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Abstract1

The differentially heated rotating annulus is a classical experiment for the investigation of2

baroclinic �ows and can be regarded as a strongly simpli�ed laboratory model of the atmo-3

sphere in mid-latitudes. Data of this experiment, measuredat the BTU Cottbus-Senftenberg,4

are used to validate two numerical �nite-volume models (INCA andcylFloit) which differ5

basically in their grid structure. Both models employ an implicit parameterization of the6

subgrid-scale turbulence by theAdaptive Local Deconvolution Method(ALDM). One part7

of the laboratory procedure, which is commonly neglected insimulations, is the annulus8

spin-up. During this phase the annulus is accelerated from astate of rest to a desired an-9

gular velocity. We use a simple modelling approach of the spin-up to investigate whether it10

increases the agreement between experiment and simulation. The model validation compares11

the azimuthal mode numbers of the baroclinic waves and does aprincipal component analysis12

of time series of the temperature �eld. The Eady model of baroclinic instability provides a13

guideline for the qualitative understanding of the observations.14
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Zusammenfassung15

Der differentiell geheizte, rotierende Zylinderspalt (Annulus) ist ein klassisches Experiment16

zur Untersuchung barokliner Strömungen und kann als ein stark vereinfachtes Labormodell17

der Atmosphäre in mittleren Breiten betrachtet werden. Messdaten von diesem Experiment,18

die an der BTU Cottbus-Senftenberg gewonnen wurden, werdenhier zur Validierung zweier19

numerischer Finite-Volumen-Modelle (INCAundcylFloit) verwendet, die sich hauptsächlich20

in ihrer Gitterstruktur voneinander unterscheiden. BeideModelle nutzen ein Verfahren zur21

inpliziten Parametrisierung der Turbulenz auf der Subgitterskala, die Adaptive Lokale Ent-22

faltung (Adaptive Local Deconvolution Method, ALDM). Ein Bestandteil des experimentel-23

len Ablaufes, der in Simulationen üblicherweise vernachlässigt wird, ist die Anlaufphase des24

Annulus (Spin-up). Während dieser Phase wird der Annulus aus dem Zustand der Ruhe auf25

eine gewünschte Winkelgeschwindigkeit beschleunigt. Eine einfache Modellierung der An-26

laufphase soll zeigen, ob durch ihre Einbeziehung eine größereÜbereinstimmung zwischen27

Experiment und Simulation erzielt werden kann. Gegenstanddes Vergleiches zwischen den28

numerischen Modellen und dem Experiment ist einmal die azimutale Modenzahl der barokli-29

nen Wellen und zum anderen eine Hauptkomponentenanalyse (Principal Component Analy-30

sis) von Temperaturfeldzeitreihen. Das Eady-Modell der baroklinen Instabilität erlaubt eine31

theoretische Einordnung der Beobachtungen.32
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1 Introduction33

The atmosphere as a research object poses some particular challenges. Due to its extreme com-34

plexity any aspect addressed is embedded into the interaction of a multitude of interdependent35

processes which make a special focus dif�cult. Those processes are always active and typically36

most of them are not completely detectable from analysis or campaign data. This leads to an37

unsatisfactory element of speculation in the theoretical interpretation of measurements which38

should be reduced as much as possible. Repeated and detailedmeasurements are indispensable39

and important, as they are the only source of information about the real atmosphere. To a certain40

degree they are limited by the actual non-repeatability of an atmospheric situation. The same41

event never occurs twice. This argues for complementary laboratory experiments. If designed42

well, they have a decided focus and the level of repeatability is considerably higher than in mea-43

surements of the atmosphere itself.44

A classical experiment of this kind is the differentially heated rotating annulus developed by45

HIDE (1958). A �uid is con�ned between two cylindrical walls withthe inner wall kept at a46

lower temperature than the outer. The entire apparatus is mounted on a turntable. At suf�ciently47

fast rotation this set-up leads to a baroclinic instabilityclosely related to that which is believed to48

be the core process of mid-latitude cyclogenesis. A survey of the �ow regimes observed in this49

experiment is found in HIDE and MASON (1975) and GHIL et al. (2010).50

The relatedness of the rotating-annulus �ow to the mid-latitude atmospheric �ow makes this51

experiment a popular testbed for analytical and numerical models. First WILLIAMS (1969,52

1971) developed a �nite-difference Boussinesq code using aregular, cylindrical grid. This53

has been improved in the model of JAMES et al. (1981), developed by FARNELL and PLUMB54

(1975, 1976) and FARNELL (1980), where the staggered grid was stretched to have enhanced55

resolution close to the boundaries. This model has directlybeen used in many studies (e.g.,56

HIGNETT et al., 1985; READ, 1986; READ et al., 1997) and it has been varied to test alternative57
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numerical approaches, such as semi-Lagrangian models (READ et al., 2000). A pseudospectral58

Boussinesq algorithm has been applied more recently to an air-�lled annulus by MAUBERT and59

RANDRIAMAMPIANINA (2002, 2003), RANDRIAMAMPIANINA et al. (2006) and READ et al.60

(2008). The corresponding laboratory measurements have been done with high-Prandtl-number61

liquids instead of air (RANDRIAMAMPIANINA et al., 2006). A modeling variant for the balanced62

�ow part has been suggested by WILLIAMS et al. (2009) who have developed a quasi-geostrophic63

two-layer model for the annulus.64

With the last exception all of the listed algorithms model the annulus by direct numerical65

simulations (DNS). In general, the annulus �ow is turbulent. A prominent example is probably66

geostrophic turbulence, where �ow structures of smaller length scales become increasingly67

important as the rotation rate of the annulus is increased (HIDE and MASON, 1975; HIDE, 1977;68

READ, 2001). Thus, numerical simulations of the annulus �ow are assumed to pro�t from a69

parameterization of the unresolved turbulence in the framework of a large-eddy simulation (LES)70

model. We employ an implicit subgrid-scale (SGS) parameterization within the framework of71

�nite-volume modeling that has been realized by HICKEL et al. (2006) in theAdaptive Local72

Deconvolution Method(ALDM) for LES of turbulent �uid �ow and ALDM for passive-scalar73

transport (HICKEL et al., 2007). ALDM has been thoroughly tested against benchmarks from74

literature. Comparison of various turbulence quantities and characteristics, including, e.g.,75

energy spectra and energy dissipation rates with DNS reference data have shown that ALDM76

performs at least as well as established explicit SGS modelslike the dynamic Smagorinsky model77

(GERMANO et al., 1991). Relevant examples for turbulent �ows, which have been successfully78

predicted by ALDM, are decaying turbulence (HICKEL et al., 2006), boundary layer �ows79

(HICKEL and ADAMS, 2007, 2008) and separated �ows (HICKEL et al., 2008; GRILLI et al.,80

2012). Simulations of strati�ed turbulence by REMMLER and HICKEL (2012, 2013) and of81

convective �ow and vertical gravity wave propagation in theatmosphere using non-Boussinesq82
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soundproof modelling (RIEPER et al., 2013) have demonstrated the applicability of ALDM to83

geophysical problems.84

In the present paper we describe and discuss two �nite-volume algorithms for the differen-85

tially heated rotating annulus. One of them (cylFloit) is formulated in cylindrical coordinates,86

the other one (INCA) uses Cartesian coordinates, adaptive locally re�ned grids and a conserva-87

tive immersed boundary method (MEYER et al., 2010a,b) to describe the cylindrical geometry88

on the Cartesian grid. Both models use ALDM as an implicit SGSparameterization. A com-89

parison between the two models and the experiment based on turbulence characteristics is not90

part of this work, since such information cannot be obtainedfrom the available experimental91

data. Therefore, the present validation of the two models islimited to a qualitative comparison92

with experimental data. Section 3 includes the comparison of the dominant azimuthal mode93

numbers of the baroclinic waves and the comparison of the dominant variability patterns of the94

temperature �eld obtained from a principal component analysis.95

2 Physical and Numerical Models96

2.1 Differentially Heated Rotating Annulus97

A schematic view of the differentially heated rotating annulus is given in Fig. 1. It consists of98

two coaxial cylinders mounted on a turntable. The inner cylinder, of radiusa, is cooled to the99

constant temperatureTa and the outer cylinder, of radiusb is heated to the temperatureTb > T a.100

The gap between the two cylinders is �lled with water up to thedepthd and in some set-ups of101

the experiment the �uid surface is �xed with a lid. The entireapparatus rotates at the angular102

velocity 
 . The cylindrical coordinates to which we refer in the following are the azimuth angle103

#, the radial distance from the axis of rotationr , and the vertical distance from the bottomz. The104

cylindrical unit vectors in azimuthal, radial, and vertical direction aree# ; er , andez .105
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At the radial and vertical boundaries no-slip wall boundaryconditions are applied, i.e.,

v jr = a; b = vjz=0 ; d = 0 ; (2.1)

wherev = ue# + ver + wez is the velocity vector. This holds atz = d if a rigid lid covers

the �uid surface. A free �uid surface is approximated by an “inviscid” lid where tangential and

normal stresses due to molecular friction are set to zero. This leads to:

@u
@z

�
�
�
�
z= d

=
@v
@z

�
�
�
�
z= d

= 0 : (2.2)

The vertical velocity componentw atz = d vanishes as for the no-slip wall (JAMES et al., 1981;106

FERZIGERand PERIĆ, 2008).107

Boundary conditions for the temperature are isothermal cylinder walls:

T jr = a = Ta; (2.3)

T jr = b = Tb (2.4)

and the annulus bottom and �uid surface are assumed to be adiabatic, whether a lid covers the

surface or not. Thus the heat �ux in vertical direction vanishes:

@T
@z

�
�
�
�
z=0 ; d

= 0 : (2.5)

The heat transfer between �uid and ambient air (via radiation, conduction, advection and108

evaporation) is excluded from the model.109
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2.2 Governing equations110

Since deviations� � from the constant background density of the �uid� 0 are generally relatively

small in the considered temperature range(j� � j � � 0), the �uid-dynamical equations are used

in the Boussinesq approximation (e.g., VALLIS , 2006). To the largest part they are identical

to the equations used by FARNELL and PLUMB (1975, 1976) and HIGNETT et al. (1985). In

contrast to these authors, we use them in �ux form since our numerical model makes use of a

�nite-volume discretization. The pressurep is split into a time-independent reference pressure

p0 and the deviation� p therefrom. If the angular velocity
 is constant, denoted case I, the

reference pressure is de�ned so that the pressure gradient force is balanced by gravity and the

centrifugal force. In contrast, a time-dependent angular velocity (of interest below) only allows

a reference pressure in equilibrium with gravity (case II):

r p0 = r � (p0I) =

8
<

:

g� 0 � [
 � (
 � r )] � 0 (I)

g� 0 (II)
; (2.6)

whereI is the unit tensor,g = � gez is gravitational force,
 = 
 ez is the angular-velocity111

vector andr = rer + zez is the position vector.112

The mass-speci�c momentum equation is then given by:

@v
@t

= � r � M � 2
 � v + g~� +

8
<

:

� [
 � (
 � r )] ~� (I)

� [
 � (
 � r )] �
d

dt

� r (II)
; (2.7)

where (2.6) has been subtracted.~� = � �=� 0 is the non-dimensional density deviation. The �rst

term on the right-hand side is the divergence of the symmetric total momentum �ux tensor:

M = vv + ~pI � �; (2.8)

which consists of the advective �ux of mass-speci�c momentum, described by the dyadic product
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vv , the density-speci�c pressure tensor with~p = � p=� 0 and the viscous stress tensor:

� = �
h
r v + ( r v)T

i
; (2.9)

where� is the kinematic viscosity,r v is the velocity-gradient tensor and the superscriptT113

denotes the transpose.114

The �ux term in equation (2.7) is followed by the Coriolis force and the reduced gravitational115

force. In case I the last term is the reduced centrifugal force, whereas in case II we have the full116

centrifugal force and the Euler force� d
 =dt � r (JOHNSON, 1998; GREENSPAN, 1990).117

The governing equations are completed by the continuity equation:

r � v = 0 (2.10)

and the thermodynamic internal energy equation:

@T
@t

= � r � (vT) + r � (� r T ) ; (2.11)

with the thermal diffusivity� , and the equation of state:

� = � � + � � T + 
 � T 2: (2.12)

The values of the coef�cients� � , � � and
 � depend on the �uid and the expected temperature118

range.119

Viscosity � and thermal diffusivity� vary more or less strongly with temperature. Just as is

the case for the equation of state, this dependence is commonly parameterized by a power series
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ansatz, where powersT n with n > 2 are neglected:

� = � � + � � T + 
 � T 2; (2.13)

� = � � + � � T + 
 � T 2: (2.14)

To determine the coef�cients of eqs. (2.12), (2.13) and (2.14), parabolas were �tted to tabulated120

values for water taken from VEREIN DEUTSCHERINGENIEURE et al. (2006). The coef�cients121

of the �tted parabolas are listed in table 1. The quality of the �t is illustrated in Fig. 2.122

A given �t of the form � = � � + � � T + 
 � T 2; where� = �; �; � can be reformulated in

terms of the deviationT � T0 from a constant reference temperatureT0 = ( Ta + Tb) =2 :

� = � 0

h
1 + � 1 (T � T0) + � 2 (T � T0)2

i
; (2.15)

with the coef�cients:

� 0 = � � + � � T0 + 
 � T 2
0 ; (2.16a)

� 2 = 
 � =� 0; (2.16b)

� 1 = � � =� 0 + 2 � 2T0: (2.16c)

2.3 Discretization123

2.3.1 cylFloit124

The simulation of the �uid �ow in the rotating annulus is realized by thecylindrical �ow125

solver with implicit turbulence model(cylFloit), which is based on thepseudo-incompressible126

�ow solver with implicit turbulence model(pincFloit) designed to integrate Durran's pseudo-127

incompressible equations for atmospheric problems (RIEPER et al., 2013). The implicit SGS128
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strategy of pincFloit has been adopted directly. The numerical model uses a �nite-volume129

discretization of the governing equations on a regular cylindrical grid depicted in Fig. 3a and130

3b (the governing equations (2.7) to (2.11) in cylindrical coordinates are listed in appendix A.1).131

For this purpose the equations are averaged over a grid cell volume. The side lengths of a cell,132

shown in Fig. 3c, are� # = 2 �= N# , � r = ( b� a) =Nr and� z = d=Nz , whereN# , Nr andNz133

are the numbers of grid cells in azimuthal, radial and vertical direction.134

All volume averaged variables are arranged in C-grid fashion (ARAKAWA and LAMB , 1977).135

Fig. 3d shows a �nite-volume cell of the scalar variables temperature and pressure with the136

velocities de�ned at the cell interfaces. Each velocity component has its own cell, shifted with137

respect to the temperature cell by half a cell in the corresponding direction.138

With the exception of the advective �uxes, all right-hand-side terms of the volume averaged139

governing equations are discretized using standard second-order accurate �nite-volume tech-140

niques (see, e.g., FERZIGER and PERIĆ (2008) and appendix A.3 for more details). We use141

the Adaptive Local Deconvolution Method (ALDM) (HICKEL et al., 2006) for discretizing the142

advective �uxes. ALDM follows a holistic implicit LES approach, where physical SGS parame-143

terization and numerical modelling are fully merged. That is, the numerical discretization of the144

advective terms acts as an energy sink providing a suitable constrained amount of dissipation.145

ALDM implicit LES combines a generalized high-order scale similarity approach (i.e., decon-146

volution) with a tensor eddy viscosity regularization thatis consistent with spectral turbulence147

theory. Deconvolution is achieved through nonlinear adaptive reconstruction of the un�ltered148

solution on the represented scales and secondary regularization is provided by a tailored numer-149

ical �ux function. The un�ltered solution is locally approximated by a convex combination of150

Harten-type deconvolution polynomials, where the individual weights for these polynomials are151

locally and dynamically adjusted based on the smoothness ofthe �ltered solution. The slightly152

dissipative numerical �ux function operates on this weighted reconstruction. Both, the solution-153
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adaptive polynomial weighting and the numerical �ux function involve free model parameters.154

HICKEL et al. (2006, 2007) calibrated these parameters in such a waythat the discretized equa-155

tions correctly represent the spectral energy transfer in isotropic turbulence as predicted by ana-156

lytical theories of turbulence. Note that this set of parameters was not changed for any subsequent157

application. ALDM was extended to buoyancy-dominated �owsand successfully validated with158

DNS results of strati�ed turbulence by REMMLER and HICKEL (2012, 2013, 2014).159

Despite our simulations being LES, we retain molecular diffusion of momentum and heat in160

the model for several reasons. First of all to make the model consistent in that it converges to DNS161

for suf�ciently high grid resolution. In addition, explicit diffusion in the governing equations is162

required to apply the boundary conditions presented in section 2.1, since ALDM contains no163

explicit turbulent diffusion, for example by a turbulent stress tensor. Finally, molecular viscosity164

and diffusivity play an important role in the boundary layers at the annulus bottom and cylindrical165

walls (POPE, 2000; FERZIGERand PERIĆ, 2008).166

Time integration fromt to t + � t is done using the explicit, low-storage third-order Runge-167

Kutta method of WILLIAMSON (1980). The integration time step� t can either be held �xed or168

computed adaptively from several stability criteria. Noneof those is rigorous in a mathematical169

sense, but experience has shown them to be helpful (RIEPERet al., 2013).170

Pressure, as dynamic mediator of the incompressibility between the momentum components,171

has no separate prognostic equation. Continuity and momentum equations can be combined172

to derive a diagnostic Poisson equation, which is then solved for the pressure update in the173

framework of a fractional step method as originally proposed by CHORIN (1968).174

2.3.2 INCA175

INCA is a multi-purpose engineering �ow solver for both compressible and incompressible176

problems using Cartesian adaptive grids and an immersed boundary method to represent solid177

walls that are not aligned with grid lines. INCA has successfully been applied to a wide range178
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of different �ow problems, ranging from incompressible boundary layer �ows (HICKEL et al.,179

2008; HICKEL and ADAMS, 2008) to supersonic �ows (GRILLI et al., 2012).180

In the current context we have used the incompressible module of INCA with an extension181

to �uids with small density perturbations governed by the Boussinesq equations (see appendix182

A.2 for the Boussinesq equations in Cartesian coordinates). The equations are discretized by183

a �nite-volume fractional-step method (CHORIN, 1968) on staggered Cartesian mesh blocks.184

For the spatial discretization of the advective terms we useALDM with implicit turbulence185

parameterization as described above. For the diffusive terms and the pressure Poisson solver186

we chose a non-dissipative central scheme with 2nd order accuracy. For time advancement the187

explicit third-order Runge-Kutta scheme of SHU (1988) is used. The time-step is dynamically188

adapted to satisfy a Courant-Friedrichs-Lewy condition with CF L � 1:0. The Poisson equation189

for the pressure is solved at every Runge-Kutta sub-step, using a Krylov subspace solver with190

algebraic-multigrid preconditioning.191

The general applicability of INCA in the Boussinesq approximation to stably strati�ed192

turbulent �ows has been demonstrated by REMMLER and HICKEL (2012, 2013) and FRUMAN193

et al. (2014).194

To represent the annulus geometry within Cartesian grid blocks in INCA, we use two195

cylindrical immersed boundaries representing the inner and the outer wall, respectively. The196

Conservative Immersed Interface Method of MEYER et al. (2010b) is employed to impose197

an isothermal-wall no-slip condition at these immersed boundaries. The wall temperature is198

adjusted to match the experimental conditions. The free surface at the top of the domain is199

modeled as an adiabatic slip wall, while the bottom is modeled as an adiabatic no-slip wall and200

requires suf�cient near-wall re�nement to properly resolve the boundary layer.201

In the vertical direction we split the domain in two equally sized blocks. The upper block202

is decomposed into 25 equally sized cells, while the lower block has 35 cells with a re�nement203
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towards the bottom wall. In the horizontal directions the grid is automatically generated by the204

adaptive mesh re�nement (AMR) module of INCA. This routine splits a given coarse starting205

grid block into smaller blocks and re�nes those which contain a solid boundary. This procedure206

is repeated until a desired maximum cell size normal to the walls and in the domain interior is207

reached. Using this procedure we generated three differentgrids (see table 2 and Fig. 4). Grids I1208

and I2 (where `I' denotes INCA) have the same cell size in the domain interior, grid I2 has three209

times the near wall resolution compared to grid I1. Grid I3 has the same near-wall resolution as210

grid I2, but smaller cells in the domain interior.211

Comparative simulations at different rotation rates with the three grids showed that there are212

practically no differences between the result from grid I2 and I3, so the medium sized grid I2 was213

in all cases suf�cient. Between grid I1 and I2 the differences regarding the �nal wave number214

and the phase velocity of the waves are in some cases more pronounced. Hence we used the215

medium grid I2 for most simulations presented here, unless stated otherwise.216

3 Model Validation217

Results of 26 laboratory experiments carried out at the BTU Cottbus-Senftenberg were used for218

the validation of our models. Different techniques have been employed there to measure the �ow219

in the rotating annulus, e.g., particle image velocimetry to investigate the hoirzontal velocity220

�eld at certain heights or infrared thermography to measurethe temperature of the �uid surface221

(HARLANDER et al., 2011). Here results of the latter are used, as they arewell suited to visualize222

the baroclinic waves. We focus on the azimuthal mode number of the dominant baroclinic wave223

and on leading patterns of variability.224

3.1 Set-up of the Experiment225

The physical parameters of the experiments are listed in table 3. These values should be226

understood as mean values since small deviations are unavoidable in the laboratory practice. The227
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listed values ofTa andTb are kept constant via active computer control (to the extentof � 0:05 K),228

the methods and characteristics of which have been discussed thoroughly byVON LARCHERand229

EGBERS (2005). The only physical parameter in which the experiments differ from each other230

is the angular velocity which is listed in table 5. Each experiment is initialized with zero angular231

velocity until an azimuthally symmetric thermal overturning circulation has fully developed.232

After this the annulus is accelerated to its �nal angular velocity within a spin-up period of about233

20 s. Unavoidable small perturbations lead to the formation of baroclinic waves if the respective234

experimental con�guration is baroclinically unstable. Since the surface of the annular gap is235

free, infrared thermography can be applied to measure the water surface temperature (infrared236

radiation is generally absorbed by glass or acryllic, therefore thermography cannot be applied237

for set-ups with rigid top). The infrared camera is mounted above the middle of the wave tank.238

In every�t = 5 s, 640� 480-pixel thermograms are taken, covering the surface of the annulus239

with a resolution of� 0:03 K. The patterns in these thermograms can be consideredsurface240

temperaturestructures, since the penetration depth of the applied wavelength range into water is241

only some millimetres. These surface temperature maps reveal the heat transport between inner242

and outer cylinder walls (HARLANDER et al., 2011, 2012).243

3.2 Numerical Set-up and Simulation Strategy244

The general outline of a simulation is as follows: Using the parameters of the experiments245

and initial �elds v = 0 , ~p = 0 andT = T0 = ( Ta + Tb) =2 (guaranteeing zero buoyancy at246

the beginning), an approximation to the stationary azimuthally symmetric solution of the non-247

rotating system is computed. With cylFloit, this is done very ef�ciently by setting the number248

of grid cells in azimuthal direction toN# = 1 , which suppresses azimuthal gradients. With the249

Cartesian grid model INCA, fully three-dimensional (3-D) simulations have been performed250

for generating this two-dimensional (2-D) steady state solution. Several tests with different251

16



integration times showed that after a time oft2D = 10800 s (= 3 h) a fully converged steady252

state is reached with cylFloit. This 2-D steady state is thenused for the initialization of the253

fully 3-D simulations. In order to trigger baroclinic waves, low amplitude random perturbations254

are added to the temperature �eld, which is the only �eld not directly coupled to the other255

�elds via a diagnostic equation. The maximum amplitude of these perturbations is set to256

�T pert = 0 :03jTb � Ta j. This second integration then proceeds until the baroclinic waves have257

fully developed.258

A further issue is the time dependence of the angular velocity 
 . In the classical variant,

described, e.g., by FARNELL and PLUMB (1976), it is set constant right away from the beginning

of the azimuthally symmetric simulation. This might be suitable in an idealized baroclinic

stability analysis but it does not optimally re�ect the set-up of the laboratory experiment, where

the point in parameter space to be investigated can only be reached by moving through parameter

space, by either varying
 or Ta and Tb. It cannot be excluded that this transient phase

leaves an impact on the �nally established regime, e.g., by nonlinear interactions. Therefore,

a second variant closer to the laboratory procedure is simulated by assuming the following time

dependence of the angular velocity:


 ( t) =

8
>>><

>>>:

0; 0 � t � t2D


 f

2 f 1 � cos
�

�
� (t � t2D )

�
g; t2D < t � t2D + �


 f ; t > t 2D + �

: (3.1)

Here
 f is the �nal constant angular velocity used in the experimentand� denotes the spin-up259

period of the rotating annulus. (3.1) is depicted in Fig. 5.260

The numerical speci�cations of the cylFloit simulations are listed in table 4. The resolution261

of grid C3 (where `C' denotes cylFloit) is used for the simulation of all 26 experiments. Using262

the spin-up period of the laboratory experiment,� = 20 s, for the numerical experiments263

with cylFloit as well was possible only up to experiment #12.Simulations of the subsequent264
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experiments developed a numerical instability the reason for which has not yet been found. It265

might be linked to the strong shear developing in the boundary layer regions during and after the266

spin-up period. To avoid this, it was decided to increase thespin-up period, thereby leaving more267

time for frictional processes to reduce the shear in the boundary layers. The new values, ranging268

from � = 180 s for #13 to� = 910 s for #26, are listed in table 4.269

Furthermore, the number of grid cells used with cylFloit allows only a poor resolution of the

viscous and thermal boundary layers in the rotating annulus. The approximate thicknesses� E ,

� S and� T of the viscous Ekman layer at the bottom, the viscous Stewartson and the thermal

boundary layers on the side walls, respectively, are:

� E = d Ek1=2; (3.2)

� S = ( b� a) Ek 1=3; (3.3)

� T = d
�

� 0� 0

g j� 1 (Tb � Ta)j d3

� 1=4

; (3.4)

where

Ek =
� 0


 d2 (3.5)

is the Ekman number (FARNELL and PLUMB , 1975; JAMES et al., 1981). Here we use reference270

values for the kinematic viscosity� 0 = � (T0) and thermal diffusivity� 0 = � (T0) following271

from (2.13) and (2.14) in the formulation (2.15) at reference temperatureT0 = ( Ta + Tb)=2.272

� 1 is the negative thermal expansion coef�cient forT0 following from (2.12) in the formulation273

(2.15). The approximate thicknesses of the boundary layersrange from� E = 0 :57 to 1:65 mm,274

� S = 1 :96 to 4 mm and� T = 0 :94 mm. The cell widths in radial and vertical direction used for275

the simulation of all 26 experiments are� r = 1 :88 mmand� z = 2 :7 mm (see grid C3 in table276
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4). Especially the Ekman layer at the bottom is not well represented on the numerical grid. In277

section 3.3.4 we present results from three of the 26 experiments, which were simulated with a278

higher grid resolution (grid C4 in table 4), resolving the thermal boundary layer and the Ekman279

layer by approximately one grid cell.280

INCA simulations were performed using a constant rate of rotation starting right from the281

beginning and alternatively using a variable rotation rateaccording to equation (3.1) with the282

initial non-rotating time beingt2D = 200 s and the spin-up time� = 200 s. These choices283

assured a suf�ciently converged axisymmetric initial solution as well as a realistic onset of284

rotation. All simulations were run over a total time span of 750 s, which was in most cases285

suf�cient for establishing stable baroclinic waves. Usinggrid I2 and I3, the boundary layers are286

at least resolved by two grid cells.287

3.3 Numerical Results288

3.3.1 cylFloit289

Table 5 shows the dominant azimuthal mode number as observedin the experiments and in the290

two simulation variants after a full 3-D integration time of10800 s (= 3 h), on top of an initial3 h291

for the azimuthally symmetric simulation. Three examples of the experimentally observed and292

the simulated temperature �elds, for
 = 4 :04 r:p:m:; 6 r:p:m:, and25:02 r:p:m: (experiments293

#3, #7 and #26), are shown in Figs. 6, 7 and 8. A general de�ciency of all simulations is294

that the simulated temperature differences at the �uid surface are relatively low compared to295

the laboratory measurement. The temperature differences do become more pronounced in the296

simulations a few centimeters below the surface. Therefore, the simulated temperature �elds297

have been plotted at heightz = 100 mm (the �uid depth isd = 135 mm).298

As a function of the rotation rate, baroclinic instability sets in at
 = 3 :53 r:p:m: in the299

laboratory experiment, at
 = 4 :04 r:p:m: in the second simulation variant with spin-up and at300
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 = 5 :01 r:p:m: in the �rst simulation variant without spin-up.301

The quasi-geostrophic model by EADY (1949) can be used as a guideline for understanding

the instability mechanism. It predicts the �ow to become baroclinically unstable if the approxi-

mated criterion:

Bu =
�

N
f

d
b� a

� 2

=
�

L d

b� a

� 2

<
� � c

�

� 2
(3.6)

is satis�ed, where� c = 2 :399and(� c=� )2 = 0 :583(e.g. HIDE and MASON, 1975; VALLIS ,

2006). Bu is the Burger number andL d = Nd=f is the internal Rossby deformation radius

which sets the length scale of the baroclinic instability.f = 2
 is the Coriolis parameter and

N is the Brunt-Väisälä frequency. Assuming that~� jz=0 � ~� (Ta) and~� jz= d � ~� (Tb) due to the

buoyancy driven circulation, a global estimate ofN may read:

N �

r

� g
~� (Tb) � ~� (Ta)

d
=

r
g j� 1 (Tb � Ta)j

d
; (3.7)

where in the last step equation (2.12) was used in the form (2.15) (HIDE, 1967). With the

approximation (3.7), the Burger number can be assumed to have the same magnitude as the so

called thermal Rossby number, an important dimensionless parameter of the annulus experiment

(HIDE, 1958, 1967; HARLANDER et al., 2011):

Roth = 4 Bu: (3.8)

Roth is a rough estimate for the true Rossby numberRo = U=(fL ) which is the ratio of the

magnitude of the inertial force to that of the Coriolis force. Roth is obtained by estimating

the (azimuthal) velocity scale from the thermal wind relation U � N 2d2=[f (b � a)] �

N 2d2=[
( b� a)] and choosingL = b� a for the horizontal length scale. In additionf is replaced

by 
 , which is the reason for the factor4 in (3.8) (HIDE, 1958, 1967). The Burger numbers of
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all experiments are listed in table 5. For the sake of completeness, we have listed two further

important dimensionless parameters in table 5, the Taylor number (HIDE, 1958; HARLANDER

et al., 2011):

T a =
4
 2 (b� a)5

� 2
0 d

; (3.9)

which compares the square of the magnitude of the Coriolis force to the square of the magnitude

of the viscous force, and the thermal Reynolds number:

Reth =
N 2d2

f � 0
; (3.10)

which might be used as a rough estimate for the true Reynolds numberRe = UL=� being the302

ratio of the magnitude of the inertial force to that of the viscous force (HIDE, 1958; POPE, 2000).303

As in the case of the thermal Rossby number, the thermal Reynolds number (3.10) is obtained304

whenL = b� a andU is chosen using the thermal wind relation.305

Using the parameters of the validation experiments, we haveN � 0:4 s� 1 and condition306

(3.6) would suggest instability to occur for angular velocities
 > 4:5 r:p:m:, which is satis�ed307

from experiment #4 upwards. This agrees quiet well with the onset of instability observed in the308

experiment and both simulation variants. Furthermore, onecan observe that the �ow becomes309

more and more irregular as the rotation rate is increased and, apart from the dominant azimuthal310

mode number, additional mode numbers play an important role, �nally leading to geostrophic311

turbulence. This agrees with the various �ow regimes in the annulus found, e.g., by HIDE and312

MASON (1975). The simulations with spin-up are reproducing the dominant azimuthal mode313

number from the experiment more often than those without spin-up (agreement in 15 of the 26314

cases with spin-up compared to 10 cases of agreement withoutspin-up). In the cases with a315

discrepancy between the experiment and the simulations, the simulations tend to predict a mode316

number larger than observed in the experiment. An observation of interest in this context is317

21



that for rotation rates between12 r:p:m: and15:99 r:p:m:, where both simulation variants miss318

the correct result, the spin-up variant does reproduce the correct azimuthal mode number for a319

relatively long time of the integration. But ultimately, attimes between2700 sand9700 s, each320

of the mentioned simulations pass to the next higher mode number, which in case of the �rst321

simulation variant without spin-up was observed right fromthe start. It cannot be excluded that322

when continuing the simulations beyondt = 3 h , further transitions take place in case of the323

simulation with spin-up (e.g., at rotation rates10:8 r:p:m: and11:3 r:p:m:).324

3.3.2 INCA325

For a general comparison of our simulations with the corresponding experiment we use again326

the mode number obtained in the quasi-stationary solution.Table 5 summarizes the mode327

numbers obtained in different simulations with and withoutspin-up simulation. The principal328

mode number in the simulations tends to be higher than in the experiment. The transition to329

mode 3 occurs already at
 = 4 :5r.p.m. (instead of
 = 5 :4r.p.m. in the experiment) and the330

transition to mode 4 occurs already at
 = 7 :5r.p.m. (instead of at
 = 8 :5r.p.m. and then only331

at 
 = 13 r.p.m. in the experiment). These results are independent ofthe used computational332

grid. In some cases a lower mode number is obtained if the spin-up process is included in the333

simulation, but this does not solve the general issue of a strong trend towards mode number 4.334

A representative result from the grid convergence study is shown in Fig. 14, where we335

compare the results of INCA simulations for experiment #14 on all three grids. In all three cases336

the simulated mode number is too high (4 instead of 3 in the experiment). The �ow topology is337

similar in all simulations and does not show a strong dependence on the grid. We measured the338

phase velocity at which the baroclinic wave is travelling and found a value of! = 0 :0246 s� 1
339

for grid I1 and a value of! = 0 :0229 s� 1 for grids I2 and I3. This indicates that the medium340

resolution is suf�cient if the three present grids are considered.341
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We selected experiment #10 to show the effect of a �nite spin-up time on the result in Figs.342

15 and 16. In the experiment a clear mode number 3 wave was observed. In the simulation343

without spin-up the mode number 4 starts developing right from the start. First, there is a weak344

perturbation of the temperature iso-surfaces which grows.Eventually the wave breaks generating345

some turbulence and then saturates at an almost constant amplitude. This process is �nished after346

approximately 150 s. After this time, the basic shape of the wave does not change any more apart347

from turbulent �uctuations.348

We simulated the same case including the spin-up process as described above (acceleration in349

the time span200 s� t � 400 s). When the spin-up is �nished, the strong clockwise azimuthal350

velocity, observed in the co-rotating frame, completely dominates the �ow. It takes some time351

until this jet has vanished due to wall friction. In the meantime the development of baroclinic352

waves is suppressed. The �ow �eld is quite turbulent, hence it is dif�cult to judge when the wave353

development starts. First waves can be observed aftert � 500 s. In this initial phase of wave354

development both mode numbers 3 and 4 are visible. Aftert � 650 sa fully grown mode number355

3 wave dominates the �ow, which is more and more replaced by a mode number 4 wave after356

t � 700 s. The mode number 4 wave is fully established aftert � 800 sand does not change any357

more throughout the remaining time of the simulation (whichwas stopped att = 1150 s).358

3.3.3 The effect of the spin-up359

Here we want to have a closer look at the possible reasons for the occurrence of different mode360

numbers of the baroclinic waves depending on whether the simulation is initialized with or361

without spin-up. One possible explanation is supported by laboratory and numerical hysteresis362

experiments in which the angular velocity is �rst increasedstep by step and afterwards decreased363

step by step (see VINCZE et al. (2014) in the present issue). Over a wide range of angular364

velocities the azimuthal mode numbers observed during the increase differ from those observed365

during the decrease at the same angular velocity. This suggests that there are areas in the366
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parameter space, where multiple equilibria do exist for parameter points within the area. The367

range of angular velocities for which hysteresis has been observed by VINCZE et al. (2014)368

coincides largely with the range where we observe differentmode numbers in simulations with369

and without spin-up. Therefore, one may conclude that the different initial conditions in the two370

simulation variants can lead to two different equilibria. The transitions from one mode number371

to the next higher mode number observed in some of the spin-upsimulations (see section 3.3.1)372

show that transitions between the equilibria are also possible, at least in the numerical model.373

The existence of multiple equilibria might also be a factor which contributes to the strong374

trend towards mode number 4 observed in the INCA simulations(see section 3.3.2). The grid375

structure of the Cartesian grids used by INCA are2�= 4-periodic in azimuthal direction (see Fig.376

4). If a case of multiple equilibria is present and mode number 4 is one of the possible equilibria,377

it might be favoured by the numerical grid. But the relevanceof this factor should probably not be378

overestimated, since a trend towards mode number 4 can also be observed in cylFloit simulations379

from experiment #11 upwards, although the grid is azimuthally symmetric.380

Another approach to the problem of different mode numbers inthe two simulation variants381

is obtained by considering the linear dynamics of the baroclinic waves. We used a linearized382

version of cylFloit to study which modes are the fastest growing or the least damped. The383

background �eld is either the azimuthally symmetric initial background att = t2D , which384

we used in the simulations without spin-up, or an azimuthal average of the full �ow after the385

baroclinic waves have fully developed. The latter was used for simulations with and without spin-386

up. When running the linearized model with unmodi�ed �uid parameters, small-scale structures387

are observed to grow fastest in amplitude and mask the growthof the large-scale baroclinic388

modes. By increasing the kinematic viscosity and thermal diffusivity to the constant value of389

� 0 = � 0 = 1 :2 mm2=s (compare to the values of� and � in the range fromTa = 24 � C to390

Tb = 32 � C in Fig. 2), the growth of the small-scale structures could besuppressed. The effect391
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of changing� 0 and� 0 on the linear dynamics of the baroclinic modes is assumed to be relatively392

small. The simulations of the linearized model are initialized with the same random temperature393

perturbations as the fully nonlinear simulations (see section 3.2).394

A general observation is that the azimuthally averaged background of the fully developed395

baroclinic waves is not or only marginally baroclincally unstable with relatively small growth396

rates compared to the azimuthally symmetric initial background of the simulations without spin-397

up, provided that it is baroclinically unstable. In cases ofbaroclinic instability we assume the398

fastest growing mode to be the dominant mode and in cases of nobaroclinic instability we assume399

the least damped mode to be the dominant mode. As an example, results from experiment400

#16 (
 = 10 :8 r:p:m:) are shown in Fig. 9. It shows a mode 4 in the simulation variant401

without spin-up and a mode 3 in the simulation with spin-up, which coincides with the mode402

number observed in the laboratory experiment (see table 5).On the azimuthally symmetric403

initial background of the simulation without spin-up mode 4grows fastest (Fig. 9c). The two404

azimuthally averaged backgrounds of the �ows with the fullydeveloped baroclinic waves are405

stable with regard to small perturbations, so that we de�ne the least damped mode to be the406

dominant one. On the background in the simulation without spin-up mode 5 is the least damped407

(Fig. 9d), whereas on the background in the simulation with spin-up mode 3 is the least damped408

(Fig. 9e). So the backgrounds of baroclinic waves with different mode numbers in the fully409

nonlinear simulations can have also dominant modes of different mode numbers in the linear410

dynamics on the backgrounds. This observation has been madein further experiments, although411

the mode numbers of the fully nonlinear baroclinic wave and the dominant wave of the linear412

dynamics do generally not agree, which indicates the important role of nonlinear interactions.413

From the above results one may conclude that in simulations with and without spin-up, baroclinic414

waves with different mode numbers can be observed, because the two backgrounds are most415

unstable or least damping to linear wave modes with different mode numbers.416

25



3.3.4 Principal Component Analysis417

In addition to the comparison of the azimuthal mode number ofthe baroclinic wave, we want

to compare the leading patterns of variability of the temperature �eld which are obtained from a

principal component analysis (PCA), a tool of multivariatestatistics (e.g., PREISENDORFER,

1988; HARLANDER et al., 2011). For that purpose we collect the temperature data from a

horizontal cross section atz = 100 mm (like shown in Figs. 6, 7 and 8) at timest j in a column

vector denoted withT (j ). After centering these values on their temporal averages:

T 0 = T � h T i ; (3.11)

whereh�i =
P N

j =1 (�)=N andN is the total number of snapshots, the covariance matrix:

C = hWT 0�
WT 0� T

i (3.12)

is calculated. HereW is a diagonal weighting matrix with elements:

Wm;n =

8
<

:

r (m)=b; for m = n;

0; for m 6= n
; (3.13)

wherer (m) is the radial coordinate of the grid point numbered withm. It accounts for the fact

that with increasing radius the horizontal area represented by a grid value of the temperature

increases as well (see Fig. 3a) (following HANNACHI and O'NEILL , 2001; JOLLIFFE, 2002).

The solutions of the eigenvalue equation:

Cek = � k ek (3.14)
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are the eigenvectorsek , referred to as empirical orthogonal functions (EOFs) and the eigenvalues

� k . They are ordered according to� 1 � � 2 � � 3 � : : : andk is called EOF index from now on.

The EOFs can be interpreted as the spatial patterns of variability of the temperature �eld, withe1

being the pattern accounting for the most variance of the temperature, namely� 1=
P

k � k . The

EOFs are orthonormal to each other:

eT
k el = � kl =

8
<

:

1; for k = l;

0; for k 6= l
(3.15)

and form a complete basis. Thus they can be used for the synthesis of the original data:

T 0(j ) = W� 1
X

k

ak (j )ek ; (3.16)

where ak (j ) are the principal components which follow from projectingek onto WT 0(j )418

(PREISENDORFER, 1988).419

The PCA was applied to experiments #3, #7 and #26. A time series of 3000 thermographic420

snapshots with an interval of5 s between each snapshot entered the analysis of the laboratory421

measurements. On the numerical side we used only data from the cylFloit simulations initialized422

with spin-up. After an initialization period of2000 sin case of #3 and #7, and4200 sfor #26,423

data of5 h of physical integration time were analyzed. These time series consist ofN = 10000424

samples with an interval of1:8 sbetween two samples. In addition to results from simulations425

using grid C3 (N# � Nr � Nz = 60 � 40 � 50), results from two coarser grid resolutions,426

N# � Nr � Nz = 15 � 10 � 12 named grid C1 in table 4 andN# � Nr � Nz = 30 � 20 � 25427

(grid C2) were analyzed. With grid C4 (N# � Nr � Nz = 120 � 80 � 150), we also tested428

a grid which resolves the boundary layers by approximately one cell. In simulations using this429

grid, the recording of the data to be analyzed started already after an initialization period of430

1800 sfor experiments #3, #7 and #26. The recorded time series consist of N = 2800 samples431
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in case of #3 and #7, andN = 1500 samples in case of #26 with an interval of1 s between432

two samples. The reduced extent of data is due to the signi�cantly increased computational cost433

of using grid C4, but its effect on the results seems to be not too large. In case of grids C3434

and C4, additional simulations have been performed where instead of ALDM, the simple central435

difference scheme (CD) was used for the computation of the advective �uxes (e.g., FERZIGER436

and PERIĆ, 2008). This way, we can compare the simulations using ALDM to simulations with437

no particular subgrid-scale parameterization. The comparison with another subgrid-scale model438

is not possible, since ALDM is the only one implemented in cylFloit.439

As an example, Fig. 10 shows snapshots of the temperature �eld resulting from the above440

simulation variants for #26. Because for grid C4 the resolution is high enough that results from441

simulations using CD are relatively similar to results obtained with ALDM, we show here and in442

the following only ALDM results for C4. In the evaluation of the results of the PCA we restricted443

ourselves to the �rst EOF (EOF 1), which accounts for most of the temperature variance. EOF444

1 and the variance it accounts for are shown in Fig. 11 for #3, Fig. 12 for #7 and Fig. 13 for445

#26. As pointed out by ACHATZ and SCHMITZ (1997) the PCA should agree with a Fourier446

decomposition up to arbitrary constant factors in coordinate directions along which forcing and447

boundary conditions are symmetric. Hence, if the time series incorporated into the PCA is large448

enough to fully represent the system in a statistical sense,each EOF should represent one and449

only one harmonic in azimuthal direction. Inspecting the EOFs in Figs. 11 – 13 by eye shows450

that this is satis�ed here for the most part. Since in the Fourier decomposition each wave number451

corresponds to a cosine and sine mode, one can observe in the PCA that the EOFs build pairs.452

Inside a pair the EOFs have the same azimuthal wave number buthave an azimuthal phase shift.453

EOF 2, e.g. has the same shape as EOF 1 and accounts for the sameamount of variance (not454

shown).455

In order to compare EOFs of the same EOF index, obtained either from laboratory measure-

28



ment data or from numerical data, we made use of the correlation coef�cient:

%k =
~eT

I ;k ~eII ;k
r �

~eT
I ;k ~eI ;k

� �
~eT

II ;k ~eII ;k

� ; (3.17)

where~e = W� 1e and ~eI ;k , ~eII ;k denote EOFs obtained from laboratory or numerical data,456

respectively (e.g., JOLLIFFE, 2002). The standardization by means of the denominator in (3.17)457

is required since~e is assumed not to satisfy (3.15). To apply (3.17) it is necessary to interpolate458

the EOFs from the laboratory data, which are mapped on a Cartesian grid, onto the respective459

numerical grid, which certainly also affects their orthonormality. Since the azimuthal orientation460

of EOFs of different data is arbitrary,~eI ;k and ~eII ;k were rotated against one another to �nd461

the offset angle yielding the largest correlation coef�cient. According to the scalar product of462

physical vectors, the correlation coef�cient can be interpreted as%k = cos ' k , where' k is the463

“angle” between the two EOFs. Thus%k 2 [� 1; 1], where%k = 1 would be the best possible464

value, since it means that both EOFs are “parallel” and pointing in the same “direction”. The465

correlation coef�cients for #3, #7 and #26 are also stated inFigs. 11 – 13. In case of experiments466

#3 and #7 the EOFs of the simulations with grids C2, C3 and C4 correspond relatively well to467

the EOFs obtained from the laboratory measurements, with the highest grid resolution yielding468

the highest correlations. The relatively small change of the correlation from grid C3 to C4 might469

indicate that these values are already close to a limit valuefor the number of grid cells going470

to in�nity. Some of the structural differences in the EOFs might be explained by the fact that471

the horizontal temperature cross sections of the simulations are35 mmlower than the laboratory472

�uid surface measurements. The lowest resolved simulation, with N# � Nr � Nz = 15� 10� 12, is473

no longer able to properly reproduce the leading patterns ofvariability. The results from ALDM474

and CD on grid C3 are relatively close to each other for #3 and #7. In case of experiment475

#26 most simulation variants show a baroclinic wave of azimuthal mode number 3 instead476
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of the experimentally observed wave 4. Using grid C4, the simulations reproduce the correct477

wave number (with ALDM and CD). The simulation with grid C3 isable to show wave 4 only478

combined with ALDM (see Fig. 13d).479

Another �nding is that the variance accounted for by EOF 1 is systematically higher in480

the simulations than in the laboratory measurements considering those cases where there is a481

signi�cant correlation between the EOF patterns from the laboratory measurements and from the482

simulations. Increasing the grid resolution yields only a slight improvement in case of #7 and483

#26 and no improvement in case of #3. Assuming the numerical solution to converge more or484

less smoothly towards the continuum solution with increasing grid resolution, this might indicate485

that the remaining discrepancy between the variances and also the difference in the EOF patterns486

revealed by the correlation coef�cient are for the most partnot due to physical processes not487

or insuf�ciently resolved in the model (e.g. in the boundarylayers). It might be rather due to488

processes not included in the model. The heat exchange between the water and the overlying air,489

not present in the model, might be one of the processes which is responsible for the observed490

differences.491

Assuming the PCA to be an adequate tool of comparison, we conclude that the overall492

agreement between experimental and numerical data is promising. Especially employing ALDM493

is apparently improving the �ow simulation.494

4 Conclusion495

Two �nite-volume models with implicit subgrid-scale parameterization for the simulation of496

the differentially heated rotating annulus have been described and discussed. The �rst model,497

the cylindrical �ow solver with implicit turbulence model(cylFloit), integrates the Boussinesq498

equations in cylindrical coordinates (FARNELL and PLUMB , 1975, 1976). The other model,499

INCA, solves the Boussinesq equations on block structured locally re�ned Cartesian grids and500
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uses a conservative immersed boundary method (MEYER et al., 2010a,b) to represent the annulus501

geometry. Both models employ theAdaptive Local Deconvolution Method(ALDM) (H ICKEL502

et al., 2006; REMMLER and HICKEL, 2013; RIEPERet al., 2013) for parameterizing the effects503

of turbulent subgrid-scale stresses in the framework of a nonlinear �nite-volume discretization.504

For the model validation we made a qualitative comparison between 26 laboratory experi-505

ments, which differed in their angular velocity but shared the other physical parameters, and the506

corresponding simulation results of INCA and cylFloit. Comparison criteria were the azimuthal507

mode number of the dominant baroclinic wave in all 26 experiments and the leading patterns of508

variability of horizontal temperature cross sections in three selected experiments. The observed509

�ow regime ranged from an azimuthally symmetric state with no baroclinic waves, over the reg-510

ular to the irregular baroclinic wave regime. Two simulation variants were tested: The �rst with511

a uniform angular velocity throughout the entire integration, which consists of an azimuthally512

symmetric simulation in order to compute the thermal background state, followed by the full513

3-D simulation of baroclinic waves. The second variant is more strongly based on the laboratory514

procedure, with zero angular velocity during the azimuthally symmetric simulation and a sub-515

sequent spin-up period in which the angular velocity is increased to its �nal value. Deviations516

between simulation and experiments can be expected due to several reasons. The largest errors517

could certainly originate from the numerical model, e.g., if boundary layers are not resolved ad-518

equately. This is here clearly the case in the cylFloit simulations. Nonetheless, both simulation519

variants were generally in good agreement with the laboratory experiments and differed at most520

by one mode number from the experimentally observed azimuthal mode number in case of INCA521

and by two mode numbers in case of cylFloit. However, the second simulation variant including522

spin-up was in some cases closer to the experiment and betterreproduced the transitions from523

the axisymmetric to the regular wave regime and from the regular to the irregular wave regime.524

Some simulations including spin-up showed a transition from an azimuthal mode number also525
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observed in the experiment to the next higher mode number at some time during the integration.526

The different mode numbers in simulations with and without spin-up might be explained527

by the existence of multiple equilibria which is supported by laboratory and numerical hysteresis528

experiments (VINCZE et al., 2014). We considered also an alternative perspective by determining529

the dominant baroclinic wave mode of the linearized dynamics on the azimuthally averaged530

backgrounds in the simulations with and without spin-up. This analysis showed that the two531

backgrounds can have dominant linear modes with different azimuthal mode numbers which then532

might lead to the observed difference in the fully nonlinearbaroclinic waves in the simulations533

with and without spin-up.534

A principal component analysis (PCA) was used to compare time series of horizontal cross535

sections of the temperature from the laboratory measurements and the simulations in terms of536

leading patterns of variability. The PCA was applied to three different experiments. The results537

showed that the simulations were generally in good agreement with the laboratory experiments538

and this agreement was improved to some extend by increasingthe grid resolution. The539

improvement from the second highest to the highest used gridresolution was relatively small,540

which might indicate that a large part of the remaining discrepancies between the laboratory541

experiment and the simulation is not due to an insuf�cient grid resolution, but rather due to542

physical processes not included in the numerical models, such as the heat exchange between543

water and the overlying air.544

The PCA also showed that the use of ALDM improves the agreement with the experiment545

compared to simulations using no subgrid-scale parameterization.546
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A Appendix552

A.1 Governing equations in cylindrical coordinates553

Projecting the momentum equation (2.7) onto the three cylindrical unit vectorse# ; er , andez

yields:
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wherev = ue# + ver + wez is the velocity vector. Here the cylindrical coordinate elements

� �� = � �� of the viscous stress tensor, de�ned via:

� = � �� e� e� (1.2)
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and they also yield the cylindrical coordinate viscous-momentum-�ux vectors:

� � = � �� e� : (1.4)

The continuity equation (2.10) reads:

r � v =
1
r

@u
@#

+
1
r

@
@r

(rv ) +
@w
@z

= 0 : (1.5)

The �ux divergences in the thermodynamic equation:

@T
@t

= � r � (vT) + r � (� r T ) (1.6)

can be expressed analogously to (1.5). The temperature gradient reads:

r T =
1
r

@T
@#

e# +
@T
@r

er +
@T
@z

ez : (1.7)

A.2 Governing equations in Cartesian coordinates554

Here the horizontal polar coordinates(#; r ) are replaced by their Cartesian equivalents(x; y).

The components of the momentum equation in Cartesian coordinates are then obtained by

projecting (2.7) onto the three unit vectorsex , ey andez :
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wherev = uex + vey + wez is the velocity vector. The elements of the viscous stress tensor

are:
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The continuity equation (2.10) reads:

r � v =
@u
@x

+
@v
@y

+
@w
@z

= 0 : (1.10)

Expressing the temperature gradient in the thermodynamic equation (1.6) in Cartesian coordi-

nates yields:

r T =
@T
@x

ex +
@T
@y

ey +
@T
@z

ez : (1.11)

A.3 Volume averaged governing equations555

The numerical models INCA and cylFloit use a �nite-volume discretization of the governing

equations. For this purpose the equations are averaged overa grid cell volume. This way the

x-component of the momentum equation (1.8a), e.g., becomes for case II:

@�u
@t

= �
1
V

I

@V

dS � (vu + ~pex � � x ) + 2
� v + 
 2 �x +
d

dt

�y; (1.12)

where(�) = 1
V

R
V (�) dV denotes the volume average over a grid cell volumeV = � x� y� z556

(see table 2 for the grid cell sizes� x, � y and � z). The divergence theorem was used to557

transform the volume integrals of divergences into �ux integrals over the volume surface@V,558
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wheredS is the surface element vector pointing outward. The other governing equations are559

treated in the same way.560

As an example in cylindrical coordinates, the volume average of (1.1a) for case II is shown

@�u
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� 2
� v �

d

dt

�r; (1.13)

where the grid cell volume reads nowV = r c� #� r � z, with r c = rmin + � r=2 the mean561

radial distance of the cell from the rotation axis. A cylindrical grid cell is shown in Fig. 3c562

and its sizes are listed in table 4. With the exception of the advective �uxes, all right-hand-side563

terms of the volume averaged governing equations are discretized using standard second-order564

accurate �nite-volume techniques: The midpoint rule is used to approximate volume and surface565

integrals. Averages of products become products of averages so that, e.g., the second term on566

the right-hand side of equation (1.13) is approximated(uv=r) � �u�v(1=r). Spatial derivatives567

appearing in the elements of the stress tensor are computed by central differences and values568

required but not de�ned at a certain position are interpolated linearly (e.g., FERZIGERand PERIĆ,569

2008). The ability of implicit subgrid-scale parameterization is achieved by using ALDM for the570

reconstruction of the advective �uxes, e.g.,1
V

H
@VdS � vu in equation (1.12).571
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RANDRIAMAMPIANINA , A., W.-G. FRÜH, P. L. READ, P. MAUBERT, 2006: Direct numerical650

simulations of bifurcations in an air-�lled rotating baroclinic annulus. – J. Fluid Mech.561,651

359–389.652

READ, P. L., 1986: Regimes of axisymmetric �ow in an internally heated rotating �uid.. – J.653

Fluid Mech.168, 255–289.654

READ, P. L., 2001: Transition to geostrophic turbulence in the laboratory, and as a paradigm in655

atmospheres and oceans. – Surv. Geophys.22, 265–317.656

READ, P. L., S. R. LEWIS, R. HIDE, 1997: Laboratory and numerical studies of baroclinic657

waves in an internally heated rotating �uid annulus: a case of wavenvortex duality?. – J. Fluid658

Mech.337, 155–191.659

READ, P. L., N. P. J. THOMAS, S. H. RISCH, 2000: An evaluation of Eulerian and semi-660

Lagrangian advection schemes in simulations of rotating, strati�ed �ows in the laboratory.661

Part I: axisymmetric �ow. – Mon. Weather Rev.128, 2835–2852.662

READ, P. L., P. MAUBERT, A. RANDRIAMAMPIANINA , W.-G. FRÜH, 2008: Direct numerical663
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Table 1: Coef�cients for the temperature-dependent parametrization of density, kinematic viscosity and thermal
diffusivity of water. The coef�cients have been obtained bya least-square �t to the data shown in Fig. 2. Standard
deviations are given as well.

coef�cient density� kinematic viscosity� thermal diffusivity�

� (1000 :79 � 0:09) � 10� 9 kg
mm 3 (1 :584 � 0:02) mm 2

s (1 :3384 � 0:0004) � 10� 1 mm 2

s

� � (5 :7 � 0:6) � 10� 11 kg
mm 3 � C

� (3 :25 � 0:1) � 10� 2 mm 2

s � C (5 :19 � 0:03) � 10� 4 mm 2

s � C


 � (3 :9 � 0:1) � 10� 12 kg
mm 3 � C 2 (2 :3 � 0:1) � 10� 4 mm 2

s � C 2 � (1 :86 � 0:03) � 10� 6 mm 2

s � C 2

Table 2: Grid characteristics for the INCA simulations

grid # blocks cells � xy min [mm] � xy max [mm] � zmin [mm] � zmax [mm]

I1 44 863 280 1.54 4.63 0.25 3.2
I2 175 2 185 920 0.51 4.63 0.25 3.2
I3 171 2 954 880 0.51 1.54 0.25 3.2

Table 3: Physical parameters of the validation experiments.

- inner radius,a: 45 mm
- outer radius,b: 120 mm
- �uid depth, d: 135 mm
- inner wall temperature,Ta : 24 � C
- outer wall temperature,Tb : 32 � C
- working �uid: de-ionized water

Table 4: Grid characteristics and spin-up periods for the cylFloit simula-
tions.

N # � N r � N z b� # [mm] � r [mm] � z [mm]

- grid C1: 15 � 10 � 12 50:27 7:5 11:25
- grid C2: 30 � 20 � 25 25:13 3:75 5:4
- grid C3: 60 � 40 � 50 12:57 1:88 2:7
- grid C4: 120 � 80 � 150 6:28 0:94 0:9

- spin-up periods:

#1 � [s] # � [s] # � [s] # � [s] # � [s]
1 20 7 20 13 180 19 360 25 720
2 20 8 20 14 210 20 390 26 910
3 20 9 20 15 240 21 410
4 20 10 20 16 260 22 440
5 20 11 20 17 300 23 460
6 20 12 20 18 330 24 500

1 Experiment number
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Table 5: Azimuthal mode number obtained in INCA and cylFloit simulations with and without spin-up. Mode numbers that
do not match the experiment are set in parentheses. In addition, the values of the Burger numberBu which is related to the
thermal Rossby numberRoth = 4 Bu , the Taylor numberT a and the thermal Reynolds numberReth are listed.

dimensionless mode numbers
numbers INCA cylFloit

experiment # 
 [r.p.m.] Bu T a Re th experiment grid I1 grid I2 grid I1 spin-up no spin-up with spin-up

1 2.99 1.33 9:44� 106 5477 0 0 0 0
2 3.53 0.95 1:32� 107 4633 2 2 (0) (0)
3 4.04 0.73 1:72� 107 4053 2 2 2 (0) 2
4 4.5 0.59 2:14� 107 3640 2 (3) 2 (0) 2
5 5.01 0.47 2:66� 107 3265 2 (1) (3)
6 5.41 0.4 3:1� 107 3023 3 3 3 3
7 6 0.33 3:8� 107 2730 3 3 3
8 6.48 0.28 4:44� 107 2525 3 3 3 3 3 3
9 7.02 0.24 5:2� 107 2332 3 3 3 3 3
10 7.5 0.21 5:94� 107 2184 3 (4) (4) 3 3
11 7.98 0.19 6:73� 107 2051 3 (4) (4) 3 3 (4)
12 8.5 0.16 7:63� 107 1926 4 (3) 4
13 9 0.15 8:55� 107 1820 3 (4) (4)
14 9.5 0.13 9:54� 107 1723 3 (4) (4) (4) 3 3
15 9.96 0.12 1:05� 108 1644 3 (4) 3
16 10.8 0.1 1:23� 108 1516 3 (4) 3
17 11.3 0.09 1:35� 108 1449 3 (4) 3
18 12 0.08 1:52� 108 1364 3 (4) (4) (4) (4)
19 12.48 0.08 1:65� 108 1312 3 (4) (4)
20 13.02 0.07 1:79� 108 1258 4 4 4 (3)
21 13.53 0.06 1:93� 108 1210 3 (4) (4)
22 13.98 0.06 2:06� 108 1171 3 (4) (4) (5) (4)
23 15.01 0.05 2:38� 108 1091 3 (4) (4)
24 15.99 0.05 2:7� 108 1024 3 (4) (4) (4)
25 19.99 0.03 4:22� 108 819 4 (5) 4
26 25.02 0.02 6:61� 108 654 4 4 4 4 4
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Figure 1: Schematic view of the differentially heated rotating annulus.

Figure 2: Temperature dependence of density� , kinematic viscosity� and thermal diffusivity� for water at a pressure
of 1 bar. The marks (cross, triangle and rhombus) indicate tabulated values from VEREIN DEUTSCHERINGENIEURE

et al. 2006, Section Dba 2. In addition, the best-�t parabolas are plotted, using the coef�cients listed in table 1.
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(a) (b)

(c) (d)

Figure 3: (a) Top view of the regular, cylindrical �nite-volume grid of cylFloit (the dotted lines mark the grid cell walls).
(b) Vertical cross section of the grid. (c) A �nite-volume grid cell with azimuthal, radial and vertical side lengths� #,
� r and� z, and grid indicesi; j; k . (d) Volume averaged variables arranged on a C-grid.
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(a) grid I1 (b) grid I2

(c) grid I3

Figure 4: Top views on the computational grids used in the INCA simulations
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Figure 5: Dependence of the angular velocity
 on timet. Two variants are investigated during the model validation: The
�rst classical variant (dashed line) assumes a constant angular velocity
 f throughout the entire simulation (azimuthally
symmetric 2-D simulation up to timet2D followed by the full 3-D simulation). In the second variant (solid line) 
 is set
to zero during the azimuthally symmetric simulation, followed by a spin-up period of length� after which the constant

 f is reached. This second variant is closer to the laboratory practice.

(a) #3: experiment (b) #3: simulation without spin-up (c) #3: simulation with spin-up

Figure 6: Temperature �elds in� C from the laboratory measurement and the cylFloit 3-D simulations of experiment
#3 (
 = 4 r :p:m:) showing the fully developed baroclinic waves. (a) shows a temperature measurement at the �uid
surface (z = d = 135 mm ) in the laboratory experiment at a representative time. Thetemperature from the �rst
simulation variant without spin-up is depicted in (b), and from the second variant with spin-up in (c). Both are in the
planez = 100 mm at time t = 10800 s (3 h). The contour interval is0:5 � C. To emphasize the baroclinic wave,
temperature values lower thanTth are shaded in grey, whereTth = 28 :5 � C in (a) andTth = 31 � C in (b) and (c). The
simulations were performed using a grid resolution ofN# � N r � Nz = 60 � 40 � 50.
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(a) #7: experiment (b) #7: simulation without spin-up (c) #7: simulation with spin-up

Figure 7: As Fig. 6, but now for experiment #7 (
 = 6 r :p:m:). The contour interval is0:5 � C. Temperature values
lower thanTth = 31 � C are shaded in grey.

(a) #26: experiment (b) #26: simulation without spin-up (c) #26: simulation with spin-up

Figure 8: As Fig. 6, but now for experiment #26 (
 = 25 r :p:m:). The contour interval is0:5 � C. Temperature values
lower thanTth are shaded in grey, whereTth = 30 :5 � C in (a) andTth = 31 � C in (b) and (c).
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(a) #16: simulation without spin-up (b) #16: simulation with spin-up

(c) #16: linearized model/
background: no spin-up/t = t 2D

(d) #16: linearized model/
background: no spin-up/t > t 2D

(e) #16: linearized model/
background: with spin-up

Figure 9: (a) and (b) as Fig. 6b and 6c, but here for experiment #16 (
 = 10 :8 r:p:m:). Temperature values lower
than31 � C are shaded in grey. (c), (d) and (e) show temperature modes obtained from a linearized version of cylFloit at
z = 100 mm in arbitrary units (regions with negative values are shadedin grey). (c) is the fastest growing mode on the
baroclinically unstable, azimuthally symmetric initial background of the simulation variant without spin-up att = t2D .
(d) is the least damped mode on the baroclinically stable background obtained from an azimuthal average of the fully
developed nonlinear �ow of the simulation variant without spin-up of which the temperature is shown in (a). (e) is the
least damped mode on the background obtained from an azimuthal average of the �ow of the simulation variant with
spin-up of which the temperature is shown in (b).
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(a) #26: 15 � 10 � 12/ALDM (b) #26: 30 � 20 � 25/ALDM

(c) #26: 60 � 40 � 50/CD (d) #26: 120 � 80 � 150/ALDM

Figure 10: Temperature �elds from cylFloit 3-D simulations of experiment #26 using different numerical set-ups, all of
which are initialized with spin-up. (a) shows the result from grid C1 (N# � N r � Nz = 15 � 10� 12, see table 4) and (b)
from grid C2 (N# � N r � Nz = 30 � 20� 25). (c) is obtained from grid C3 (N# � N r � Nz = 60 � 40� 50), where
central differences (CD) instead of ALDM were employed to compute the advective �uxes (so no particular subgrid-
scale parameterization is used in these simulations). The result from the highest grid resolution C4 (N# � N r � Nz =
120 � 80 � 150) is depicted in (d). All cross sections are at heightz = 100 mm at timet = 10800 s in case of (a), (b)
and (c) andt = 3300 s in case of (d). Contour intervals are0:2 � C for (a) and0:5 � C for (b, c, d). To emphasize the
baroclinic wave, temperature values lower thanTth are shaded in grey, whereTth = 29 :8 � C in (a),Tth = 30 :5 � C in
(b) andTth = 31 � C in (c) and (d).
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(a) #3: experiment
var.: 25.6 %
corr.: 1

(b) #3: 15� 10� 12/ALDM
var.: 32.5 %
corr.: 0.04

(c) #3: 30� 20� 25/ALDM
var.: 40.3 %
corr.: 0.86

(d) #3: 60� 40� 50/ALDM
var.: 33.5 %
corr.: 0.9

(e) #3: 60 � 40 � 50/CD
var.: 34.6 %
corr.: 0.9

(f) #3: 120 � 80 � 150/
ALDM
var.: 37.6 %
corr.: 0.91

Figure 11: The �rst empirical orthogonal function (EOF 1) resulting from a principal component analysis of time series
of the temperature �eld of experiment #3 (
 = 4 r :p:m:). (a) shows EOF 1 from the laboratory measurements. (b) to
(f) are the EOFs from the cylFloit 3-D simulations, where thecaptions state the different grid resolutions and advective
�ux schemes used, following the pattern:N# � N r � Nz /�ux scheme (either theAdaptive Local Deconvolution Method
(ALDM), or central differences(CD)). In addition the variance (var.) EOF 1 accounts for andthe correlation (corr.)
with the EOF from the laboratory measurements (a) are stated. The EOFs are plotted in arbitrary units and regions with
negative values are shaded in grey.

(a) #7: experiment
var.: 28.7 %
corr.: 1

(b) #7: 15� 10� 12/ALDM
var.: 40.7 %
corr.: 0.6

(c) #7: 30� 20� 25/ALDM
var.: 43.2 %
corr.: 0.85

(d) #7: 60� 40� 50/ALDM
var.: 41.2 %
corr.: 0.86

(e) #7: 60 � 40 � 50/CD
var.: 41.7 %
corr.: 0.87

(f) #7: 120 � 80 � 150/
ALDM
var.: 39.5 %
corr.: 0.88

Figure 12: As in Fig. 11, but now for experiment #7 (
 = 6 r :p:m:).
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(a) #26: experiment
var.: 9.8 %
corr.: 1

(b) #26: 15 � 10 � 12/
ALDM
var.: 17.6 %
corr.: 0.02

(c) #26: 30 � 20 � 25/
ALDM
var.: 10.9 %
corr.: 0.12

(d) #26: 60 � 40 � 50/
ALDM
var.: 35.2 %
corr.: 0.78

(e) #26: 60 � 40 � 50/CD
var.: 18.4 %
corr.: 0.07

(f) #26: 120 � 80 � 150/
ALDM
var.: 31.6 %
corr.: 0.75

Figure 13: As in Fig. 11, but now for experiment #26 (
 = 25 r :p:m:).

(a) grid I1 (b) grid I2 (c) grid I3

Figure 14: Temperature contours (interval 0.5� C) for experiment #14 (
 = 9 :5 r.p.m.) simulated with INCA on three
different computational grids. The result is shown at simulated timet = 750 s in the planez = 67 :5 mm.
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(a) t = 75 s (b) t = 90 s (c) t = 150 s

Figure 15: Temperature contours (interval 0.5� C) in the planez = 67 :5mm for experiment #10 (
 = 7 :5 r.p.m.)
simulated with INCA without spin-up simulation.

(a) t = 680 s (b) t = 747:5 s (c) t = 815 s

Figure 16: Temperature contours (interval 0.5� C) in the planez = 67 :5mm for experiment #10 (
 = 7 :5 r.p.m.)
simulated with INCA with a spin-up time of 200 s after a non-rotating period of 200 s.
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