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Weak solutions to rate-independent systems

e Energetic solutions
e BV solutions constructed by vanishing viscosity

e BV solutions constructed by epsilon-neighborhood method
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Rate-independent system
Preserved under time rescaling.
No own dynamics.
No inertial effects.
No kinetic energy.
Dissipated energy doesn’t depend on velocity.

Application: dry friction, crack propagation, delamination,

shape-memory alloys, etc.



Toy model

e Input: y(t) the free end of the spring.
e Output: x(t) the center of the box.
Two forces:

e The external force f. due to the spring, f. := —0,&(t, x), here
£(t.) = S(a — y(1)*

e The frictional force f, due to the carpet (dry friction),
fo = —kﬁj—| if v#£0, fo :=—fcand |f,| < kif v =0.

k : the frictional coefficient, v = &(t): the velocity of the box.
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Toy model
o If |f.| <k, then f, = —f. and the box does not move.
e After reaching the critical value |f.| = k, the box starts moving.

Equation of dynamics
mI = fa -+ fea

m : the mass of the box.

Quasistatic evolution = neglect the term ma
0= fa + fe-
Define ¥ (v) := k|v|, then —f, € ¥ (v). We get

0 € OV(i(t)) + 8. E (L, x(t)).



Toy model
Explicitly, we can write
o [c(z(t) —y(t)| < k.
o i(t)[z—c(x(t) —y(t))] <O for all z € [—k, k.

Easy to check that this is RIS: doubling the speed at which y(t)

moves, the effect on x(¢) is also doubled in speed.



Abstract framework
e X [finite-dimensional] normed vector space.
e &(t,x) smooth energy functional.

e U(x) dissipation functional, for simplicity, we assume
U(z) = |z.

e The position x is stable < it minimizes the total energy

(total energy = external energy + dissipation).

Differential inclusion:
0 € 0|z(t)| + V. &(t,x(t)) for a.e. t € (0,T). (1)
e &(t,.) convex = existence of a unique strong solution.

e In general, strong solutions may not exist = weak solutions are
needed.



Simple example
Et,x) =22 —2* +032°+t(1—-2%) -2, t€]0,2], z € R.
Initial position: xg := 0.
Strong solution: x(t) =0 for t € [0, 1).

Strong solution cannot be extended continuously when ¢ > 1,

since it would violate the local minimality:.



Energy plus dissipation function at the beginning
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Figure 1. Function &(¢,x) + |z — x| with t = 0 and ¢ = 0.

Unique global minimizer at x = 0.



Energy plus dissipation function at ¢t =1/3

10

Figure 2. Function &(¢,x) + |x — x| with t = 1/3 and x¢ = 0.
\/ 104+/T0+90%
2 .

Unique global minimizer at x =

One local minimizer at x = 0.
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Energy plus dissipation function at ¢t =1

Figure 3. Function &(¢,x) + |z — x| with t = 1 and ¢y = 0.

Unique global minimizer at x =

\/ 10++/T0490¢
2 :

One local minimizer at x = 0.
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Energy plus dissipation function at ¢t = 1.2

Figure 4. Function &(t,x) + |z — x| with t = 1.2 and zg = 0.
Unique global minimizer at x =

\/ 104+/10+90%
2 :

x = 0 is neither local minimizer nor global minimizer.
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Energetic solutions (Mielke and Theil 1999)
Definition. z(-) : energetic solutions

e (Initial condition) x(0) = x,
e (Global stability) &(t,z(t)) < &(t,2) + |z — x(t)|, Vz € X.
e (Energy-dissipation balance) For all 0 < s <t < T,

E(t,x(t)) — &(s,x(s)) = / O& (r,x(r))dr — Diss(x(-); [s, t]).

Dissipation energy = energy dissipated when the particle moves.

e Equals to the usual variation (or length), i.e

Piss(x; s, t]) ==
sup{Z:ﬁ )—x(tn_1)| | N eN,s=ty <t <.. <tN:t}.

e The loss of energy along the jump = the jump step.
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Construction of energetic solutions
Time-partition t; =27, 7 > 0,12=0,1,2, ...

Let 2] = x¢ and x] € argmin{&(t,,x) + |x — z] ]|}
reX

Interpolation z7(¢t) =« _; for all t € [t,,_1,t,).

Pointwise limit =7 (t) — x(t) as 7 — 0 for every ¢ € [0, T].

x(+) is an energetic solution of (&, |- |, zg).
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Energy plus dissipation function at t =1/6

Figure 5. Function &(t,x) + |x — x| with ¢ = 1/6 and x¢ = 0.

Two global minimizers at z =0 and z = /5/3.
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Energy plus dissipation function at ¢t = 0.5

Figure 6. Function &(t,x) + |z — x| with t = 0.5 and zg = 0.

Unique global minimizer at x =

\/ 10++/T0490¢
2 :

One local minimizer at x = 0.
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Simple example
Et,x) =22 —2*+032°+t(1—-2%) -2, t€]0,2], z € R.
Initial position: zg := 0.

When t > 1/6,x = 0 is no longer a global minimizer. Thus,
energetic solution must jump at ¢t = 1/6.

One energetic solution:

(0 0 if t €10,1/6);
€T —
\/1O—|—\3/1O—|—90t if £ € (1/6,2].

and z(1/6) € {0,+/5/3}.

This solution is not good since it does not agree with strong

solution.
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Vanishing viscosity (Mielke, Rossi, and Savaré 2012)
e Add a small viscosity into the dissipation, e.g. ¢|z|? .

e With time step 7 > 0 and viscous term ¢|z|?, choose x]° = xg

and

rc € argrgl(in {é"(tn,x) + |z — x5 |+ §|x —x° ]2} .
Te

e Interpolation + pointwise limit (7/e — 0) = BV function z(-).
Properties: x(0) = x¢ and
e (Weak local stability) |V, &(t,z(t))| < 1ift & J.

e (New energy-dissipation balance) For all 0 < s <t < T,

E(t,x(t)—&(s,x(s)) = / Ot & (1, x(1))dr — Dissnew(x(:); [, 1]).
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New dissipation energy

e Another computation for the loss of energy along the jump
DiSSnew(T; 8, t]) 1=

= Diss(;[s,1])) = Y [Je(t™) — z(t)| + |z(t) — x(t1)]]

teJ

+ 37 [Anew (b 2(t7),2(t)) + Apew (t, 2(t), 2(9))]

teJ

where

Apew(t,a,b) :=  inf {/ o(r) max{1,|8xéa(t,v(r))|}}.

veAC([0,T];R%)
v(0)= av(l) b

o In general, Zissnew(T;|s,t]) > Piss(x;[s,t]) Ve € BV.
e If r — x(r) is continuous on [s,t|, then

DiSSnew(T; |8, t]) = Diss(x;[s,t]).
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Optimal transition
e J an optimal transition between u_ and u, iff
E(t,ur) —E(t,u_) = —Apew(t;u_,u(t)) — Apew(t;u(t), us).
e Absolutely continuous curve v : [0,1] — RY connecting u_ and
u and satisfying
(i) |[V:&(t,v(s))| > 1 for all s € (0,1).
(i) Va&(t,7(s)) - 7(s) = =[Va&'(t, ()] - [7(s)]-

e In 1-dim, optimal transition is the linear path connecting u_

and U4 .

e In n-dim, the existence of optimal transition is much more
complicated, and it is obtained by using time rescaling
technique.
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Simple example
Et,x) =2 —2*+032°+t(1—-2%) -z, t€]0,2], z € R.
Initial position: xg := 0.
Choose viscosity as €° 2°.
The corresponding BV solution:

(0 0 if t €10,1);
€T =
\/1O—|—\3/1O—|—90t if ¢ e (1,2].

and z(1) € {0,/20/3}.

This solution is good since it agrees with strong solution up to

strong solution exists.
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Drawback of BV solutions constructed by vanishing

viscosity

x(-) depends heavily on the viscosity. Inappropriate choice of

viscosity = solution jumps later than expected!
Example. X =R, ¥(x) = |z|, zg = 0,
Et,x) =2 —2* +032° +t(1 —2°) — 2, tc|0,2].
e Choose viscousity as e|z|?.

e Corresponding BV solution z(t) = 0 for all ¢ € [0, 2].

e Unreasonable solution. Since local minimality is violated when
t > 1.
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Epsilon-neighborhood solutions
Construction:

e Fix ¢ > 0. With time-partition 7 > 0, choose ;" = ¢ and

zpf € argmin {&(t,,x) + |z —a7, ]},

jz—a 7, |<e
e Interpolation + pointwise limit (7 — 0) = BV function x°(-).
(i) (Epsilon local stability) If x°(+) is right-continuous at ¢, then
E(t,x°(t)) < E(t,z) + |z —x°(t)] for all |z —x°(t)] < e.
(ii) (Energy-dissipation inequalities) —Zisspew(T%;[s,1]) <
E(t,x°(t)) — &(s,2°(s)) — fst O & (r,x%(r))dr < —Diss(x®; s, ]).
e Pointwise limit of z°(-) (¢ — 0 )= BV function x(-).

Properties: Weak-local stability and new energy-dissipation balance
hold.
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Simple example
e X =R, ¥(z) =|z|, zg =0,

Et,r) =2 —2*+ 0325 +¢(1 —2%) -2, tc[0,2].

e BV solution by epsilon-neighborhood

/10 + /10 + 90¢ :

z(t)=0 if t<1, z(t) 5

ft>1.

e This solution jumps at time ¢ = 1, from x = 0 to x = +/20/3.
This is a reasonable solution!
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New energy-dissipation balance via epsilon-neighborhood

For all ¢t > s,

E(t,x(t)) — &(s,x(s)) = / OE (r,x(r))dr — Dissnew(x(+); S, 1]).
At jumps:
Et,z(tT)—Et,z(t7)) = —Apnew(t; 2(t7), 2(t)) —Apew (& z(t), z(tT))

Apew(tiab) == inf {/ mac{L, [V, 8 (1 o(s))]} |<>|}

veEAC([0,T];R?)
v(0)= av(l) b

Proposition (Lower bound - Mielke, Rossi, and Savaré 2009). Let
d>1and & € CH[0,T] x R4, R). For any BV function
u:[0,T] — R%, then

Et,utt)) =&, ut™)) > —Anew (B ut ™), u(t)) —Apew (tu(t), u(t)).
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New energy-dissipation balance: Lower bound

To prove Lower Bound, write

Et,utt)) =&t ut™)) = Et,ulth))—EF, udt))+E(, ut))—&(t,u(t™)).
If v € AC([0,1],R%) such that v(0) = u(¢) and v(1) = u(t), then

Et,ut™)) — EFult) = / V.E(t,v(s)) - 0(s)ds

> _/O max{1, [V, & (L v(s)|} - [0(s)|ds.

Thus

1
Stultt)) — Etut)) > —  inf {/ }
’UEAC([O,T];Rd> 0
v(0)=a,v(1)=b

= —Apew(t;u(t), uth)).
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Discretized solutions

Lemma (Discretized solutions). Write z; = %7 (t;). Then
—Vxéa(ti, xz) . (I’Z — xi_l) = max{l, |v$(§(tz, ZEZ)’} . ’213@ — ZEi_l‘.

Consequently, if 6 > max{|t —t;|,e,7} and v : [a,b] — R? is the

linear curve connecting x;_1 and x;, then
b
/max{l, V. E(t,v(s))|}.|o(s)|ds < E(t,x1)—E(t, x;)+g(d)|r;i—x; 1

where g(6) — 0 as § — 0.

27



Discretized solutions

Recall that x; is a minimizer for

inf  h(z)= inf {&(ti,2)+ |2 —xi—1]}.
|lz—x;—1]|<e |z—x;—1|<e
1. Denote ¢ := |x; — x;—1]|; then z; is also a minimizer for
inf  h(z).

|z—xz;_1]=c

By Lagrange multiplier, there exists A € R such that
V& (ti,x;) = Max; —xi—1).
2. Using 0; (h(z;—1 +t(x; —x;—1))) < 0 at t = 1, we obtain
V& (ti,xi)  (r; —xi1) + |2; —xi-1] <0.

Thus either z; = x;_1, or |V, & (t;, z;)| > 1 and A < 0.
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Approximate optimal transition

x(t)

Figure 7. Approximate optimal transition between x(t~) and x(t).
z(t™) = x5 (t—6) =257 (t;) = 257 (L)

— 257 (tigo) = - = 257 (tiag) = 257 () — z(2).
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New energy-dissipation balance: Upper bound

By linear interpolation, construct a curve v : [0, 1] — R? connecting

the points
r(t™), x5 (t—0) =257 (t;), 257 (tix1), oo, 57 (tik) = 57 (t), z(1).

Then

Apew(t,x(t™), x(t))

IA

/O max{1, [Vo&(t v(s)|} - [0(s)] ds
< Et, x5 (t—06)) =&, 27 () + Cyg(0)
+Cz(t™) — 27 (t = )| + Cla™7 () — x(1)].

Taking the limit 7 — 0, then € — 0, then 0 — 0, we conclude that

Ao (&1, 2(t7), 2(t)) < E(t, (™) — E(t, x(t)).
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Future works

Problem 1: Improve the weak local stability for BV solutions
constructed by epsilon-neighborhood.

Problem 2: Prove the existence of BV solutions constructed

by epsilon-neighborhood for capillary drops.
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