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Weak solutions to rate-independent systems

• Energetic solutions

• BV solutions constructed by vanishing viscosity

• BV solutions constructed by epsilon-neighborhood method
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Rate-independent system

• Preserved under time rescaling.

• No own dynamics.

• No inertial effects.

• No kinetic energy.

• Dissipated energy doesn’t depend on velocity.

• Application: dry friction, crack propagation, delamination,

shape-memory alloys, etc.
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Toy model

• Input: y(t) the free end of the spring.

• Output: x(t) the center of the box.

Two forces:

• The external force fe due to the spring, fe := −∂xE (t, x), here

E (t, x) = c
2 (x− y(t))2.

• The frictional force fa due to the carpet (dry friction),

fa := −k v
|v| if v 6= 0, fa := −fe and |fa| ≤ k if v = 0.

k : the frictional coefficient, v = ẋ(t): the velocity of the box.
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Toy model

• If |fe| < k, then fa = −fe and the box does not move.

• After reaching the critical value |fe| = k, the box starts moving.

Equation of dynamics

mẍ = fa + fe,

m : the mass of the box.

Quasistatic evolution ⇒ neglect the term mẍ

0 = fa + fe.

Define Ψ(v) := k|v|, then −fa ∈ ∂Ψ(v). We get

0 ∈ ∂Ψ(ẋ(t)) + ∂xE (t, x(t)).
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Toy model

Explicitly, we can write

• |c(x(t)− y(t)| ≤ k.

• ẋ(t)[z − c(x(t)− y(t))] ≤ 0 for all z ∈ [−k, k].

Easy to check that this is RIS: doubling the speed at which y(t)

moves, the effect on x(t) is also doubled in speed.
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Abstract framework

• X [finite-dimensional] normed vector space.

• E (t, x) smooth energy functional.

• Ψ(x) dissipation functional, for simplicity, we assume

Ψ(x) = |x|.

• The position x is stable ⇔ it minimizes the total energy

(total energy = external energy + dissipation).

Differential inclusion:

0 ∈ ∂|ẋ(t)|+∇xE (t, x(t)) for a.e. t ∈ (0, T ). (1)

• E (t, .) convex ⇒ existence of a unique strong solution.

• In general, strong solutions may not exist ⇒ weak solutions are

needed.
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Simple example

• E (t, x) := x2 − x4 + 0.3x6 + t (1− x2)− x, t ∈ [0, 2], x ∈ R.

• Initial position: x0 := 0.

• Strong solution: x(t) = 0 for t ∈ [0, 1).

• Strong solution cannot be extended continuously when t ≥ 1,

since it would violate the local minimality.
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Energy plus dissipation function at the beginning

Figure 1. Function E (t, x) + |x− x0| with t = 0 and x0 = 0.

Unique global minimizer at x = 0.

9



Energy plus dissipation function at t = 1/3

Figure 2. Function E (t, x) + |x− x0| with t = 1/3 and x0 = 0.

Unique global minimizer at x =

√
10+
√
10+90t

3 .

One local minimizer at x = 0.
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Energy plus dissipation function at t = 1

Figure 3. Function E (t, x) + |x− x0| with t = 1 and x0 = 0.

Unique global minimizer at x =

√
10+
√
10+90t

3 .

One local minimizer at x = 0.
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Energy plus dissipation function at t = 1.2

Figure 4. Function E (t, x) + |x− x0| with t = 1.2 and x0 = 0.

Unique global minimizer at x =

√
10+
√
10+90t

3 .

x = 0 is neither local minimizer nor global minimizer.
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Energetic solutions (Mielke and Theil 1999)

Definition. x(·) : energetic solutions

• (Initial condition) x(0) = x0,

• (Global stability) E (t, x(t)) ≤ E (t, z) + |z − x(t)|, ∀z ∈ X.

• (Energy-dissipation balance) For all 0 ≤ s ≤ t ≤ T ,

E (t, x(t))− E (s, x(s)) =

∫ t

s

∂tE (r, x(r))dr −Diss(x(·); [s, t]).

Dissipation energy = energy dissipated when the particle moves.

• Equals to the usual variation (or length), i.e.,

Diss(x; [s, t]) :=

sup

{
N∑
n=1

|x(tn)− x(tn−1)| | N ∈ N, s = t0 < t1 < ... < tN = t

}
.

• The loss of energy along the jump = the jump step.
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Construction of energetic solutions

• Time-partition ti = iτ , τ > 0, i = 0, 1, 2, . . .

• Let xτ0 = x0 and xτn ∈ argmin
x∈X

{E (tn, x) + |x− xτn−1|}.

• Interpolation xτ (t) = xτn−1 for all t ∈ [tn−1, tn).

• Pointwise limit xτ (t)→ x(t) as τ → 0 for every t ∈ [0, T ].

• x(·) is an energetic solution of (E , | · |, x0).
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Energy plus dissipation function at t = 1/6

Figure 5. Function E (t, x) + |x− x0| with t = 1/6 and x0 = 0.

Two global minimizers at x = 0 and x =
√

5/3.
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Energy plus dissipation function at t = 0.5

Figure 6. Function E (t, x) + |x− x0| with t = 0.5 and x0 = 0.

Unique global minimizer at x =

√
10+
√
10+90t

3 .

One local minimizer at x = 0.
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Simple example

• E (t, x) := x2 − x4 + 0.3x6 + t (1− x2)− x, t ∈ [0, 2], x ∈ R.

• Initial position: x0 := 0.

• When t > 1/6, x = 0 is no longer a global minimizer. Thus,

energetic solution must jump at t = 1/6.

• One energetic solution:

x(t) =

0 if t ∈ [0, 1/6);√
10+
√
10+90t

3 if t ∈ (1/6, 2].

and x(1/6) ∈ {0,
√

5/3}.

• This solution is not good since it does not agree with strong

solution.
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Vanishing viscosity (Mielke, Rossi, and Savaré 2012)

• Add a small viscosity into the dissipation, e.g. ε|x|2 .

• With time step τ > 0 and viscous term ε|x|2, choose xτ,ε0 = x0

and

xτ,εn ∈ argmin
x∈X

{
E (tn, x) + |x− xτ,εn−1|+

ε

τ
|x− xτ,εn−1|2

}
.

• Interpolation + pointwise limit (τ/ε→ 0) ⇒ BV function x(·).

Properties: x(0) = x0 and

• (Weak local stability) |∇xE (t, x(t))| ≤ 1 if t /∈ J .

• (New energy-dissipation balance) For all 0 ≤ s ≤ t ≤ T ,

E (t, x(t))−E (s, x(s)) =

∫ t

s

∂tE (r, x(r))dr−Dissnew(x(·); [s, t]).
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New dissipation energy

• Another computation for the loss of energy along the jump

Dissnew(x; [s, t]) :=

= Diss(x; [s, t])−
∑
t∈J

[
|x(t−)− x(t)|+ |x(t)− x(t+)|

]
+
∑
t∈J

[
∆new(t, x(t−), x(t)) + ∆new(t, x(t), x(t+))

]
,

where

∆new(t, a, b) := inf
v∈AC([0,T ];Rd)
v(0)=a,v(1)=b

{∫ 1

0

|v̇(r)| ·max{1, |∂xE (t, v(r))|}
}
.

• In general, Dissnew(x; [s, t]) ≥ Diss(x; [s, t]) ∀x ∈ BV.

• If r 7→ x(r) is continuous on [s, t], then

Dissnew(x; [s, t]) = Diss(x; [s, t]).
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Optimal transition

• ∃ an optimal transition between u− and u+ iff

E (t, u+)− E (t, u−) = −∆new(t;u−, u(t))−∆new(t;u(t), u+).

• Absolutely continuous curve γ : [0, 1]→ Rd connecting u− and

u+ and satisfying

(i) |∇xE (t, γ(s))| ≥ 1 for all s ∈ (0, 1).

(ii) ∇xE (t, γ(s)) · γ̇(s) = −|∇xE (t, γ(s))| · |γ̇(s)|.

• In 1-dim, optimal transition is the linear path connecting u−

and u+.

• In n-dim, the existence of optimal transition is much more

complicated, and it is obtained by using time rescaling

technique.
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Simple example

• E (t, x) := x2 − x4 + 0.3x6 + t (1− x2)− x, t ∈ [0, 2], x ∈ R.

• Initial position: x0 := 0.

• Choose viscosity as ε5 x6.

• The corresponding BV solution:

x(t) =

0 if t ∈ [0, 1);√
10+
√
10+90t

3 if t ∈ (1, 2].

and x(1) ∈ {0,
√

20/3}.

• This solution is good since it agrees with strong solution up to

strong solution exists.
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Drawback of BV solutions constructed by vanishing

viscosity

x(·) depends heavily on the viscosity. Inappropriate choice of

viscosity ⇒ solution jumps later than expected!

Example. X = R, Ψ(x) = |x|, x0 = 0,

E (t, x) = x2 − x4 + 0.3x6 + t(1− x2)− x, t ∈ [0, 2].

• Choose viscousity as ε|x|2.

• Corresponding BV solution x(t) = 0 for all t ∈ [0, 2].

• Unreasonable solution. Since local minimality is violated when

t ≥ 1.
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Epsilon-neighborhood solutions

Construction:

• Fix ε > 0. With time-partition τ > 0, choose xε,τ0 = x0 and

xτ,εn ∈ argmin
|x−xε,τn−1|≤ε

{
E (tn, x) + |x− xε,τn−1|

}
.

• Interpolation + pointwise limit (τ → 0) ⇒ BV function xε(·).

(i) (Epsilon local stability) If xε(·) is right-continuous at t, then

E (t, xε(t)) ≤ E (t, z) + |z − xε(t)| for all |z − xε(t)| ≤ ε.

(ii) (Energy-dissipation inequalities) −Dissnew(xε; [s, t]) ≤
E (t, xε(t))− E (s, xε(s))−

∫ t
s
∂tE (r, xε(r))dr ≤ −Diss(xε; [s, t]).

• Pointwise limit of xε(·) (ε→ 0 )⇒ BV function x(·).

Properties: Weak-local stability and new energy-dissipation balance

hold.
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Simple example

• X = R, Ψ(x) = |x|, x0 = 0,

E (t, x) = x2 − x4 + 0.3x6 + t(1− x2)− x, t ∈ [0, 2].

• BV solution by epsilon-neighborhood

x(t) = 0 if t < 1, x(t) =

√
10 +

√
10 + 90t

3
if t > 1.

• This solution jumps at time t = 1, from x = 0 to x =
√

20/3.

This is a reasonable solution!
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New energy-dissipation balance via epsilon-neighborhood

For all t > s,

E (t, x(t))− E (s, x(s)) =

∫ t

s

∂tE (r, x(r))dr −Dissnew(x(·); [s, t]).

At jumps:

E (t, x(t+))−E (t, x(t−)) = −∆new(t;x(t−), x(t))−∆new(t;x(t), x(t+))

∆new(t, a, b) := inf
v∈AC([0,T ];Rd)
v(0)=a,v(1)=b

{∫ 1

0

max{1, |∇xE (t, v(s))|} · |v̇(s)|
}
.

Proposition (Lower bound - Mielke, Rossi, and Savaré 2009). Let

d ≥ 1 and E ∈ C1([0, T ]× Rd,R). For any BV function

u : [0, T ]→ Rd, then

E (t, u(t+))−E (t, u(t−)) ≥ −∆new(t;u(t−), u(t))−∆new(t;u(t), u(t+)).
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New energy-dissipation balance: Lower bound

To prove Lower Bound, write

E (t, u(t+))−E (t, u(t−)) = E (t, u(t+))−E (t, u(t))+E (t, u(t))−E (t, u(t−)).

If v ∈ AC([0, 1],Rd) such that v(0) = u(t) and v(1) = u(t+), then

E (t, u(t+))− E (t, u(t)) =

∫ 1

0

∇xE (t, v(s)) · v̇(s)ds

≥ −
∫ 1

0

max{1, |∇xE (t, v(s))|} · |v̇(s)|ds.

Thus

E (t, u(t+))− E (t, u(t)) ≥ − inf
v∈AC([0,T ];Rd)
v(0)=a,v(1)=b

{∫ 1

0

...

}
= −∆new(t;u(t), u(t+)).
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Discretized solutions

Lemma (Discretized solutions). Write xj = xε,τ (tj). Then

−∇xE (ti, xi) · (xi − xi−1) = max{1, |∇xE (ti, xi)|} · |xi − xi−1|.

Consequently, if δ ≥ max{|t− ti|, ε, τ} and v : [a, b]→ Rd is the

linear curve connecting xi−1 and xi, then

b∫
a

max{1, |∇xE (t, v(s))|}.|v̇(s)|ds ≤ E (t, xi−1)−E (t, xi)+g(δ)·|xi−xi−1|

where g(δ)→ 0 as δ → 0.
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Discretized solutions

Recall that xi is a minimizer for

inf
|z−xi−1|≤ε

h(z) = inf
|z−xi−1|≤ε

{E (ti, z) + |z − xi−1|} .

1. Denote c := |xi − xi−1|; then xi is also a minimizer for

inf
|z−xi−1|=c

h(z).

By Lagrange multiplier, there exists λ ∈ R such that

∇xE (ti, xi) = λ(xi − xi−1).

2. Using ∂t (h(xi−1 + t(xi − xi−1))) ≤ 0 at t = 1, we obtain

∇xE (ti, xi) · (xi − xi−1) + |xi − xi−1| ≤ 0.

Thus either xi = xi−1, or |∇xE (ti, xi)| ≥ 1 and λ < 0.
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Approximate optimal transition

Figure 7. Approximate optimal transition between x(t−) and x(t).

x(t−)→ xε,τ (t− δ) = xε,τ (ti)→ xε,τ (ti+1)

→ xε,τ (ti+2)→ · · · → xε,τ (ti+k) = xε,τ (t)→ x(t).
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New energy-dissipation balance: Upper bound

By linear interpolation, construct a curve v : [0, 1]→ Rd connecting

the points

x(t−), xε,τ (t− δ) = xε,τ (ti), x
ε,τ (ti+1), ..., xε,τ (ti+k) = xε,τ (t), x(t).

Then

∆new(t, x(t−), x(t)) ≤
∫ 1

0

max{1, |∇xE (t, v(s))|} · |v̇(s)| ds

≤ E (t, xε,τ (t− δ))− E (t, xε,τ (t)) + Cg(δ)

+C|x(t−)− xε,τ (t− δ)|+ C|xε,τ (t)− x(t)|.

Taking the limit τ → 0, then ε→ 0, then δ → 0, we conclude that

∆new(E , t, x(t−), x(t)) ≤ E (t, x(t−)− E (t, x(t)).
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Future works

Problem 1: Improve the weak local stability for BV solutions

constructed by epsilon-neighborhood.

Problem 2: Prove the existence of BV solutions constructed

by epsilon-neighborhood for capillary drops.
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