SS 2015 Frankfurt/M., 24.06.2015 Abgabetermin: 01.07.2015

Kommutative Algebra

Übungsblatt 11

Aufgabe 1 (4 Punkte)

Beweise die Aussage aus Beispiel 10.21 aus der Vorlesung: Sei (R, \mathfrak{m}) ein lokaler noetherscher Ring. Ein Ideal $\mathfrak{a} \subseteq R$ ist genau dann \mathfrak{m} -primär, wenn es ein $k \in \mathbb{N}$ gibt mit $\mathfrak{m}^k \subseteq \mathfrak{a} \subseteq \mathfrak{m}$.

Aufgabe 2 (4 Punkte)

Sei R ein noetherscher, faktorieller Ring und $0 \neq f \in R \setminus R^{\times}$. Bestimme anhand der Primfaktorzerlegung von f eine Primärzerlegung

$$(f) = \bigcap_{i=1}^{r} \mathfrak{a}_i.$$

Bestimme außerdem $\mathrm{Ass}_R(R/(f))$. Warum ist die Primärzerlegung von (f) eindeutig?

Aufgabe 3 (4 Punkte)

Seien K ein Körper,

$$R := K[X, Y, Z]/(XY - Z^2)$$

und $\mathfrak p$ das von den Restklassen von X und Z erzeugte Ideal in R. Zeige, dass $\mathfrak p$ ein Primideal, aber $\mathfrak p^2$ nicht primär ist.

Aufgabe 4 (4 Punkte)

Sei $V=\mathbb{R}^4$ und $\varphi\in \operatorname{End}_{\mathbb{R}}(V)$ gegeben durch Linksmultiplikation mit der Matrix

$$A := \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix}.$$

Betrachte V mit der durch $X\mapsto \varphi$ definierten $\mathbb{R}[X]$ -Modulstruktur und bestimme die Primärzerlegung

$$V = \bigoplus_{\substack{p \in \mathbb{R}[X], \\ p \text{ prim}}} V[p^{\infty}].$$