{B}_P(G, K)} \) with stabilizers \(P_x, P_y \subset G(K) \).

Then \(G(K) = P_x N(K) P_y \).
Example:

\[G = SL_n \text{ over } K. \]

\[P = \begin{cases} \begin{pmatrix} * & \cdots & * \\ \vdots & \vdots & \vdots \\ * & \cdots & * \\ 0 & \cdots & 0 \end{pmatrix} \end{cases} \text{ the stabilizer of a hyperplane} \]

\[\mathcal{B}(G, K) = \{ \text{non-Archimedean norms on } K^n \}/\text{scaling} \]

\[\cap \]

\[\overline{\mathcal{B}}_P(G, K) = \{ \text{non-Archimedean seminorms on } K^n \}/\text{scaling} \]

\[\cap \]

\[(G/P)^{an} = (\mathbb{P}^{n-1})^{an} \]