Applied and Numerical Analysis Seminar

Heraklion, 06 December 2012

Weak solutions to rate-independent systems

- Energetic solutions
- BV solutions constructed by vanishing viscosity
- BV solutions constructed by epsilon-neighborhood method

Contents

[1] Rate-independent systems.
[2] Toy model.
[3] Abstract framework.
[4] Simple example.
[5] Energetic solutions.
[6] BV solutions constructed by vanishing viscosity.
[7] BV solutions constructed by epsilon-neighborhood method.
[7] Future works.

Rate-independent system

- Preserved under time rescaling.
- No own dynamics.
- No inertial effects.
- No kinetic energy.
- Dissipated energy doesn't depend on velocity.
- Application: dry friction, crack propagation, delamination, shape-memory alloys, etc.

Toy model

- Input: $y(t)$ the free end of the spring.
- Output: $x(t)$ the center of the box.

Two forces:

- The external force f_{e} due to the spring, $f_{e}:=-\partial_{x} \mathscr{E}(t, x)$, here $\mathscr{E}(t, x)=\frac{c}{2}(x-y(t))^{2}$.
- The frictional force f_{a} due to the carpet (dry friction), $f_{a}:=-k \frac{v}{|v|}$ if $v \neq 0, f_{a}:=-f_{e}$ and $\left|f_{a}\right| \leq k$ if $v=0$.
k : the frictional coefficient, $v=\dot{x}(t)$: the velocity of the box.

Toy model

- If $\left|f_{e}\right|<k$, then $f_{a}=-f_{e}$ and the box does not move.
- After reaching the critical value $\left|f_{e}\right|=k$, the box starts moving.

Equation of dynamics

$$
m \ddot{x}=f_{a}+f_{e}
$$

m : the mass of the box.
Quasistatic evolution \Rightarrow neglect the term $m \ddot{x}$

$$
0=f_{a}+f_{e}
$$

Define $\Psi(v):=k|v|$, then $-f_{a} \in \partial \Psi(v)$. We get

$$
0 \in \partial \Psi(\dot{x}(t))+\partial_{x} \mathscr{E}(t, x(t))
$$

Toy model

Explicitly, we can write

- $\mid c(x(t)-y(t) \mid \leq k$.
- $\dot{x}(t)[z-c(x(t)-y(t))] \leq 0$ for all $z \in[-k, k]$.

Easy to check that this is RIS: doubling the speed at which $y(t)$ moves, the effect on $x(t)$ is also doubled in speed.

Abstract framework

- X [finite-dimensional] normed vector space.
- $\mathscr{E}(t, x)$ smooth energy functional.
- $\Psi(x)$ dissipation functional, for simplicity, we assume $\Psi(x)=|x|$.
- The position x is stable \Leftrightarrow it minimizes the total energy (total energy $=$ external energy + dissipation).

Differential inclusion:

$$
\begin{equation*}
0 \in \partial|\dot{x}(t)|+\nabla_{x} \mathscr{E}(t, x(t)) \text { for a.e. } t \in(0, T) \tag{1}
\end{equation*}
$$

- $\mathscr{E}(t,$.$) convex \Rightarrow$ existence of a unique strong solution.
- In general, strong solutions may not exist \Rightarrow weak solutions are needed.

Simple example

- $\mathscr{E}(t, x):=x^{2}-x^{4}+0.3 x^{6}+t\left(1-x^{2}\right)-x, t \in[0,2], x \in \mathbb{R}$.
- Initial position: $x_{0}:=0$.
- Strong solution: $x(t)=0$ for $t \in[0,1)$.
- Strong solution cannot be extended continuously when $t \geq 1$, since it would violate the local minimality.

Energy plus dissipation function at the beginning

Figure 1. Function $\mathscr{E}(t, x)+\left|x-x_{0}\right|$ with $t=0$ and $x_{0}=0$. Unique global minimizer at $x=0$.

Energy plus dissipation function at $t=1 / 3$

Figure 2. Function $\mathscr{E}(t, x)+\left|x-x_{0}\right|$ with $t=1 / 3$ and $x_{0}=0$.
Unique global minimizer at $x=\frac{\sqrt{10+\sqrt{10+90 t}}}{3}$.
One local minimizer at $x=0$.

Energy plus dissipation function at $t=1$

Figure 3. Function $\mathscr{E}(t, x)+\left|x-x_{0}\right|$ with $t=1$ and $x_{0}=0$.
Unique global minimizer at $x=\frac{\sqrt{10+\sqrt{10+90 t}}}{3}$.
One local minimizer at $x=0$.

Energy plus dissipation function at $t=1.2$

Figure 4. Function $\mathscr{E}(t, x)+\left|x-x_{0}\right|$ with $t=1.2$ and $x_{0}=0$.
Unique global minimizer at $x=\frac{\sqrt{10+\sqrt{10+90 t}}}{3}$.
$x=0$ is neither local minimizer nor global minimizer.

Energetic solutions (Mielke and Theil 1999)

Definition. $x(\cdot)$: energetic solutions

- (Initial condition) $x(0)=x_{0}$,
- (Global stability) $\mathscr{E}(t, x(t)) \leq \mathscr{E}(t, z)+|z-x(t)|, \quad \forall z \in X$.
- (Energy-dissipation balance) For all $0 \leq s \leq t \leq T$,

$$
\mathscr{E}(t, x(t))-\mathscr{E}(s, x(s))=\int_{s}^{t} \partial_{t} \mathscr{E}(r, x(r)) d r-\mathscr{D} i s s(x(\cdot) ;[s, t])
$$

Dissipation energy $=$ energy dissipated when the particle moves.

- Equals to the usual variation (or length), i.e.,

$$
\begin{aligned}
& \mathscr{D} i s s(x ;[s, t]):= \\
& \sup \left\{\sum_{n=1}^{N}\left|x\left(t_{n}\right)-x\left(t_{n-1}\right)\right| \mid N \in \mathbb{N}, s=t_{0}<t_{1}<\ldots<t_{N}=t\right\} .
\end{aligned}
$$

- The loss of energy along the jump $=$ the jump step.

Construction of energetic solutions

- Time-partition $t_{i}=i \tau, \tau>0, i=0,1,2, \ldots$
- Let $x_{0}^{\tau}=x_{0}$ and $x_{n}^{\tau} \in \operatorname{argmin}\left\{\mathscr{E}\left(t_{n}, x\right)+\left|x-x_{n-1}^{\tau}\right|\right\}$.

$$
x \in X
$$

- Interpolation $x^{\tau}(t)=x_{n-1}^{\tau}$ for all $t \in\left[t_{n-1}, t_{n}\right)$.
- Pointwise limit $x^{\tau}(t) \rightarrow x(t)$ as $\tau \rightarrow 0$ for every $t \in[0, T]$.
- $x(\cdot)$ is an energetic solution of $\left(\mathscr{E},|\cdot|, x_{0}\right)$.

Energy plus dissipation function at $t=1 / 6$

Figure 5. Function $\mathscr{E}(t, x)+\left|x-x_{0}\right|$ with $t=1 / 6$ and $x_{0}=0$.
Two global minimizers at $x=0$ and $x=\sqrt{5 / 3}$.

Energy plus dissipation function at $t=0.5$

Figure 6. Function $\mathscr{E}(t, x)+\left|x-x_{0}\right|$ with $t=0.5$ and $x_{0}=0$.
Unique global minimizer at $x=\frac{\sqrt{10+\sqrt{10+90 t}}}{3}$.
One local minimizer at $x=0$.

Simple example

- $\mathscr{E}(t, x):=x^{2}-x^{4}+0.3 x^{6}+t\left(1-x^{2}\right)-x, t \in[0,2], x \in \mathbb{R}$.
- Initial position: $x_{0}:=0$.
- When $t>1 / 6, x=0$ is no longer a global minimizer. Thus, energetic solution must jump at $t=1 / 6$.
- One energetic solution:

$$
x(t)= \begin{cases}0 & \text { if } t \in[0,1 / 6) ; \\ \frac{\sqrt{10+\sqrt{10+90 t}}}{3} & \text { if } t \in(1 / 6,2] .\end{cases}
$$

and $x(1 / 6) \in\{0, \sqrt{5 / 3}\}$.

- This solution is not good since it does not agree with strong solution.

Vanishing viscosity (Mielke, Rossi, and Savaré 2012)

- Add a small viscosity into the dissipation, e.g. $\varepsilon|x|^{2}$.
- With time step $\tau>0$ and viscous term $\varepsilon|x|^{2}$, choose $x_{0}^{\tau, \varepsilon}=x_{0}$ and

$$
x_{n}^{\tau, \varepsilon} \in \underset{x \in X}{\operatorname{argmin}}\left\{\mathscr{E}\left(t_{n}, x\right)+\left|x-x_{n-1}^{\tau, \varepsilon}\right|+\frac{\varepsilon}{\tau}\left|x-x_{n-1}^{\tau, \varepsilon}\right|^{2}\right\} .
$$

- Interpolation + pointwise limit $(\tau / \varepsilon \rightarrow 0) \Rightarrow \mathrm{BV}$ function $x(\cdot)$.

Properties: $x(0)=x_{0}$ and

- (Weak local stability) $\left|\nabla_{x} \mathscr{E}(t, x(t))\right| \leq 1$ if $t \notin J$.
- (New energy-dissipation balance) For all $0 \leq s \leq t \leq T$,

$$
\mathscr{E}(t, x(t))-\mathscr{E}(s, x(s))=\int_{s}^{t} \partial_{t} \mathscr{E}(r, x(r)) d r-\mathscr{D}{i s s_{n e w}}(x(\cdot) ;[s, t])
$$

New dissipation energy

- Another computation for the loss of energy along the jump

$$
\begin{aligned}
& \mathscr{D} i s s_{n e w}(x ;[s, t]):= \\
= & \mathscr{D} i s s(x ;[s, t])-\sum_{t \in J}\left[\left|x\left(t^{-}\right)-x(t)\right|+\left|x(t)-x\left(t^{+}\right)\right|\right] \\
& +\sum_{t \in J}\left[\Delta_{n e w}\left(t, x\left(t^{-}\right), x(t)\right)+\Delta_{n e w}\left(t, x(t), x\left(t^{+}\right)\right)\right],
\end{aligned}
$$

where

$$
\Delta_{n e w}(t, a, b):=\inf _{\substack{v \in A C\left([0, T] ; \mathbb{R}^{d}\right) \\ v(0)=a, v(1)=b}}\left\{\int_{0}^{1}|\dot{v}(r)| \cdot \max \left\{1,\left|\partial_{x} \mathscr{E}(t, v(r))\right|\right\}\right\}
$$

- In general, $\mathscr{D}{i s s_{n e w}}(x ;[s, t]) \geq \mathscr{D} i s s(x ;[s, t]) \forall x \in \mathrm{BV}$.
- If $r \mapsto x(r)$ is continuous on $[s, t]$, then
$\mathscr{D} i s s_{n e w}(x ;[s, t])=\mathscr{D} i s s(x ;[s, t])$.

Optimal transition

- \exists an optimal transition between u_{-}and u_{+}iff

$$
\mathscr{E}\left(t, u_{+}\right)-\mathscr{E}\left(t, u_{-}\right)=-\Delta_{n e w}\left(t ; u_{-}, u(t)\right)-\Delta_{\text {new }}\left(t ; u(t), u_{+}\right)
$$

- Absolutely continuous curve $\gamma:[0,1] \rightarrow \mathbb{R}^{d}$ connecting u_{-}and u_{+}and satisfying
(i) $\left|\nabla_{x} \mathscr{E}(t, \gamma(s))\right| \geq 1$ for all $s \in(0,1)$.
(ii) $\nabla_{x} \mathscr{E}(t, \gamma(s)) \cdot \dot{\gamma}(s)=-\left|\nabla_{x} \mathscr{E}(t, \gamma(s))\right| \cdot|\dot{\gamma}(s)|$.
- In 1-dim, optimal transition is the linear path connecting u_{-} and u_{+}.
- In n-dim, the existence of optimal transition is much more complicated, and it is obtained by using time rescaling technique.

Simple example

- $\mathscr{E}(t, x):=x^{2}-x^{4}+0.3 x^{6}+t\left(1-x^{2}\right)-x, t \in[0,2], x \in \mathbb{R}$.
- Initial position: $x_{0}:=0$.
- Choose viscosity as $\varepsilon^{5} x^{6}$.
- The corresponding BV solution:

$$
x(t)= \begin{cases}0 & \text { if } t \in[0,1) ; \\ \frac{\sqrt{10+\sqrt{10+90 t}}}{3} & \text { if } t \in(1,2] .\end{cases}
$$

and $x(1) \in\{0, \sqrt{20} / 3\}$.

- This solution is good since it agrees with strong solution up to strong solution exists.

Drawback of BV solutions constructed by vanishing viscosity

$x(\cdot)$ depends heavily on the viscosity. Inappropriate choice of viscosity \Rightarrow solution jumps later than expected!
Example. $X=\mathbb{R}, \Psi(x)=|x|, x_{0}=0$,

$$
\mathscr{E}(t, x)=x^{2}-x^{4}+0.3 x^{6}+t\left(1-x^{2}\right)-x, \quad t \in[0,2] .
$$

- Choose viscousity as $\varepsilon|x|^{2}$.
- Corresponding BV solution $x(t)=0$ for all $t \in[0,2]$.
- Unreasonable solution. Since local minimality is violated when $t \geq 1$.

Epsilon-neighborhood solutions

Construction:

- Fix $\varepsilon>0$. With time-partition $\tau>0$, choose $x_{0}^{\varepsilon, \tau}=x_{0}$ and

$$
x_{n}^{\tau, \varepsilon} \in \underset{\left|x-x_{n-1}^{\varepsilon, \tau}\right| \leq \varepsilon}{\operatorname{argmin}}\left\{\mathscr{E}\left(t_{n}, x\right)+\left|x-x_{n-1}^{\varepsilon, \tau}\right|\right\}
$$

- Interpolation + pointwise limit $(\tau \rightarrow 0) \Rightarrow$ BV function $x^{\varepsilon}(\cdot)$.
(i) (Epsilon local stability) If $x^{\varepsilon}(\cdot)$ is right-continuous at t, then

$$
\mathscr{E}\left(t, x^{\varepsilon}(t)\right) \leq \mathscr{E}(t, z)+\left|z-x^{\varepsilon}(t)\right| \text { for all }\left|z-x^{\varepsilon}(t)\right| \leq \varepsilon
$$

(ii) (Energy-dissipation inequalities) - \mathscr{D} iss $_{\text {new }}\left(x^{\varepsilon} ;[s, t]\right) \leq$ $\mathscr{E}\left(t, x^{\varepsilon}(t)\right)-\mathscr{E}\left(s, x^{\varepsilon}(s)\right)-\int_{s}^{t} \partial_{t} \mathscr{E}\left(r, x^{\varepsilon}(r)\right) d r \leq-\mathscr{D} i s s\left(x^{\varepsilon} ;[s, t]\right)$.

- Pointwise limit of $x^{\varepsilon}(\cdot)(\varepsilon \rightarrow 0) \Rightarrow$ BV function $x(\cdot)$.

Properties: Weak-local stability and new energy-dissipation balance hold.

Simple example

- $X=\mathbb{R}, \Psi(x)=|x|, x_{0}=0$,

$$
\mathscr{E}(t, x)=x^{2}-x^{4}+0.3 x^{6}+t\left(1-x^{2}\right)-x, \quad t \in[0,2] .
$$

- BV solution by epsilon-neighborhood

$$
x(t)=0 \quad \text { if } t<1, x(t)=\frac{\sqrt{10+\sqrt{10+90 t}}}{3} \text { if } t>1 .
$$

- This solution jumps at time $t=1$, from $x=0$ to $x=\sqrt{20} / 3$. This is a reasonable solution!

New energy-dissipation balance via epsilon-neighborhood

For all $t>s$,

$$
\mathscr{E}(t, x(t))-\mathscr{E}(s, x(s))=\int_{s}^{t} \partial_{t} \mathscr{E}(r, x(r)) d r-\mathscr{D} i s s_{n e w}(x(\cdot) ;[s, t])
$$

At jumps:

$$
\mathscr{E}\left(t, x\left(t^{+}\right)\right)-\mathscr{E}\left(t, x\left(t^{-}\right)\right)=-\Delta_{n e w}\left(t ; x\left(t^{-}\right), x(t)\right)-\Delta_{n e w}\left(t ; x(t), x\left(t^{+}\right)\right)
$$

$$
\Delta_{n e w}(t, a, b):=\inf _{\substack{v \in A C\left([0, T] ; \mathbb{R}^{d}\right) \\ v(0)=a, v(1)=b}}\left\{\int_{0}^{1} \max \left\{1,\left|\nabla_{x} \mathscr{E}(t, v(s))\right|\right\} \cdot|\dot{v}(s)|\right\}
$$

Proposition (Lower bound - Mielke, Rossi, and Savaré 2009). Let $d \geq 1$ and $\mathscr{E} \in C^{1}\left([0, T] \times \mathbb{R}^{d}, \mathbb{R}\right)$. For any $B V$ function $u:[0, T] \rightarrow \mathbb{R}^{d}$, then
$\mathscr{E}\left(t, u\left(t^{+}\right)\right)-\mathscr{E}\left(t, u\left(t^{-}\right)\right) \geq-\Delta_{\text {new }}\left(t ; u\left(t^{-}\right), u(t)\right)-\Delta_{\text {new }}\left(t ; u(t), u\left(t^{+}\right)\right)$.

New energy-dissipation balance: Lower bound

To prove Lower Bound, write
$\mathscr{E}\left(t, u\left(t^{+}\right)\right)-\mathscr{E}\left(t, u\left(t^{-}\right)\right)=\mathscr{E}\left(t, u\left(t^{+}\right)\right)-\mathscr{E}(t, u(t))+\mathscr{E}(t, u(t))-\mathscr{E}\left(t, u\left(t^{-}\right)\right)$.
If $v \in A C\left([0,1], \mathbb{R}^{d}\right)$ such that $v(0)=u(t)$ and $v(1)=u\left(t^{+}\right)$, then

$$
\begin{aligned}
\mathscr{E}\left(t, u\left(t^{+}\right)\right)-\mathscr{E}(t, u(t)) & =\int_{0}^{1} \nabla_{x} \mathscr{E}(t, v(s)) \cdot \dot{v}(s) d s \\
& \geq-\int_{0}^{1} \max \left\{1,\left|\nabla_{x} \mathscr{E}(t, v(s))\right|\right\} \cdot|\dot{v}(s)| d s
\end{aligned}
$$

Thus

$$
\begin{aligned}
\mathscr{E}\left(t, u\left(t^{+}\right)\right)-\mathscr{E}(t, u(t)) & \geq-\inf _{\substack{v \in A C\left([0, T] ; \mathbb{R}^{d}\right) \\
v(0)=a, v(1)=b}}\left\{\int_{0}^{1} \cdots\right\} \\
& =-\Delta_{n e w}\left(t ; u(t), u\left(t^{+}\right)\right)
\end{aligned}
$$

Discretized solutions

Lemma (Discretized solutions). Write $x_{j}=x^{\varepsilon, \tau}\left(t_{j}\right)$. Then

$$
-\nabla_{x} \mathscr{E}\left(t_{i}, x_{i}\right) \cdot\left(x_{i}-x_{i-1}\right)=\max \left\{1,\left|\nabla_{x} \mathscr{E}\left(t_{i}, x_{i}\right)\right|\right\} \cdot\left|x_{i}-x_{i-1}\right| .
$$

Consequently, if $\delta \geq \max \left\{\left|t-t_{i}\right|, \varepsilon, \tau\right\}$ and $v:[a, b] \rightarrow \mathbb{R}^{d}$ is the linear curve connecting x_{i-1} and x_{i}, then
$\int_{a}^{b} \max \left\{1,\left|\nabla_{x} \mathscr{E}(t, v(s))\right|\right\} \cdot|\dot{v}(s)| d s \leq \mathscr{E}\left(t, x_{i-1}\right)-\mathscr{E}\left(t, x_{i}\right)+g(\delta) \cdot\left|x_{i}-x_{i-1}\right|$
where $g(\delta) \rightarrow 0$ as $\delta \rightarrow 0$.

Discretized solutions

Recall that x_{i} is a minimizer for

$$
\inf _{\left|z-x_{i-1}\right| \leq \varepsilon} h(z)=\inf _{\left|z-x_{i-1}\right| \leq \varepsilon}\left\{\mathscr{E}^{(}\left(t_{i}, z\right)+\left|z-x_{i-1}\right|\right\} .
$$

1. Denote $c:=\left|x_{i}-x_{i-1}\right|$; then x_{i} is also a minimizer for

$$
\inf _{\left|z-x_{i-1}\right|=c} h(z) .
$$

By Lagrange multiplier, there exists $\lambda \in \mathbb{R}$ such that

$$
\nabla_{x} \mathscr{E}\left(t_{i}, x_{i}\right)=\lambda\left(x_{i}-x_{i-1}\right)
$$

2. Using $\partial_{t}\left(h\left(x_{i-1}+t\left(x_{i}-x_{i-1}\right)\right)\right) \leq 0$ at $t=1$, we obtain

$$
\nabla_{x} \mathscr{E}\left(t_{i}, x_{i}\right) \cdot\left(x_{i}-x_{i-1}\right)+\left|x_{i}-x_{i-1}\right| \leq 0 .
$$

Thus either $x_{i}=x_{i-1}$, or $\left|\nabla_{x} \mathscr{E}\left(t_{i}, x_{i}\right)\right| \geq 1$ and $\lambda<0$.

Approximate optimal transition

Figure 7. Approximate optimal transition between $x\left(t^{-}\right)$and $x(t)$.

$$
\begin{aligned}
& x\left(t^{-}\right) \rightarrow x^{\varepsilon, \tau}(t-\delta)=x^{\varepsilon, \tau}\left(t_{i}\right) \rightarrow x^{\varepsilon, \tau}\left(t_{i+1}\right) \\
& \rightarrow x^{\varepsilon, \tau}\left(t_{i+2}\right) \rightarrow \cdots \rightarrow x^{\varepsilon, \tau}\left(t_{i+k}\right)=x^{\varepsilon, \tau}(t) \rightarrow x(t)
\end{aligned}
$$

New energy-dissipation balance: Upper bound

By linear interpolation, construct a curve $v:[0,1] \rightarrow \mathbb{R}^{d}$ connecting the points

$$
x\left(t^{-}\right), x^{\varepsilon, \tau}(t-\delta)=x^{\varepsilon, \tau}\left(t_{i}\right), x^{\varepsilon, \tau}\left(t_{i+1}\right), \ldots, x^{\varepsilon, \tau}\left(t_{i+k}\right)=x^{\varepsilon, \tau}(t), x(t)
$$

Then

$$
\begin{aligned}
\Delta_{n e w}\left(t, x\left(t^{-}\right), x(t)\right) \leq & \int_{0}^{1} \max \left\{1,\left|\nabla_{x} \mathscr{E}(t, v(s))\right|\right\} \cdot|\dot{v}(s)| d s \\
\leq & \mathscr{E}\left(t, x^{\varepsilon, \tau}(t-\delta)\right)-\mathscr{E}\left(t, x^{\varepsilon, \tau}(t)\right)+C g(\delta) \\
& +C\left|x\left(t^{-}\right)-x^{\varepsilon, \tau}(t-\delta)\right|+C\left|x^{\varepsilon, \tau}(t)-x(t)\right| .
\end{aligned}
$$

Taking the limit $\tau \rightarrow 0$, then $\varepsilon \rightarrow 0$, then $\delta \rightarrow 0$, we conclude that

$$
\Delta_{n e w}\left(\mathscr{E}, t, x\left(t^{-}\right), x(t)\right) \leq \mathscr{E}\left(t, x\left(t^{-}\right)-\mathscr{E}(t, x(t))\right.
$$

Future works

Problem 1: Improve the weak local stability for BV solutions constructed by epsilon-neighborhood.

Problem 2: Prove the existence of BV solutions constructed by epsilon-neighborhood for capillary drops.

