Applied and Numerical Analysis Seminar

Heraklion, 06 December 2012

Weak solutions to rate-independent systems

- Energetic solutions
- BV solutions constructed by vanishing viscosity
- BV solutions constructed by epsilon-neighborhood method

Contents

- [1] Rate-independent systems.
- [2] Toy model.
- [3] Abstract framework.
- [4] Simple example.
- [5] Energetic solutions.
- [6] BV solutions constructed by vanishing viscosity.
- [7] BV solutions constructed by epsilon-neighborhood method.
- [7] Future works.

Rate-independent system

- Preserved under time rescaling.
- No own dynamics.
- No inertial effects.
- No kinetic energy.
- Dissipated energy doesn't depend on velocity.
- Application: dry friction, crack propagation, delamination, shape-memory alloys, etc.

- Input: y(t) the free end of the spring.
- Output: x(t) the center of the box.

Two forces:

- The external force f_e due to the spring, $f_e := -\partial_x \mathscr{E}(t, x)$, here $\mathscr{E}(t, x) = \frac{c}{2}(x y(t))^2$.
- The frictional force f_a due to the carpet (dry friction), $f_a := -k \frac{v}{|v|}$ if $v \neq 0$, $f_a := -f_e$ and $|f_a| \leq k$ if v = 0.
- k : the frictional coefficient, $v=\dot{x}(t)$: the velocity of the box.

Toy model

- If $|f_e| < k$, then $f_a = -f_e$ and the box does not move.
- After reaching the critical value $|f_e| = k$, the box starts moving.

Equation of dynamics

$$m\ddot{x} = f_a + f_e,$$

m: the mass of the box.

Quasistatic evolution \Rightarrow neglect the term $m\ddot{x}$

$$0 = f_a + f_e.$$

Define $\Psi(v) := k|v|$, then $-f_a \in \partial \Psi(v)$. We get $0 \in \partial \Psi(\dot{x}(t)) + \partial_x \mathscr{E}(t, x(t)).$

Toy model

Explicitly, we can write

- $|c(x(t) y(t))| \le k.$
- $\dot{x}(t)[z c(x(t) y(t))] \le 0$ for all $z \in [-k, k]$.

Easy to check that this is RIS: doubling the speed at which y(t) moves, the effect on x(t) is also doubled in speed.

Abstract framework

- X [finite-dimensional] normed vector space.
- $\mathscr{E}(t,x)$ smooth energy functional.
- $\Psi(x)$ dissipation functional, for simplicity, we assume $\Psi(x) = |x|$.
- The position x is stable \Leftrightarrow it minimizes the total energy (total energy = external energy + dissipation).

Differential inclusion:

$$0 \in \partial |\dot{x}(t)| + \nabla_x \mathscr{E}(t, x(t)) \text{ for a.e. } t \in (0, T).$$
(1)

- $\mathscr{E}(t, .)$ convex \Rightarrow existence of a unique strong solution.
- In general, strong solutions may not exist ⇒ weak solutions are needed.

Simple example

- $\mathscr{E}(t,x) := x^2 x^4 + 0.3 x^6 + t (1 x^2) x, \ t \in [0,2], \ x \in \mathbb{R}.$
- Initial position: $x_0 := 0$.
- Strong solution: x(t) = 0 for $t \in [0, 1)$.
- Strong solution cannot be extended continuously when $t \ge 1$, since it would violate the local minimality.

Energy plus dissipation function at the beginning

Figure 1. Function $\mathscr{E}(t, x) + |x - x_0|$ with t = 0 and $x_0 = 0$. Unique global minimizer at x = 0.

Figure 2. Function $\mathscr{E}(t, x) + |x - x_0|$ with t = 1/3 and $x_0 = 0$.

Unique global minimizer at $x = \frac{\sqrt{10+\sqrt{10+90t}}}{3}$. One local minimizer at x = 0.

Figure 3. Function $\mathscr{E}(t, x) + |x - x_0|$ with t = 1 and $x_0 = 0$.

Unique global minimizer at $x = \frac{\sqrt{10+\sqrt{10+90t}}}{3}$. One local minimizer at x = 0.

Figure 4. Function $\mathscr{E}(t, x) + |x - x_0|$ with t = 1.2 and $x_0 = 0$.

Unique global minimizer at $x = \frac{\sqrt{10 + \sqrt{10 + 90t}}}{3}$. x = 0 is neither local minimizer nor global minimizer. Energetic solutions (Mielke and Theil 1999) Definition. $x(\cdot)$: energetic solutions

- (Initial condition) $x(0) = x_0$,
- (Global stability) $\mathscr{E}(t, x(t)) \leq \mathscr{E}(t, z) + |z x(t)|, \ \forall z \in X.$
- (Energy-dissipation balance) For all $0 \le s \le t \le T$,

$$\mathscr{E}(t, x(t)) - \mathscr{E}(s, x(s)) = \int_{s}^{t} \partial_{t} \mathscr{E}(r, x(r)) dr - \mathscr{D}iss(x(\cdot); [s, t]).$$

Dissipation energy = energy dissipated when the particle moves.

• Equals to the usual variation (or length), i.e.,

$$\mathscr{D}iss(x; [s, t]) := \\ \sup\left\{\sum_{n=1}^{N} |x(t_n) - x(t_{n-1})| \mid N \in \mathbb{N}, s = t_0 < t_1 < \dots < t_N = t\right\}.$$

• The loss of energy along the jump = the jump step.

Construction of energetic solutions

- Time-partition $t_i = i\tau, \tau > 0, i = 0, 1, 2, ...$
- Let $x_0^{\tau} = x_0$ and $x_n^{\tau} \in \underset{x \in X}{\operatorname{argmin}} \{ \mathscr{E}(t_n, x) + |x x_{n-1}^{\tau}| \}.$
- Interpolation $x^{\tau}(t) = x_{n-1}^{\tau}$ for all $t \in [t_{n-1}, t_n)$.
- Pointwise limit $x^{\tau}(t) \to x(t)$ as $\tau \to 0$ for every $t \in [0, T]$.
- $x(\cdot)$ is an energetic solution of $(\mathscr{E}, |\cdot|, x_0)$.

Figure 5. Function $\mathscr{E}(t, x) + |x - x_0|$ with t = 1/6 and $x_0 = 0$. Two global minimizers at x = 0 and $x = \sqrt{5/3}$.

Figure 6. Function $\mathscr{E}(t, x) + |x - x_0|$ with t = 0.5 and $x_0 = 0$.

Unique global minimizer at $x = \frac{\sqrt{10+\sqrt{10+90t}}}{3}$. One local minimizer at x = 0.

Simple example

- $\mathscr{E}(t,x) := x^2 x^4 + 0.3 x^6 + t (1 x^2) x, \ t \in [0,2], \ x \in \mathbb{R}.$
- Initial position: $x_0 := 0$.
- When t > 1/6, x = 0 is no longer a global minimizer. Thus, energetic solution must jump at t = 1/6.
- One energetic solution:

$$x(t) = \begin{cases} 0 & \text{if } t \in [0, 1/6); \\ \frac{\sqrt{10 + \sqrt{10 + 90t}}}{3} & \text{if } t \in (1/6, 2]. \end{cases}$$

and $x(1/6) \in \{0, \sqrt{5/3}\}.$

• This solution is not good since it does not agree with strong solution.

Vanishing viscosity (Mielke, Rossi, and Savaré 2012)

- Add a small viscosity into the dissipation, e.g. $\varepsilon |x|^2$.
- With time step $\tau > 0$ and viscous term $\varepsilon |x|^2$, choose $x_0^{\tau,\varepsilon} = x_0$ and

$$x_n^{\tau,\varepsilon} \in \operatorname*{argmin}_{x \in X} \left\{ \mathscr{E}(t_n, x) + |x - x_{n-1}^{\tau,\varepsilon}| + \frac{\varepsilon}{\tau} |x - x_{n-1}^{\tau,\varepsilon}|^2 \right\}.$$

- Interpolation + pointwise limit $(\tau/\varepsilon \to 0) \Rightarrow$ BV function $x(\cdot)$. Properties: $x(0) = x_0$ and
 - (Weak local stability) $|\nabla_x \mathscr{E}(t, x(t))| \leq 1$ if $t \notin J$.
 - (New energy-dissipation balance) For all $0 \le s \le t \le T$,

$$\mathscr{E}(t, x(t)) - \mathscr{E}(s, x(s)) = \int_{s}^{t} \partial_{t} \mathscr{E}(r, x(r)) dr - \mathscr{D}iss_{new}(x(\cdot); [s, t]).$$

New dissipation energy

• Another computation for the loss of energy along the jump

$$\begin{aligned} \mathscr{D}iss_{new}(x; [s, t]) &:= \\ &= \mathscr{D}iss(x; [s, t]) - \sum_{t \in J} \left[|x(t^{-}) - x(t)| + |x(t) - x(t^{+})| \right] \\ &+ \sum_{t \in J} \left[\Delta_{new}(t, x(t^{-}), x(t)) + \Delta_{new}(t, x(t), x(t^{+})) \right], \end{aligned}$$

where

$$\Delta_{new}(t, a, b) := \inf_{\substack{v \in AC([0,T]; \mathbb{R}^d) \\ v(0) = a, v(1) = b}} \left\{ \int_0^1 |\dot{v}(r)| \cdot \max\{1, |\partial_x \mathscr{E}(t, v(r))|\} \right\}.$$

- In general, $\mathscr{D}iss_{new}(x; [s, t]) \ge \mathscr{D}iss(x; [s, t]) \ \forall x \in BV.$
- If $r \mapsto x(r)$ is continuous on [s, t], then $\mathscr{D}iss_{new}(x; [s, t]) = \mathscr{D}iss(x; [s, t]).$

Optimal transition

• \exists an optimal transition between u_{-} and u_{+} iff

$$\mathscr{E}(t,u_+) - \mathscr{E}(t,u_-) = -\Delta_{new}(t;u_-,u(t)) - \Delta_{new}(t;u(t),u_+).$$

• Absolutely continuous curve $\gamma: [0,1] \to \mathbb{R}^d$ connecting u_- and u_+ and satisfying

(i)
$$|\nabla_x \mathscr{E}(t, \gamma(s))| \ge 1$$
 for all $s \in (0, 1)$.

- (ii) $\nabla_x \mathscr{E}(t, \gamma(s)) \cdot \dot{\gamma}(s) = -|\nabla_x \mathscr{E}(t, \gamma(s))| \cdot |\dot{\gamma}(s)|.$
- In 1-dim, optimal transition is the linear path connecting u_{-} and u_{+} .
- In n-dim, the existence of optimal transition is much more complicated, and it is obtained by using time rescaling technique.

Simple example

- $\mathscr{E}(t,x) := x^2 x^4 + 0.3 x^6 + t (1 x^2) x, \ t \in [0,2], \ x \in \mathbb{R}.$
- Initial position: $x_0 := 0$.
- Choose viscosity as $\varepsilon^5 x^6$.
- The corresponding BV solution:

$$x(t) = \begin{cases} 0 & \text{if } t \in [0,1); \\ \frac{\sqrt{10 + \sqrt{10 + 90t}}}{3} & \text{if } t \in (1,2]. \end{cases}$$

and $x(1) \in \{0, \sqrt{20}/3\}.$

• This solution is good since it agrees with strong solution up to strong solution exists.

Drawback of BV solutions constructed by vanishing viscosity

 $x(\cdot)$ depends heavily on the viscosity. Inappropriate choice of viscosity \Rightarrow solution jumps later than expected!

Example. $X = \mathbb{R}, \Psi(x) = |x|, x_0 = 0,$

$$\mathscr{E}(t,x) = x^2 - x^4 + 0.3 \, x^6 + t(1-x^2) - x, \ t \in [0,2].$$

- Choose viscousity as $\varepsilon |x|^2$.
- Corresponding BV solution x(t) = 0 for all $t \in [0, 2]$.
- Unreasonable solution. Since local minimality is violated when $t \ge 1$.

Epsilon-neighborhood solutions

Construction:

• Fix $\varepsilon > 0$. With time-partition $\tau > 0$, choose $x_0^{\varepsilon,\tau} = x_0$ and

$$x_n^{\tau,\varepsilon} \in \operatorname*{argmin}_{|x-x_{n-1}^{\varepsilon,\tau}| \le \varepsilon} \left\{ \mathscr{E}(t_n,x) + |x-x_{n-1}^{\varepsilon,\tau}| \right\}.$$

- Interpolation + pointwise limit $(\tau \to 0) \Rightarrow BV$ function $x^{\varepsilon}(\cdot)$.
- (i) (Epsilon local stability) If $x^{\varepsilon}(\cdot)$ is right-continuous at t, then $\mathscr{E}(t, x^{\varepsilon}(t)) \leq \mathscr{E}(t, z) + |z - x^{\varepsilon}(t)|$ for all $|z - x^{\varepsilon}(t)| \leq \varepsilon$.
- (ii) (Energy-dissipation inequalities) $-\mathscr{D}iss_{new}(x^{\varepsilon};[s,t]) \leq \mathscr{E}(t,x^{\varepsilon}(t)) \mathscr{E}(s,x^{\varepsilon}(s)) \int_{s}^{t} \partial_{t}\mathscr{E}(r,x^{\varepsilon}(r))dr \leq -\mathscr{D}iss(x^{\varepsilon};[s,t]).$
 - Pointwise limit of $x^{\varepsilon}(\cdot)$ ($\varepsilon \to 0$) \Rightarrow BV function $x(\cdot)$.

Properties: Weak-local stability and new energy-dissipation balance **hold**.

Simple example

•
$$X = \mathbb{R}, \Psi(x) = |x|, x_0 = 0,$$

 $\mathscr{E}(t, x) = x^2 - x^4 + 0.3 x^6 + t(1 - x^2) - x, t \in [0, 2].$

• BV solution by epsilon-neighborhood

$$x(t) = 0$$
 if $t < 1$, $x(t) = \frac{\sqrt{10 + \sqrt{10 + 90t}}}{3}$ if $t > 1$.

• This solution jumps at time t = 1, from x = 0 to $x = \sqrt{20}/3$. This is a reasonable solution!

New energy-dissipation balance via epsilon-neighborhood For all t > s,

$$\mathscr{E}(t,x(t)) - \mathscr{E}(s,x(s)) = \int_{s}^{t} \partial_{t}\mathscr{E}(r,x(r))dr - \mathscr{D}iss_{new}(x(\cdot);[s,t]).$$

At jumps:

$$\mathscr{E}(t, x(t^+)) - \mathscr{E}(t, x(t^-)) = -\Delta_{new}(t; x(t^-), x(t)) - \Delta_{new}(t; x(t), x(t^+))$$

$$\Delta_{new}(t,a,b) := \inf_{\substack{v \in AC([0,T];\mathbb{R}^d) \\ v(0)=a, v(1)=b}} \left\{ \int_0^1 \max\{1, |\nabla_x \mathscr{E}(t,v(s))|\} \cdot |\dot{v}(s)| \right\}.$$

Proposition (Lower bound - Mielke, Rossi, and Savaré 2009). Let $d \ge 1$ and $\mathscr{E} \in C^1([0,T] \times \mathbb{R}^d, \mathbb{R})$. For any BV function $u : [0,T] \to \mathbb{R}^d$, then

$$\mathscr{E}(t, u(t^+)) - \mathscr{E}(t, u(t^-)) \ge -\Delta_{new}(t; u(t^-), u(t)) - \Delta_{new}(t; u(t), u(t^+)).$$

New energy-dissipation balance: Lower bound To prove Lower Bound, write

 $\begin{aligned} \mathscr{E}(t, u(t^+)) - \mathscr{E}(t, u(t^-)) &= \mathscr{E}(t, u(t^+)) - \mathscr{E}(t, u(t)) + \mathscr{E}(t, u(t)) - \mathscr{E}(t, u(t^-)). \\ \text{If } v \in AC([0, 1], \mathbb{R}^d) \text{ such that } v(0) &= u(t) \text{ and } v(1) = u(t^+), \text{ then} \\ \mathscr{E}(t, u(t^+)) - \mathscr{E}(t, u(t)) &= \int_0^1 \nabla_x \mathscr{E}(t, v(s)) \cdot \dot{v}(s) ds \\ &\geq -\int_0^1 \max\{1, |\nabla_x \mathscr{E}(t, v(s))|\} \cdot |\dot{v}(s)| ds. \end{aligned}$

Thus

$$\mathscr{E}(t, u(t^{+})) - \mathscr{E}(t, u(t)) \geq - \inf_{\substack{v \in AC([0,T]; \mathbb{R}^{d}) \\ v(0) = a, v(1) = b}} \left\{ \int_{0}^{1} \dots \right\}$$

= $-\Delta_{new}(t; u(t), u(t^{+})).$

Discretized solutions

Lemma (Discretized solutions). Write $x_j = x^{\varepsilon,\tau}(t_j)$. Then

$$-\nabla_x \mathscr{E}(t_i, x_i) \cdot (x_i - x_{i-1}) = \max\{1, |\nabla_x \mathscr{E}(t_i, x_i)|\} \cdot |x_i - x_{i-1}|.$$

Consequently, if $\delta \ge \max\{|t - t_i|, \varepsilon, \tau\}$ and $v : [a, b] \to \mathbb{R}^d$ is the linear curve connecting x_{i-1} and x_i , then

$$\int_{a}^{b} \max\{1, |\nabla_{x} \mathscr{E}(t, v(s))|\} . |\dot{v}(s)| ds \leq \mathscr{E}(t, x_{i-1}) - \mathscr{E}(t, x_{i}) + g(\delta) \cdot |x_{i} - x_{i-1}|$$

where $g(\delta) \to 0$ as $\delta \to 0$.

Discretized solutions

Recall that x_i is a minimizer for

$$\inf_{|z-x_{i-1}|\leq\varepsilon} h(z) = \inf_{|z-x_{i-1}|\leq\varepsilon} \left\{ \mathscr{E}(t_i, z) + |z-x_{i-1}| \right\}.$$

1. Denote $c := |x_i - x_{i-1}|$; then x_i is also a minimizer for

$$\inf_{|z-x_{i-1}|=c} h(z).$$

By Lagrange multiplier, there exists $\lambda \in \mathbb{R}$ such that

$$\nabla_x \mathscr{E}(t_i, x_i) = \lambda(x_i - x_{i-1}).$$

2. Using $\partial_t (h(x_{i-1} + t(x_i - x_{i-1}))) \le 0$ at t = 1, we obtain $\nabla_x \mathscr{E}(t_i, x_i) \cdot (x_i - x_{i-1}) + |x_i - x_{i-1}| \le 0.$

Thus either $x_i = x_{i-1}$, or $|\nabla_x \mathscr{E}(t_i, x_i)| \ge 1$ and $\lambda < 0$.

Approximate optimal transition

Figure 7. Approximate optimal transition between $x(t^{-})$ and x(t).

$$x(t^{-}) \to x^{\varepsilon,\tau}(t-\delta) = x^{\varepsilon,\tau}(t_i) \to x^{\varepsilon,\tau}(t_{i+1})$$
$$\to x^{\varepsilon,\tau}(t_{i+2}) \to \dots \to x^{\varepsilon,\tau}(t_{i+k}) = x^{\varepsilon,\tau}(t) \to x(t).$$

New energy-dissipation balance: Upper bound By linear interpolation, construct a curve $v : [0, 1] \to \mathbb{R}^d$ connecting the points

$$x(t^{-}), x^{\varepsilon,\tau}(t-\delta) = x^{\varepsilon,\tau}(t_i), x^{\varepsilon,\tau}(t_{i+1}), \dots, x^{\varepsilon,\tau}(t_{i+k}) = x^{\varepsilon,\tau}(t), x(t).$$

Then

$$\begin{aligned} \Delta_{new}(t, x(t^{-}), x(t)) &\leq \int_{0}^{1} \max\{1, |\nabla_{x} \mathscr{E}(t, v(s))|\} \cdot |\dot{v}(s)| \, ds \\ &\leq \mathscr{E}(t, x^{\varepsilon, \tau}(t - \delta)) - \mathscr{E}(t, x^{\varepsilon, \tau}(t)) + Cg(\delta) \\ &\quad + C|x(t^{-}) - x^{\varepsilon, \tau}(t - \delta)| + C|x^{\varepsilon, \tau}(t) - x(t)|. \end{aligned}$$

Taking the limit $\tau \to 0$, then $\varepsilon \to 0$, then $\delta \to 0$, we conclude that

$$\Delta_{new}(\mathscr{E}, t, x(t^-), x(t)) \le \mathscr{E}(t, x(t^-) - \mathscr{E}(t, x(t))).$$

Future works

Problem 1: Improve the weak local stability for BV solutions constructed by epsilon-neighborhood.

Problem 2: Prove the existence of BV solutions constructed by epsilon-neighborhood for capillary drops.